Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno

dc.contributor.advisorParra López, Carlos Albertospa
dc.contributor.authorVillota Alava, María Alejandraspa
dc.contributor.cvlacVillota Alava, María Alejandra [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001786060]spa
dc.contributor.educationalvalidatorClavijo Ramirez, Carlos Arturospa
dc.contributor.researchgroupInmunología y Medicina Traslacionalspa
dc.contributor.subjectmatterexpertPatarroyo Gutiérrez, Manuel Alfonsospa
dc.date.accessioned2024-05-09T18:42:36Z
dc.date.available2024-05-09T18:42:36Z
dc.date.issued2024-04-19
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa deficiente presentación del antígeno por parte de las células tumorales juega un papel importante en la evasión de la respuesta inmune antitumoral por parte de los linfocitos T, siendo, de hecho, un factor primordial del origen de los tumores. Por esta razón distintos tipos de células presentadoras de antígeno (APCs) han sido ampliamente utilizadas para la inmunoterapia del cáncer debido a su capacidad de procesar y presentar eficientemente antígenos a los linfocitos T en pacientes con cáncer. Frecuentemente las APCs son pulsadas con el antígeno en forma de péptidos, sin embargo, este enfoque puede resultar en la presentación de epítopes que no son generadas producto del procesamiento natural por las células tumorales, afectando la efectividad de este tipo de inmunoterapia. En este contexto, el uso de minigenes, que corresponden a secuencias de antígenos concatenados, emerge como una alternativa propicia para la selección de antígenos procesados naturalmente por las APCs. Se espera que esta estrategia simule el procesamiento y presentación natural de los antígenos a los linfocitos T y aumente la probabilidad de identificar antígenos inmunogénicos, evitando así la selección de epítopes que no son procesados y presentados naturalmente como candidatos a vacuna para la inmunoterapia. Para hacer entrega de estos minigenes a las APCs, se han explorado distintos métodos, siendo la electroporación, la administración mediante liposomas catiónicos y la transducción por vectores virales los más comunes. Aunque se reconocen las ventajas y desventajas inherentes a cada método, pocos estudios han comparado el rendimiento en la estimulación de los linfocitos T por parte de APCs transfectadas con diferentes sistemas. En este sentido, el presente trabajo propuso la evaluación de la capacidad que tienen las APCs transfectadas con un constructo de minigen que codifica para antígenos inmunogénicos restringidos al haplotipo HLA-A*0201, de estimular precursores de linfocitos T-CD8+ (LT-CD8+) antígeno-específicos in vitro. Además de la transfección con el minigen, también se diseñaron APCs artificiales (en adelante denominaremos aAPCs), cotransfectando las líneas celulares HEK293 y K562 con plásmidos que codifican para moléculas co-estimuladoras (CD80, CD83, CD137L) y en el caso de las K562 también con un plásmido que codifica para la molécula HLA-A*0201, con el fin de evaluar la eficiencia de activación de LT-CD8+ por estas aAPCs, en términos de la producción de citoquinas intracelulares, la actividad citotóxica, la expresión de marcadores de activación y agotamiento; y el perfil de las subpoblaciones de memoria de los LT-CD8+ estimulados. Los resultados de este trabajo permitieron implementar una metodología de transfección con el uso de lipofectamina y electroporación en células HEK293 de un minigen codificante para epítopes HLA-A*0201. Estas células se emplearon como aAPCs para analizar el fenotipo de poblaciones de LT-CD8+ antígeno-específicas. Considerando que el uso de las células HEK293 como aAPCs no ha sido explorado, y debido a su alta eficiencia de transfección y transducción con minigenes, la metodología implementada en este trabajo posibilita su uso para la identificación de neoantígenos inmunogénicos naturalmente procesados. Consideramos que nuestros hallazgos pueden contribuir con la selección y el diseño de vacunas personalizadas basadas en neoantígenos tumorales útiles para la inmunoterapia del cáncer. (Texto tomado de la fuente).spa
dc.description.abstractThe deficient antigen presentation by tumor cells plays a significant role in the evasion of the anti-tumor immune response by T lymphocytes, being, in fact, a primordial factor in tumor genesis. For this reason, various types of antigen-presenting cells (APCs) have been widely used for cancer immunotherapy due to their ability to efficiently process and present antigens to T lymphocytes in cancer patients. APCs are often pulsed with antigenic peptides; however, this approach may result in the presentation of epitopes that are not naturally processed by tumor cells, affecting the effectiveness of this type of immunotherapy. In this context, the use of minigenes, which correspond to concatenated antigen sequences, emerges as a promising alternative for the selection of antigens naturally processed by APCs. It is expected that this strategy mimics the natural processing and presentation of antigens to T lymphocytes, increasing the probability of identifying immunogenic antigens, thus avoiding the selection of epitopes that are not naturally processed and presented as vaccine candidates for immunotherapy. To deliver these minigenes to APCs, various methods have been explored, with electroporation, administration via cationic liposomes, and transduction by viral vectors being the most common. Although the advantages and disadvantages of each method are recognized, few studies have compared the performance in T lymphocyte stimulation by APCs transfected with different systems. In this regard, the present work proposed the evaluation of the capacity of APCs transfected with a minigen construct encoding for HLA-A0201-restricted immunogenic antigens to stimulate antigen-specific CD8+ T lymphocyte (CD8+ LT) precursors in vitro. In addition to transfection with the minigen, artificial APCs (hereinafter referred to as aAPCs) were also designed, co-transfecting the HEK293 and K562 cell lines with plasmids encoding co-stimulatory molecules (CD80, CD83, CD137L), and in the case of K562 also with a plasmid encoding the HLA-A0201 molecule, in order to evaluate the efficiency of CD8+ LT activation by these aAPCs, in terms of intracellular cytokine production, cytotoxic activity, expression of activation and exhaustion markers, and the profile of stimulated CD8+ LT memory subpopulations. The results of this work allowed the implementation of a transfection methodology using lipofectamine and electroporation in HEK293 cells of a minigen encoding HLA-A*0201 epitopes. These cells were used as aAPCs to analyze the phenotype of antigen specific CD8+ LT populations. Considering that the use of HEK293 cells as aAPCs has not been explored, and due to their high transfection and transduction efficiency with minigenes, the methodology implemented in this work enables their use for the identification of naturally processed immunogenic neoantigens. We believe that our findings can contribute to the selection and design of personalized vaccines based on tumor neoantigens useful for cancer immunotherapy.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.researchareaMedicina Traslacionalspa
dc.format.extent164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86062
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesTan, S., D. Li, and X. Zhu, Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother, 2020. 124: p. 109821.spa
dc.relation.referencesDagher, O.K., et al., Advances in cancer immunotherapies. Cell, 2023. 186(8): p. 1814-1814.e1.spa
dc.relation.referencesZhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.spa
dc.relation.referencesLollini, P.L., et al., Vaccines for tumour prevention. Nat Rev Cancer, 2006. 6(3): p. 204-16.spa
dc.relation.referencesFu, C., et al., DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel), 2020. 8(4).spa
dc.relation.referencesDevi, G.R. and S. Nath, Delivery of Synthetic mRNA Encoding FOXP3 Antigen into Dendritic Cells for Inflammatory Breast Cancer Immunotherapy. Methods Mol Biol, 2016. 1428: p. 231-43.spa
dc.relation.referencesSahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.spa
dc.relation.referencesCarreno, B.M., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015. 348(6236): p. 803-8.spa
dc.relation.referencesPatente, T.A., et al., Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol, 2018. 9: p. 3176.spa
dc.relation.referencesLesterhuis, W.J., et al., Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 2010. 30(12): p. 5091-7.spa
dc.relation.referencesCafri, G., et al., mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation, 2020. 130(11).spa
dc.relation.referencesAurisicchio, L., et al., A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology, 2014. 3(1).spa
dc.relation.referencesTateshita, N., et al., Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release : official journal of the Controlled Release Society, 2019. 310.spa
dc.relation.referencesLu, Y., et al., Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014. 20(13).spa
dc.relation.referencesGelband, H., et al., Cancer: Disease Control Priorities, Third Edition (Volume 3). 2015.spa
dc.relation.referencesBray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.spa
dc.relation.referencesKennedy, L.B. and A.K.S. Salama, A review of cancer immunotherapy toxicity. CA Cancer J Clin, 2020. 70(2): p. 86-104.spa
dc.relation.referencesIgarashi, Y. and T. Sasada, Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res, 2020. 2020: p. 5825401.spa
dc.relation.referencesMaus, M.V., et al., Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol, 2014. 32: p. 189-225.spa
dc.relation.referencesBernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer, 2018. 18(1): p. 77.spa
dc.relation.referencesKarpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718.spa
dc.relation.referencesWells, D.K., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3): p. 818-834.e13.spa
dc.relation.referencesBradley, P. and P.G. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol, 2019. 37: p. 547-570.spa
dc.relation.referencesE, S., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, N.Y.), 2016. 352(6291).spa
dc.relation.referencesAli, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.spa
dc.relation.referencesSahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.spa
dc.relation.referencesAurisicchio, L., et al., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019. 38(1): p. 78.spa
dc.relation.referencesFarkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 2016. 14: p. 73.spa
dc.relation.referencesvan der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643-7.spa
dc.relation.referencesGaugler, B., et al., Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994. 179(3): p. 921-30.spa
dc.relation.referencesBanchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.spa
dc.relation.referencesKawakami, Y., et al., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6458-62.spa
dc.relation.referencesKantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.spa
dc.relation.referencesMou, Z., Y. He, and Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett, 2009. 278(2): p. 123-129.spa
dc.relation.referencesDi Oto, E., et al., Prognostic impact of HER-2 Subclonal Amplification in breast cancer. Virchows Arch, 2017. 471(3): p. 313-319.spa
dc.relation.referencesBrinkman, J.A., et al., Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther, 2004. 4(2): p. 181-98.spa
dc.relation.referencesDisis, M.L., et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002. 20(11): p. 2624-32.spa
dc.relation.referencesRivoltini, L., et al., Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol, 1995. 154(5): p. 2257-65.spa
dc.relation.referencesSimpson, A.J., et al., Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer, 2005. 5(8): p. 615-25.spa
dc.relation.referencesThomas, R., et al., NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol, 2018. 9: p. 947.spa
dc.relation.referencesKakimi, K., et al., A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer, 2011. 129(12): p. 2836-46.spa
dc.relation.referencesChamucero-Millares, J.A., D.A. Bernal-Estévez, and C.A. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol, 2021. 360: p. 104257.spa
dc.relation.referencesSpaete, R.R., R.C. Gehrz, and M.P. Landini, Human cytomegalovirus structural proteins. J Gen Virol, 1994. 75 ( Pt 12): p. 3287-308.spa
dc.relation.referencesSolache, A., et al., Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol, 1999. 163(10): p. 5512-8.spa
dc.relation.referencesWloch, M.K., et al., Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis, 2008. 197(12): p. 1634-42.spa
dc.relation.referencesBouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4(Suppl 4): p. D49-53.spa
dc.relation.referencesChoo, J.A., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol, 2014. 88(18): p. 10613-23.spa
dc.relation.referencesLillie, P.J., et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis, 2012. 55(1): p. 19-25.spa
dc.relation.referencesDörrie, J., et al., Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics, 2020. 12(2).spa
dc.relation.referencesChen, Y.Z., et al., Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol, 2010. 2010: p. 565643.spa
dc.relation.referencesLi, G.B. and G.X. Lu, Gene delivery efficiency in bone marrow-derived dendritic cells: comparison of four methods and optimization for lentivirus transduction. Mol Biotechnol, 2009. 43(3): p. 250-6.spa
dc.relation.referencesMack, C.A., et al., Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 1997. 8(1): p. 99-109.spa
dc.relation.referencesFoged, C., et al., Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine, 2004. 22(15-16): p. 1903-13.spa
dc.relation.referencesYamada, M., et al., Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release, 2004. 98(1): p. 157-67.spa
dc.relation.referencesLu, Y., et al., Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007. 28(21): p. 3255-62.spa
dc.relation.referencesKim, T.H., et al., Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2796-803.spa
dc.relation.referencesAli, O.A. and D.J. Mooney, Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J Control Release, 2008. 132(3): p. 273-8.spa
dc.relation.referencesPotter, H. and R. Heller, Transfection by Electroporation. Curr Protoc Mol Biol, 2018. 121: p. 9.3.1-9.3.13.spa
dc.relation.referencesSchwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34.spa
dc.relation.referencesButler, M.O. and N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev, 2014. 257(1): p. 191-209.spa
dc.relation.referencesKim, J.V., et al., The ABCs of artificial antigen presentation. Nat Biotechnol, 2004. 22(4): p. 403-10.spa
dc.relation.referencesNeal, L.R., et al., The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther, 2017. 2(1): p. 68-79.spa
dc.relation.referencesKlein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer, 1976. 18(4): p. 421-31.spa
dc.relation.referencesButler, M.O., et al., A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol, 2010. 22(11): p. 863-73.spa
dc.relation.referencesStepanenko, A.A. and V.V. Dmitrenko, HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene, 2015. 569(2): p. 182-90.spa
dc.relation.referencesHong, C.H., et al., Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother, 2017. 40(6): p. 201-210.spa
dc.relation.referencesLee, M.N. and M. Meyerson, Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol, 2021. 6(55).spa
dc.relation.referencesPrasher, D.C., Using GFP to see the light. Trends Genet, 1995. 11(8): p. 320-3.spa
dc.relation.referencesSchmidt, A., et al., lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc, 1998. 3(1): p. 54-60.spa
dc.relation.referencesHoffman, R.M., Green fluorescent protein imaging of tumor cells in mice. Lab Anim (NY), 2002. 31(4): p. 34-41.spa
dc.relation.referencesOkabe, M., et al., 'Green mice' as a source of ubiquitous green cells. FEBS Lett, 1997. 407(3): p. 313-9.spa
dc.relation.referencesYang, M., et al., Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1206-11.spa
dc.relation.referencesHan, Q., et al., Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1607-12.spa
dc.relation.referencesPeng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep, 2019. 28(10): p. 2728-2738.e7.spa
dc.relation.referencesBentzen, A.K. and S.R. Hadrup, Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother, 2017. 66(5): p. 657-666.spa
dc.relation.referencesZappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods Enzymol, 2020. 631: p. 43-59.spa
dc.relation.referencesRochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90.spa
dc.relation.referencesJicha, D.L., J.J. Mulé, and S.A. Rosenberg, Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med, 1991. 174(6): p. 1511-5.spa
dc.relation.referencesShevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.spa
dc.relation.referencesBoyman, O., et al., Cytokines and T-cell homeostasis. Curr Opin Immunol, 2007. 19(3): p. 320-6.spa
dc.relation.referencesEttinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79.spa
dc.relation.referencesvan den Broek, T., J.A.M. Borghans, and F. van Wijk, The full spectrum of human naive T cells. Nat Rev Immunol, 2018. 18(6): p. 363-373.spa
dc.relation.referencesMelichar, B., et al., Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol, 2000. 119(1): p. 19-27.spa
dc.relation.referencesYoung, J.W., et al., The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest, 1992. 90(1): p. 229-37.spa
dc.relation.referencesLi, Z., et al., CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol, 2019. 10: p. 1312.spa
dc.relation.referencesHirano, N., et al., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood, 2006. 107(4): p. 1528-36.spa
dc.relation.referencesWallet, M.A., P. Sen, and R. Tisch, Immunoregulation of dendritic cells. Clin Med Res, 2005. 3(3): p. 166-75.spa
dc.relation.referencesShuford, W.W., et al., 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997. 186(1): p. 47-55.spa
dc.relation.referencesMartinez-Perez, A.G., et al., 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci, 2021. 22(12).spa
dc.relation.referencesDíaz, Á., et al., CD40-CD154: A perspective from type 2 immunity. Semin Immunol, 2021. 53: p. 101528.spa
dc.relation.referencesAlunno, A., et al., Novel Therapeutic Strategies in Primary Sjögren's Syndrome. Isr Med Assoc J, 2017. 19(9): p. 576-580.spa
dc.relation.referencesHassan, G.S., J. Stagg, and W. Mourad, Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev, 2015. 41(5): p. 431-40.spa
dc.relation.referencesBacher, P. and A. Scheffold, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A, 2013. 83(8): p. 692-701.spa
dc.relation.referencesDawicki, W. and T.H. Watts, Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol, 2004. 34(3): p. 743-751.spa
dc.relation.referencesOtano, I., et al., CD137 (4-1BB) costimulation of CD8. Nat Commun, 2021. 12(1): p. 7296.spa
dc.relation.referencesBajnok, A., et al., The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm, 2017. 2017: p. 8045161.spa
dc.relation.referencesSpetz, J., A.G. Presser, and K.A. Sarosiek, T Cells and Regulated Cell Death: Kill or Be Killed. Int Rev Cell Mol Biol, 2019. 342: p. 27-71.spa
dc.relation.referencesReddy, M., et al., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods, 2004. 293(1-2): p. 127-42.spa
dc.relation.referencesMarzio, R., J. Mauël, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82.spa
dc.relation.referencesGonzález-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.spa
dc.relation.referencesLim, L.C., et al., A whole-blood assay for qualitative and semiquantitative measurements of CD69 surface expression on CD4 and CD8 T lymphocytes using flow cytometry. Clin Diagn Lab Immunol, 1998. 5(3): p. 392-8.spa
dc.relation.referencesGorabi, A.M., et al., The pivotal role of CD69 in autoimmunity. J Autoimmun, 2020. 111: p. 102453.spa
dc.relation.referencesMallett, S., S. Fossum, and A.N. Barclay, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J, 1990. 9(4): p. 1063-8.spa
dc.relation.referencesCroft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev, 2009. 229(1): p. 173-91.spa
dc.relation.referencesRogers, P.R., et al., OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 2001. 15(3): p. 445-55.spa
dc.relation.referencesWalker, L.S., et al., Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med, 1999. 190(8): p. 1115-22.spa
dc.relation.referencesJubel, J.M., et al., The Role of PD-1 in Acute and Chronic Infection. Front Immunol, 2020. 11: p. 487.spa
dc.relation.referencesKeir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 677-704.spa
dc.relation.referencesPentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.spa
dc.relation.referencesWalunas, T.L., et al., CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol, 1996. 156(3): p. 1006-13.spa
dc.relation.referencesBuchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.spa
dc.relation.referencesSharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.spa
dc.relation.referencesWorkman, C.J., et al., Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol, 2004. 172(9): p. 5450-5.spa
dc.relation.referencesMénager, J., et al., Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014. 9(2): p. e89897.spa
dc.relation.referencesAspord, C., et al., pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol, 2014. 44(10): p. 2880-92.spa
dc.relation.referencesWang, M., et al., Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011. 132(4): p. 482-91.spa
dc.relation.referencesDhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 2019. 47(W1): p. W502-W506.spa
dc.relation.referencesCzerniecki, B.J., et al., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res, 2007. 67(4): p. 1842-52.spa
dc.relation.referencesJain, R.K., et al., Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J, 2001. 360(Pt 3): p. 645-9.spa
dc.relation.referencesArnaud, M., et al., Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol, 2022. 40(5): p. 656-660.spa
dc.relation.referencesLiu, Y., et al., Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol, 2022. 13: p. 1016817.spa
dc.relation.referencesPhetsouphanh, C., J.J. Zaunders, and A.D. Kelleher, Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci, 2015. 16(8): p. 18878-93.spa
dc.relation.referencesAzuma, M., Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol, 2019. 1189: p. 3-23.spa
dc.relation.referencesCurtsinger, J.M., et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol, 1999. 162(6): p. 3256-62.spa
dc.relation.referencesTanimoto, K., et al., Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy, 2014. 16(1): p. 135-46.spa
dc.relation.referencesRiedhammer, C., D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol, 2016. 1304: p. 53-61.spa
dc.relation.referencesVan Camp, K., et al., Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods, 2010. 354(1-2): p. 1-10.spa
dc.relation.referencesChong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165.spa
dc.relation.referencesNastasi, C., L. Mannarino, and M. D'Incalci, DNA Damage Response and Immune Defense. Int J Mol Sci, 2020. 21(20).spa
dc.relation.referencesMortara, L., et al., Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol, 2007. 37(12): p. 3381-92.spa
dc.relation.referencesLejeune, F.J., et al., Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun, 2006. 6: p. 6.spa
dc.relation.referencesKang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.spa
dc.relation.referencesJouanguy, E., et al., A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet, 1999. 21(4): p. 370-8.spa
dc.relation.referencesIkeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109.spa
dc.relation.referencesIkeda, H, R.R., A.M. Ghoneim, and N. El-Mashad, TNF-α gene polymorphisms and expression. Springerplus, 2016. 5(1): p. 1508.spa
dc.relation.referencesTrapani, J.A. and V.R. Sutton, Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol, 2003. 15(5): p. 533-43.spa
dc.relation.referencesde Jong, R., et al., Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol, 1991. 146(8): p. 2488-94.spa
dc.relation.referencesWalker, L.S., et al., Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today, 2000. 21(7): p. 333-7.spa
dc.relation.referencesAcuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.spa
dc.relation.referencesKaminski, D.A., et al., CD28 and inducible costimulator (ICOS) signalling can sustain CD154 expression on activated T cells. Immunology, 2009. 127(3): p. 373-85.spa
dc.relation.referencesWolfl, M., et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007. 110(1): p. 201-10.spa
dc.relation.referencesAhn, E., et al., Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A, 2018. 115(18): p. 4749-4754.spa
dc.relation.referencesWaterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995. 270(5238): p. 985-8.spa
dc.relation.referencesSteiner, K., et al., Enhanced expression of CTLA-4 (CD152) on CD4+ T cells in HIV infection. Clin Exp Immunol, 1999. 115(3): p. 451-7.spa
dc.relation.referencesGoldberg, M.V. and C.G. Drake, LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol, 2011. 344: p. 269-78.spa
dc.relation.referencesFuertes Marraco, S.A., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol, 2015. 6: p. 310.spa
dc.relation.referencesWang, W., et al., PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation, 2008. 86(6): p. 836-44.spa
dc.relation.referencesBernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer, 2016. 16: p. 591.spa
dc.relation.referencesKaech, S.M., E.J. Wherry, and R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol, 2002. 2(4): p. 251-62.spa
dc.relation.referencesHsiue, E.H., et al., Targeting a neoantigen derived from a common. Science, 2021. 371(6533).spa
dc.relation.referencesMaus, M.V., et al., Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002. 20(2): p. 143-8.spa
dc.relation.referencesZeng, W., et al., Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 2014. 219(8): p. 583-92.spa
dc.relation.referencesShao, J., et al., Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol, 2018. 334: p. 78-86.spa
dc.relation.referencesButler, M.O., et al., Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res, 2007. 13(6): p. 1857-67.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsAntígenos de Neoplasiasspa
dc.subject.decsAntigens, Neoplasmeng
dc.subject.decsAntígenos Virales/análisisspa
dc.subject.decsAntigens, Viral/analysiseng
dc.subject.decsInmunoterapia/métodosspa
dc.subject.decsImmunotherapy/methodseng
dc.subject.proposalMinigenesspa
dc.subject.proposalNeoantígenosspa
dc.subject.proposalCélulas presentadoras de antígeno artificialesspa
dc.subject.proposalTransfecciónspa
dc.subject.proposalTransducciónspa
dc.subject.proposalCitometría de Flujospa
dc.subject.proposalInmunoterapiaspa
dc.subject.proposalMinigeneeng
dc.subject.proposalNeoantigenseng
dc.subject.proposalArtificial Antigen Presenting Cellseng
dc.subject.proposalTransfectioneng
dc.subject.proposalFlow Cytometryeng
dc.subject.proposalTransductioneng
dc.subject.proposalImmunotherapyeng
dc.titleEvaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígenospa
dc.title.translatedAssessment of the immunogenicity of antigens formulated in minigenes transfected into antigen-presenting cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032476383.2024.pdf
Tamaño:
8.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: