Péptidos quiméricos derivados de Lactoferricina Bovina y Buforina II: actividad antifúngica contra aislados clínicos y cepas de referencia de Candida spp

dc.contributor.advisorParra Giraldo, Claudia Marcela
dc.contributor.authorAguirre Guataqui, Katherine Natalia
dc.contributor.authorParra Giraldo, Claudia Marcela
dc.contributor.authorGarcía Castañeda, Javier Eduardo
dc.contributor.cvlacKatherine Aguirre-Guataqui 0001665676spa
dc.contributor.educationalvalidatorYerly Vargas-Casanova
dc.contributor.educationalvalidatorAndrés Ceballos-Garzon
dc.contributor.researchgateKatherine-Aguirre-Guataquispa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.contributor.researchgroupUnidad de Investigación en Proteómica y micosis Humanas-PUJspa
dc.contributor.scopusKatherine Aguirre-Guataqui 0000-0002-9122-678Xspa
dc.date.accessioned2023-02-17T13:05:13Z
dc.date.available2023-02-17T13:05:13Z
dc.date.issued2022-10-14
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEl número reducido de moléculas con actividad antifúngica y la aparición de aislamientos clínicos resistentes como las levaduras del género Candida spp., ha limitado la eficacia terapéutica de antifúngicos en los últimos años. En este trabajo examinamos los efectos de PAM quiméricos que contienen el motivo mínimo de LfcinB y BFII en C. albicans (CAAL), C. glabrata (CAGL) y C. auris (CAAU), con la evaluación de la concentración mínima inhibitoria (CMI) y concentración mínima fungicida (CMF), cinética de crecimiento y la combinación de la quimera QC2 con FLU. Nuestros resultados indicaron que las quimeras QC1 y QC2 exhibieron actividad fungistática y fungicida dependiente de la concentración contra Candida spp resistente, mayor actividad en comparación con el motivo mínimo de LfcinB, el palíndromo de BFII y las otras cinco quimeras estudiadas; y un efecto de aditividad con fluconazol contra CAAL256 (resistente a FLU), C. glabrata 2001 y C. auris 001. Estas quimeras pueden ser consideradas promisorias ya que además de presentar actividad antifúngica contra cepas de referencia y aislados clínicos de Candida spp, también se ha reportado que exhiben actividad antibacteriana, tanto en bacterias Gram positivas como Gram negativas(1). Los resultados sugieren que estas quimeras pueden ser de amplio espectro antimicrobiano. (Texto tomado de la fuente)spa
dc.description.abstractThe reduced number of molecules with antifungal activity and the appearance of resistant clinical isolates, such as yeasts of the genus Candida spp., have limited the therapeutic efficacy of antifungal agents in recent years. In this work, we examined the effects of chimeric PAMs containing the minimal motif of LfcinB and BFII in C. albicans (CAAL), C. glabrata (CAGL), and C. auris (CAAU), with the evaluation of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), growth kinetics, and combination of QC2 chimera with FLU. Our results indicated that QC1 and QC2 chimeras exhibited concentration-dependent fungistatic and fungicidal activity against resistant Candida spp, higher activity compared to minimal motifs of LfcinB, BFII palindrome and other five chimeras studied, and an additivity effect with fluconazole against CAAL256 (resistant to FLU), C. glabrata 2001 and C. auris 001. In addition to present antifungal activity against reference strains and clinical isolates of Candida spp, they also presented antibacterial activity, both in Gram-positive and Gram-negative bacteria (1). These chimeras show a broad antimicrobial spectrum and can be considered as promising molecules for therapeutic applications.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias--Microbiologíaspa
dc.format.extentxii, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83512
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesPineda-Castañeda HM, Huertas-Ortiz KA, Leal-Castro AL, Vargas-Casanova Y, Parra-Giraldo CM, García-Castañeda JE, et al. Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity. Chem Biodivers. 2021;18(2).spa
dc.relation.referencesMorio F, Jensen RH, Le Pape P, Arendrup MC. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents [Internet]. 2017;50(5):599–606. Available from: https://doi.org/10.1016/j.ijantimicag.2017.05.012spa
dc.relation.referencesGrau S, Cámara R, Jurado M, Sanz J, Aragón B, Gozalbo I. Cost-effectiveness of posaconazole tablets versus fluconazole as prophylaxis for invasive fungal diseases in patients with graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Eur J Heal Econ. 2018 May 1;19(4):627–36.spa
dc.relation.referencesM. Reyes-Montes, Duarte-Escalante E, Martínez-Herrera E, . Current status of the etiology of candidiasis in Mexico- ClinicalKey. Revista Iberoamericana de Micología,. 2017. p. Volumen 34, Número 4, Páginas 203-210.spa
dc.relation.referencesPappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Vol. 62, Clinical Infectious Diseases. Oxford University Press; 2015. p. e1–50.spa
dc.relation.referencesValencia A, Páez A, Sampedro M, Ávila C, Cardona J, Mesa C. Candidemia en Colombia. Biomédica. 2020;40(1):1–33.spa
dc.relation.referencesGuinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect [Internet]. 2014;20:5–10. Available from: http://www.sciencedirect.com/science/article/pii/S1198743X14603268spa
dc.relation.referencesLamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 2018 Jan 1;73:i4–13.spa
dc.relation.referencesNuti R, Goud NS, Saraswati AP, Alvala R, Alvala M. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Curr Med Chem [Internet]. 2017 Dec 12 [cited 2019 Nov 21];24(38). Available from: http://www.eurekaselect.com/154924/articlespa
dc.relation.referencesArias M, McDonald LJ, Haney EF, Nazmi K, Bolscher JGM, Vogel HJ. Bovine and human lactoferricin peptides: Chimeras and new cyclic analogs. BioMetals. 2014 Sep 5;27(5):935–48.spa
dc.relation.referencesBaldo BA. Chimeric Fusion Proteins Used for Therapy: Indications, Mechanisms, and Safety. Vol. 38, Drug Safety. Springer International Publishing; 2015. p. 455–79.spa
dc.relation.referencesPfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species from 1997-2016. Open Forum Infect Dis. 2019 Mar 15;6:S79–94.spa
dc.relation.referencesJenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Vol. 19, Clinical Microbiology Reviews. 2006. p. 491–511.spa
dc.relation.referencesHilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Vol. 9, Nature Chemical Biology. Nature Publishing Group; 2013. p. 761–8.spa
dc.relation.referencesSheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences? Virulence. 2018 Jan 1;9(1):1625–39.spa
dc.relation.referencesPfaller MA, Diekema DJ, Colombo AL, Kibbler C, Ng KP, Gibbs DL, et al. Candida rugosa, an emerging fungal pathogen with resistance to azoles: Geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program. J Clin Microbiol. 2006;44(10):3578–82.spa
dc.relation.referencesBrown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24–30.spa
dc.relation.referencesPatel SP, Vaishya R, Patel A, Agrahari V, Pal D, Mitra A k. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases. J Microencapsul. 2016 Feb;33(2):103–13.spa
dc.relation.referencesRautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie [Internet]. 2016;130:132–45. Available from: http://dx.doi.org/10.1016/j.biochi.2016.05.013spa
dc.relation.referencesVan Der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Vol. 70, Cellular and Molecular Life Sciences. Springer; 2013. p. 3545–70.spa
dc.relation.referencesFleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Effect of lipid composition on buforin II structure and membrane entry. Proteins Struct Funct Genet. 2008 Nov 1;73(2):480–91.spa
dc.relation.referencesCiociola T, Giovati L, Conti S, Magliani W, Santinoli C, Polonelli L. Natural and synthetic peptides with antifungal activity. Future Med Chem. 2016;8(12):1413–33.spa
dc.relation.referencesDavis SL, Vazquez JA. Anidulafungin: An evidence-based review of its use in invasive fungal infections. Vol. 2, Core Evidence. Dove Press; 2008. p. 241–9.spa
dc.relation.referencesConlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pal T, et al. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res [Internet]. 2003 Nov 1 [cited 2020 May 17];62(5):207–13. Available from: http://doi.wiley.com/10.1034/j.1399-3011.2003.00090.xspa
dc.relation.referencesFleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Effect of lipid composition on buforin II structure and membrane entry. Proteins Struct Funct Bioinforma [Internet]. 2008 May 1 [cited 2020 May 17];73(2):480–91. Available from: http://doi.wiley.com/10.1002/prot.22074spa
dc.relation.referencesPfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic . J Clin Microbiol. 2013 Aug;51(8):2571–81.spa
dc.relation.referencesWang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, et al. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. In: Advances in Experimental Medicine and Biology. Springer New York LLC; 2019. p. 215–40.spa
dc.relation.referencesYun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life [Internet]. 2016 Aug 1 [cited 2020 May 17];68(8):652–62. Available from: http://doi.wiley.com/10.1002/iub.1527spa
dc.relation.referencesOuyang L, Xu X, Freed S, Gao Y, Yu J, Wang S, et al. Cecropins from plutella xylostella and their interaction with Metarhizium anisopliae. PLoS One. 2015 Nov 6;10(11).spa
dc.relation.referencesWu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Vol. 10, Toxins. MDPI AG; 2018.spa
dc.relation.referencesGanz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.spa
dc.relation.referencesSathoff AE, Velivelli S, Shah DM, Samac DA. Plant Defensin Peptides have Antifungal and Antibacterial Activity Against Human and Plant Pathogens. Phytopathology [Internet]. 2019 Mar 1 [cited 2020 May 18];109(3):402–8. Available from: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-09-18-0331-Rspa
dc.relation.referencesFernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Vol. 8, Frontiers in Microbiology. Frontiers Research Foundation; 2017.spa
dc.relation.referencesTanner JD, Deplazes E, Mancera RL. The biological and biophysical properties of the spider peptide gomesin. Vol. 23, Molecules. MDPI AG; 2018.spa
dc.relation.referencesDel Gaudio G, Lombardi L, Maisetta G, Esin S, Batoni G, Sanguinetti M, et al. Antifungal activity of the noncytotoxic human peptide hepcidin 20 against fluconazole-resistant Candida glabrata in human vaginal fluid. Antimicrob Agents Chemother. 2013 Sep;57(9):4314–21.spa
dc.relation.referencesIkonomova SP, Moghaddam-Taaheri P, Jabra-Rizk MA, Wang Y, Karlsson AJ. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency. FEBS J. 2018 Jan 1;285(1):146–59.spa
dc.relation.referencesSimonetti O, Silvestri C, Arzeni D, Cirioni O, Kamysz W, Conte I, et al. In vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes. Mycoses [Internet]. 2014 Apr 1 [cited 2020 May 19];57(4):233–9. Available from: http://doi.wiley.com/10.1111/myc.12148spa
dc.relation.referencesThevissen K, François IEJA, Sijtsma L, Van Amerongen A, Schaaper WMM, Meloen R, et al. Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides. 2005;26(7):1113–9.spa
dc.relation.referencesPatil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol [Internet]. 2017 Dec 1 [cited 2020 May 19];69(12):1635–60. Available from: http://doi.wiley.com/10.1111/jphp.12780spa
dc.relation.referencesMercer DK, Robertson JC, Miller L, Stewart CS, O’Neil DA. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med Mycol. 2020;spa
dc.relation.referencesCuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ, et al. Diversity in penaeidin antimicrobial peptide form and function. Vol. 32, Developmental and Comparative Immunology. NIH Public Access; 2008. p. 167–81.spa
dc.relation.referencesMoreno AB, Martínez Del Pozo Á, San Segundo B. Biotechnologically relevant enzymes and proteins: Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol. 2006 Oct 24;72(5):883–95.spa
dc.relation.referencesSingh V, Praveen V, Tripathi D, Haque S, Somvanshi P, Katti SB, et al. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum. Sci Rep. 2015 Jul 10;5.spa
dc.relation.referencesYasmin N, Saleem M, Naz M, Gul R, Rehman HM. Molecular Characterization, Structural Modeling, and Evaluation of Antimicrobial Activity of Basrai Thaumatin-Like Protein against Fungal Infection. Biomed Res Int. 2017;2017.spa
dc.relation.referencesOsaki T, Omotezako M, Nagayama R, Hirata M, Iwanaga S, Kasahara J, et al. Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem. 1999 Sep 10;274(37):26172–8.spa
dc.relation.referencesFujitani N, Kawabata SI, Osaki T, Kumaki Y, Demura M, Nitta K, et al. Structure of the antimicrobial peptide tachystatin A. J Biol Chem. 2002 Jun 28;277(26):23651–7.spa
dc.relation.referencesRomero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) [Internet]. 2020 May 1 [cited 2020 May 19];21(4):309–22. Available from: https://www.liebertpub.com/doi/10.1089/sur.2019.266spa
dc.relation.referencesPark KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo Y su, et al. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. Dev Comp Immunol [Internet]. 2018;78:83–90. Available from: https://doi.org/10.1016/j.dci.2017.09.009spa
dc.relation.referencesTaveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species Applied microbiology. BMC Microbiol. 2016 Jan 27;16(1).spa
dc.relation.referencesBondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. Vol. 3, Journal of Fungi. MDPI AG; 2017.spa
dc.relation.referencesUllivarri MF de, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol [Internet]. 2020 Mar 17 [cited 2021 Oct 19];10. Available from: /pmc/articles/PMC7089922/spa
dc.relation.referencesRaheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Vol. 10, Frontiers in Microbiology. Frontiers Media S.A.; 2019.spa
dc.relation.referencesKovács R, Nagy F, Tóth Z, Bozó A, Balázs B, Majoros L. Synergistic effect of nikkomycin Z with caspofungin and micafungin against Candida albicans and Candida parapsilosis biofilms. Lett Appl Microbiol [Internet]. 2019 Oct 23 [cited 2020 May 15];69(4):271–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/lam.13204spa
dc.relation.referencesZhu J, Huang Y, Chen M, Hu C, Chen Y. Functional synergy of antimicrobial peptides and chlorhexidine acetate against gram-negative/ gram-positive bacteria and a fungus in vitro and in vivo. Infect Drug Resist. 2019;12:3227–39.spa
dc.relation.referencesZeidler U, Bougnoux M-E, Lupan A, Helynck O, Doyen A, Garcia Z, et al. Archive ouverte HAL - Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. [Internet]. J Antimicrob Chemother. 2013 [cited 2020 May 15]. Available from: https://hal.archives-ouvertes.fr/pasteur-00849830spa
dc.relation.referencesWakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H. Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin- related compounds. Antimicrob Agents Chemother. 1998 Jul;42(7):1587–91.spa
dc.relation.referencesBondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi. 2017 Aug;3(3):46.spa
dc.relation.referencesVargas-Casanova Y, Carlos Villamil Poveda J, Jenny Rivera-Monroy Z, Ceballos Garzón A, Fierro-Medina R, Le Pape P, et al. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. ChemistrySelect [Internet]. 2020 Jun 30 [cited 2021 Nov 24];5(24):7236–42. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/slct.202001329spa
dc.relation.referencesFarnaud S, Spiller C, Moriarty LC, Patel A, Gant V, Odell EW, et al. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett. 2004;233(2):193–9.spa
dc.relation.referencesVargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv. 2019 Mar 1;9(13):7239–45.spa
dc.relation.referencesPark CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245–50.spa
dc.relation.referencesBolscher J, Nazmi K, Van Marle J, Van ’T Hof W, Veerman E. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochem Cell Biol [Internet]. 2012 Jun [cited 2020 Jun 30];90(3):378–88. Available from: https://pubmed-ncbi-nlm-nih-gov.ezproxy.javeriana.edu.co/22364313/spa
dc.relation.referencesParra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzón JR, Ariza BE, Morio F, et al. First report of sporadic cases of Candida auris in Colombia. Int J Infect Dis. 2018 Feb;spa
dc.relation.referencesCortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos E V. Candidemia en Colombia. Biomédica. 2020;40(1).spa
dc.relation.referencesATCC. Candida albicans drug resistance panel [Internet]. 2008 [cited 2020 May 6]. Available from: https://www.atcc.org/~/media/480C609DDB734DD5B754F0383580DEEF.ashxspa
dc.relation.referencesCeballos-Garzon A, Wintaco-Martínez LM, Velez N, Hernandez-Padilla C, De La Hoz A, Valderrama-Beltran SL, et al. Persistence of clonal azole-resistant isolates of Candida albicans from a patient with chronic mucocutaneous candidiasis in Colombia. J Glob Infect Dis [Internet]. 2020 Jan 1 [cited 2020 Aug 19];12(1):16–20. Available from: https://pubmed-ncbi-nlm-nih-gov.ezproxy.javeriana.edu.co/32165797/spa
dc.relation.referencesRodrigues CF, Silva S, Henriques M. Candida glabrata: A review of its features and resistance. Vol. 33, European Journal of Clinical Microbiology and Infectious Diseases. Springer Verlag; 2014. p. 673–88.spa
dc.relation.referencesCeballos Garzon A, Amado D, Robert E, Parra Giraldo CM, Le Pape P. Impact of calmodulin inhibition by fluphenazine on susceptibility, biofilm formation and pathogenicity of caspofungin-resistant Candida glabrata. J Antimicrob Chemother [Internet]. 2020 May 1 [cited 2021 Apr 6];75(5):1187–93. Available from: https://academic.oup.com/jac/article/75/5/1187/5721438spa
dc.relation.referencesCeballos-Garzón A, Cortes G, Morio F, Zamora-Cruz EL, Linares MY, Ariza BE, et al. Comparison between MALDI-TOF MS and MicroScan in the identification of emerging and multidrug resistant yeasts in a fourth-level hospital in Bogotá, Colombia. BMC Microbiol [Internet]. 2019 May 23 [cited 2021 Dec 1];19(1):1–10. Available from: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1482-yspa
dc.relation.referencesPineda-Castañeda HM, Rivera-Monroy ZJ, García-Castañeda JE, . Péptidos quiméricos derivados de la lactoferricina bovina y la buforina: síntesis, caracterización y evaluación de su actividad antibacteriana. Universidad Nacional de Colombia, Facultad de Ciencias,; 2019.spa
dc.relation.referencesCLSI. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. In 2008.spa
dc.relation.referencesCutrona KJ, Kaufman BA, Figueroa DM, Elmore DE. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett. 2015 Dec 21;589(24):3915–20.spa
dc.relation.referencesCárdenas-Martínez KJ, Grueso-Mariaca D, Vargas-Casanova Y, Bonilla-Velásquez L, Estupiñán SM, Parra-Giraldo CM, et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther [Internet]. 2021;27(3):1751–62. Available from: https://doi.org/10.1007/s10989-021-10207-xspa
dc.relation.referencesKobayashi S, Chikushi A, Tougu S, Imura Y, Nishida M, Yano Y, et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry. 2004;43(49):15610–6.spa
dc.relation.referencesJang WS, Kim HK, Lee KY, Kim SA, Han YS, Lee IH. Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett. 2006 Feb 20;580(5):1490–6.spa
dc.relation.referencesCiumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci [Internet]. 2019;537:163–85. Available from: https://doi.org/10.1016/j.jcis.2018.10.103spa
dc.relation.referencesMoghal MMR, Hossain F, Yamazaki M. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Biophys Rev. 2020;12(2):339–48spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsPéptidosspa
dc.subject.decsPeptideseng
dc.subject.decsAnálisisspa
dc.subject.decsAnalysiseng
dc.subject.proposalCandida albicansspa
dc.subject.proposalCandida glabrataspa
dc.subject.proposalCandida aurisaps
dc.subject.proposalBovine lactoferricineng
dc.subject.proposalBuforin IIeng
dc.subject.proposalAntimicrobial peptideseng
dc.subject.proposalChimeraseng
dc.titlePéptidos quiméricos derivados de Lactoferricina Bovina y Buforina II: actividad antifúngica contra aislados clínicos y cepas de referencia de Candida sppspa
dc.title.translatedChimeric peptides derived from Bovine Lactoferricin and Buforin II: antifungal activity against clinical isolates and reference strains of Candida sppeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDiseño de una formulación para el tratamiento de la candidiasis invasiva multidrogo resistente, basada en péptidos de LfcinB libres o nanoencapsulados.spa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018453327.2022.pdf
Tamaño:
3.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: