Producción de un material de referencia para la detección de Mycobacterium bovis a nivel de ácidos nucleicos, para ser utilizado en métodos de medición basados en PCR
dc.contributor.advisor | Soto Ospina, Carlos Yesid | |
dc.contributor.advisor | Leguizamon Guerrero, John Emerson | |
dc.contributor.author | Lota Mendoza, Camila Alejandra | |
dc.contributor.cvlac | Lota Mendoza, Camila Alejandra [0001665342] | |
dc.contributor.orcid | Lota Mendoza, Camila Alejandra [0009000068908355] | |
dc.contributor.researchgate | Camila-Lota-Mendoza | |
dc.contributor.researchgroup | Bioquímica y Biología Molecular de las Micobacterias | |
dc.contributor.researchgroup | Grupo de Investigación en Metrología Química y Bioanálisis - GIMQB (Instituto Nacional de Metrología) | |
dc.date.accessioned | 2025-09-09T16:46:30Z | |
dc.date.available | 2025-09-09T16:46:30Z | |
dc.date.issued | 2025-09-08 | |
dc.description | ilustraciones a color, diagramas, fotografías | |
dc.description.abstract | La tuberculosis bovina (TBB) es una enfermedad zoonótica, que afecta principalmente al ganado bovino. La TBB es causada por el bacilo ácido-alcohol resistente Mycobacterium bovis, que afecta la producción lechera y cárnica generando grandes pérdidas en el sector ganadero. A pesar de que existen diferentes métodos para identificar y cuantificar M. bovis utilizando ADN, la carencia de materiales de referencia (MR) trazables y certificados no permite la comparabilidad entre los resultados. Con el ánimo de fortalecer el sistema nacional de medidas sanitarias a través de la generación de herramientas metrológicas, el presente trabajo plantea la obtención de un MR para la identificación fiable de ADN de M. bovis mediante métodos basados en la PCR, con especial énfasis en la amplificación isotérmica (LAMP), toda vez que es un método fácil y económico para ser aplicado en campo. Para cumplir este objetivo, se optimizó el cultivo y la extracción de ADN genómico de M. bovis, obteniendo ADN con alta concentración y relaciones de calidad y pureza adecuadas, de acuerdo con su relación ABS 280\260 y ABS 230\260, y mediante análisis electroforético. Por otra parte, en la validación del MR se desarrolló un protocolo de amplificación de ADN de M. bovis mediante qPCR (PCR en tiempo real) y ddPCR (PCR digital en gotas), utilizando como molde los genes CysA3 y Mb3145. La optimización del método demostró que utilizando el gen CysA3 se obtienen mejores valores en las relaciones de precisión (<5% para qPCR y <8% por ddPCR), mayor eficiencia y especificidad en comparación del gen Mb3145. En la caracterización de un piloto de MR, tanto el nivel de mayor concentración (± 50000 copias/µL) como el nivel de menor concentración (500 copias/µL) demostraron ser homogéneos y estables durante 8 semanas. La asignación de valor (asignación de la propiedad) de los niveles fue de 62825 copias/µL y 419 copias/µL para el nivel más alto y bajo, respectivamente. Finalmente, se realizó la puesta a punto de un método basado en PCR LAMP para la detección de ADN de M. bovis, utilizando el MR obtenido y caracterizado, determinó la sensibilidad del método, la que llego hasta 50 copias/µL. Por otra parte, el método pudo diferenciar de manera específica ADN de M. bovis de otras especies micobacterianas. A futuro, se propondrá el MR de ADN de M. bovis obtenido, para la identificación de M. bovis mediante técnicas de PCR. Por otra parte, la identificación de M. bovis por LAMP puede tener un uso potencial para la detección fácil y a bajo costo de la TBB en pequeños y medianos centros de producción ganadera de nuestro país. (Texto tomado de la fuente) | spa |
dc.description.abstract | Bovine tuberculosis (BTB) is a zoonotic disease that mainly affects cattle. BTB is caused by the acid-fast bacillus Mycobacterium bovis, which affects milk and meat production, causing great losses in the livestock sector. Although there are different methods to identify and quantify M. bovis using DNA, the lack of traceable and certified reference materials (RM) does not allow comparability between results. With the aim of strengthening the national system of sanitary measures through the generation of metrological tools, the present work proposes the obtaining of an MR for the reliable identification of M. bovis DNA by PCR-based methods, with special emphasis on the isothermal amplification (LAMP) PCR-LAPMP, since it is an easy and economical method to be applied in the field. To meet this goal, the culture and extraction of genomic DNA from M. bovis was optimized, obtaining DNA with adequate quality and purity, according to its ratio ABS 280\260 and ABS 230\260, and by electrophoretic analysis. On the other hand, in the validation of the RM, a protocol for amplification of M. bovis DNA by qPCR and ddPCR was developed, using the CysA3 and Mb3145 genes as molds. Optimization of the method showed that using the CysA3 gene yielded better values in precision ratios (<5% for qPCR and <8% for ddPCR), higher efficiency and specificity compared to the Mb3145 gene. In the characterization of a pilot RM, both the highest concentration level (± 50000 copies/µL) and the lowest concentration level (500 copies/µL) proved to be homogeneous and stable for 8 weeks. The value assignment (property assignment) of the levels was 62825 copies/µL and 419 copies/µL for the highest and lowest level, respectively. Finally, the fine-tuning of a PCR LAMP-based method for the detection of M. bovis DNA using the obtained and characterized MR determined the sensitivity of the method, which was up to 50 copies/µL. Moreover, the method was able to specifically differentiate M. bovis DNA from other mycobacterial species. In the future, the MR of M. bovis DNA obtained will be proposed for the identification of M. bovis by PCR techniques. On the other hand, the identification of M. bovis by LAMP may have potential use for easy and low-cost detection of BTB in small and medium livestock production centers in our country. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Maestría en Microbiología | |
dc.description.researcharea | Hospedero-Patogeno | |
dc.description.sponsorship | A la Universidad Nacional de Colombia por el apoyo en el financiamiento de la tesis Maestría dentro de la CONVOCATORIA PARA EL APOYO AL DESARROLLO DE TESIS DE POSGRADO (Maestría de Investigación y Doctorado) DE LA FACULTAD DE CIENCIAS SEDE BOGOTÁ DE LA UNIVERSIDAD NACIONAL DE COLOMBIA 2024. A MINCIENCIAS por la convocatoria 890 en el financiamiento del proyecto titulado “Fortalecimiento del sistema nacional de medidas sanitarias mediante el desarrollo de herramientas metrológicas basadas en PCR para el diagnóstico de tuberculosis y brucelosis bovina”. | |
dc.format.extent | xxi, 166 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88673 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.relation.references | Robi DT, Teklemariam T, Gebreyes BG, Bogale A, Haile T, Aleme M, et al. Bovine tuberculosis reactor cattle in Southwest Ethiopia: Risk factors for bovine tuberculosis. J Clin Tuberc Other Mycobact Dis. 2024 Dec 1;37:100492. | |
dc.relation.references | Diallo B, Dasumani M, Okelo JA, Osman S, Sow O, Aguegboh NS, et al. Fractional optimal control problem modeling bovine tuberculosis and rabies co-infection. Results in Control and Optimization. 2025 Mar 1;18:100523. | |
dc.relation.references | World Health Organization. Investing to overcome the global impact of neglected tropical diseases : Third WHO report on neglected tropical diseases. NEGLECTED TROPICAL DISEASES. 2015;3:191. | |
dc.relation.references | Goosen WJ, Moodley S, Ghielmetti G, Moosa Y, Zulu T, Smit T, et al. Identification and molecular characterization of Mycobacterium bovis DNA in GeneXpert® MTB/RIF ultra-positive, culture-negative sputum from a rural community in South Africa. One Health. 2024 Jun 1;18:100702. | |
dc.relation.references | Fareed Z, Rana A, Hadi SA, Geluk A, Hope JC, Khalid H. A one health-focused literature review on bovine and zoonotic tuberculosis in Pakistan from the past two decades: challenges and way forward for control. One Health. 2024 Jun 1;18:100763. | |
dc.relation.references | Echeverría G, Zumárraga MJ, Proaño-Pérez F, Blasco FB, de Waard JH. Assessing the impact of various tuberculin PPD brands on bovine tuberculosis diagnosis. Sci Rep [Internet]. 2024 Dec 1 [cited 2025 Apr 6];14(1):1–9. Available from: https://link.springer.com/articles/s41598-024-52089-1 | |
dc.relation.references | Van Der Zwan A, Campbell PT, Shi N, De Bortoli N, Villanueva-Cabezas JP. Systematic review of knowledge, attitudes, and practices of dairy farmers and consumers towards bovine tuberculosis in low- and middle-income countries. Prev Vet Med. 2024 Nov 1;232:106314. | |
dc.relation.references | Banos G. Selective breeding can contribute to bovine tuberculosis control and eradication. Ir Vet J [Internet]. 2023 Jul 1 [cited 2025 Apr 6];76(1):1–12. Available from: https://link.springer.com/articles/10.1186/s13620-023-00250-z | |
dc.relation.references | Awah-Ndukum J, Temwa J, Ngwa VN, Mouiche MM, Iyawa D, Zoli PA. Interpretation Criteria for Comparative Intradermal Tuberculin Test for Diagnosis of Bovine Tuberculosis in Cattle in Maroua Area of Cameroon. Vet Med Int [Internet]. 2016 [cited 2025 Apr 6];2016:4834851. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4983663/ | |
dc.relation.references | Carneiro PAM, de Moura Sousa E, Viana RB, Monteiro BM, do Socorro Lima Kzam A, de Souza DC, et al. Study on supplemental test to improve the detection of bovine tuberculosis in individual animals and herds. BMC Vet Res [Internet]. 2021 Dec 1 [cited 2025 Apr 6];17(1):1–8. Available from: https://link.springer.com/articles/10.1186/s12917-021-02839-4 | |
dc.relation.references | Vera-Salmoral E, Gómez-Laguna J, Galán-Relaño Á, Ruedas-Torres I, Carrasco L, Luque I, et al. Optimization of real-time PCR protocols from lymph node bovine tissue for direct detection of Mycobacterium tuberculosis complex. Microbiol Spectr. 2023 Sep 1;11(5). | |
dc.relation.references | Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts [Internet]. 2018 Jan 1 [cited 2025 Apr 6];9(1):64–79. Available from: https://www.degruyterbrill.com/document/doi/10.1515/bmc-2018-0007/html | |
dc.relation.references | Fromsa A, Conlan AJK, Srinivasan S, Zeleke M, Worku D, Lakew M, et al. Bovine tuberculosis in Central Ethiopian slaughterhouses and the identification of causative mycobacteria by multiplex real-time PCR. BMC Microbiol [Internet]. 2024 Oct 9 [cited 2025 Apr 6];24(1):394. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39379812 | |
dc.relation.references | Araújo RM, Montenegro R de A, Peixoto A dos S, Silva LL de S, da Costa RMPJ, Carvalho-Silva WHV, et al. Performance of IS6110-LAMP assay for detection of Mycobacterium tuberculosis complex in blood and urine samples from patients with extrapulmonary tuberculosis. Tuberculosis. 2023 Dec 1;143:102423. | |
dc.relation.references | Lee DH, Ju HJ, Lee Y, Bae YK. Development of RNA reference materials for norovirus GI and GII using digital PCR. Virology. 2025 Feb 1;603:110358. | |
dc.relation.references | ISO. Online Browsing Platform (OBP). 2016 [cited 2025 Apr 6]. ISO 17034:2016(es), Requisitos generales para la competencia de los productores de materiales de referencia. Available from: https://www.iso.org/obp/ui#iso:std:iso:17034:ed-1:v1:es | |
dc.relation.references | Gupta AK, Singh A, Srivastava S, Malhotra AG, Kumar B. Laboratory diagnosis of zoonotic tuberculosis: An update. Diagnosis of Mycobacterium [Internet]. 2023 Nov 14 [cited 2025 Apr 6];237–58. Available from: https://springerlink.unalproxy.elogim.com/chapter/10.1007/978-981-99-5624-1_14 | |
dc.relation.references | Cassidy A. Of Badgers, Bovines and Bacteria. Vermin, Victims and Disease [Internet]. 2019 [cited 2025 Apr 6];3–46. Available from: https://springerlink.unalproxy.elogim.com/chapter/10.1007/978-3-030-19186-3_1 | |
dc.relation.references | Kelley H V., Waibel SM, Sidiki S, Tomatis-Souverbielle C, Scordo JM, Hunt WG, et al. Accuracy of Two Point-of-Care Tests for Rapid Diagnosis of Bovine Tuberculosis at Animal Level using Non-Invasive Specimens. Scientific Reports 2020 10:1 [Internet]. 2020 Mar 25 [cited 2025 Apr 6];10(1):1–10. Available from: https://www.nature.com/articles/s41598-020-62314-2 | |
dc.relation.references | Blanco FC, Queval CJ, Araujo FR, De Waard JH. Editorial: Recent Advances in Bovine Tuberculosis. Front Vet Sci [Internet]. 2022 Apr 26 [cited 2025 Apr 6];9:907353. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9126120/ | |
dc.relation.references | Oreiby M;, El-Gedawy A;, Hegazy A;, Khalifa Y;, Al-Gaabary HO;, Matsumoto M;, et al. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens [Internet]. 2022 Jul 1 [cited 2025 Apr 6];11(7):715. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9320398/ | |
dc.relation.references | Zahrakar A, Rashidian E, Jaydari A, Rahimi H. Preliminary study of molecular identification of Mycobacterium bovis from cow’s milk in Lorestan (Iran). Scientific Reports 2024 14:1 [Internet]. 2024 Oct 25 [cited 2025 Apr 6];14(1):1–9. Available from: https://nature.unalproxy.elogim.com/articles/s41598-024-77059-5 | |
dc.relation.references | Universidad de Santander. Análisis UDES: Las preocupantes cifras de tuberculosis en Santander y Colombia - UDES Bucaramanga. 2025 Feb 10 [cited 2025 Apr 16]; Available from: https://bucaramanga.udes.edu.co/comunicaciones/noticias/analisis-udes-las-preocupantes-cifras-de-tuberculosis-en-santander-y-colombia | |
dc.relation.references | ICA. PROGRAMA NACIONAL DE PREVENCIÓN CONTROL Y ERRADICACIÓN DE TUBERCULOSIS BOVINA SUBGERENCIA DE PROTECCION ANIMAL DIRECCION TÉCNICA DE SANIDAD ANIMAL 2023. Instituto. 203AD. | |
dc.relation.references | Arenas NE, Ávila EF, Correa ED, Rueda WN, López GM, Soto CY, et al. Interactive web-based tool for evaluating the spread of bovine tuberculosis and brucellosis in Colombia. Revista Colombiana de Ciencias Pecuarias [Internet]. 2021 Jul 1 [cited 2025 Apr 6];34(3):224–30. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902021000300224&lng=en&nrm=iso&tlng=en | |
dc.relation.references | Federación Colombiana de Ganaderos. Producción | Fedegán [Internet]. 2024 [cited 2025 Apr 6]. Available from: https://www.fedegan.org.co/estadisticas/produccion-0 | |
dc.relation.references | Jojoa-Jojoa J, Wintaco MM, Osorio FR, Puerto-Castro G, Guerrero-Guerrero M. First approach to molecular epidemiology of bovine tuberculosis in Colombia Primera aproximación a la epidemiología molecular de la tuberculosis bovina en Colombia. | |
dc.relation.references | Singhla T, Boonyayatra S. Prevalence, Risk Factors, and Diagnostic Efficacy of Bovine Tuberculosis in Slaughtered Animals at the Chiang Mai Municipal Abattoir, Thailand. Front Vet Sci [Internet]. 2022 Mar 29 [cited 2025 Apr 6];9:846423. Available from: www.frontiersin.org | |
dc.relation.references | Taye H, Alemu K, Mihret A, Wood JLN, Shkedy Z, Berg S, et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health [Internet]. 2021 Nov 1 [cited 2025 Apr 6];68(7):704–18. Available from: https://pubmed.ncbi.nlm.nih.gov/34169644/ | |
dc.relation.references | Sawyer J, Rhodes S, Jones GJ, Hogarth PJ, Vordermeier HM. Mycobacterium bovis and its impact on human and animal tuberculosis. J Med Microbiol [Internet]. 2023 Nov 14 [cited 2025 Apr 6];72(11):001769. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001769 | |
dc.relation.references | Instituto Nacional de Seguridad y Salud en el Trabajo. Mycobacterium bovis - Bacteria - Agentes Biológicos [Internet]. [cited 2025 Apr 6]. Available from: https://www.insst.es/agentes-biologicos-basebio/bacterias/mycobacterium-bovis | |
dc.relation.references | Kim H, Shin SJ. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cellular and Molecular Life Sciences 2023 80:10 [Internet]. 2023 Sep 14 [cited 2025 Apr 16];80(10):1–20. Available from: https://link.springer.com/article/10.1007/s00018-023-04914-5 | |
dc.relation.references | Oreiby M;, El-Gedawy A;, Hegazy A;, Khalifa Y;, Al-Gaabary HO;, Matsumoto M;, et al. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022, Vol 11, Page 715 [Internet]. 2022 Jun 21 [cited 2025 Apr 6];11(7):715. Available from: https://www.mdpi.com/2076-0817/11/7/715/htm | |
dc.relation.references | Qu M, Liang Z, Chen Y, Wang Y, Wang H, Liu Z, et al. Antibodies Targeting the Cell Wall Induce Protection against Virulent Mycobacterium bovis Infection. Microbiol Spectr [Internet]. 2023 Apr 13 [cited 2025 Apr 6];11(2). Available from: https://journals.asm.org/doi/10.1128/spectrum.03431-22 | |
dc.relation.references | Sabio y García J, Bigi MM, Klepp LI, García EA, Blanco FC, Bigi F. Does Mycobacterium bovis persist in cattle in a non-replicative latent state as Mycobacterium tuberculosis in human beings? Vet Microbiol. 2020 Aug 1;247:108758. | |
dc.relation.references | Lee MH, Kim HL, Seo H, Jung S, Kim BJ. A secreted form of chorismate mutase (Rv1885c) in Mycobacterium bovis BCG contributes to pathogenesis by inhibiting mitochondria-mediated apoptotic cell death of macrophages. J Biomed Sci [Internet]. 2023 Dec 1 [cited 2025 Apr 6];30(1):1–17. Available from: https://link.springer.com/articles/10.1186/s12929-023-00988-2 | |
dc.relation.references | Cohen SB, Gern BH, Urdahl KB. The Tuberculous Granuloma and Preexisting Immunity. Annu Rev Immunol [Internet]. 2022 Apr 26 [cited 2025 Apr 17];40(Volume 40, 2022):589–614. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-immunol-093019-125148 | |
dc.relation.references | Dis E Van, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, et al. IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog [Internet]. 2022 Jul 1 [cited 2025 Apr 17];18(7):e1010721. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1010721 | |
dc.relation.references | Kaufmann SHE. Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Front Immunol [Internet]. 2020 Feb 27 [cited 2025 Apr 17];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32174919/ | |
dc.relation.references | Felgueres MJ, Esteso G, García-Jiménez ÁF, Benguría A, Vázquez E, Aguiló N, et al. Cytolytic γδ T-cells and IFNγ-producing CD4-lymphocytes characterise the early response to MTBVAC tuberculosis vaccine. npj Vaccines 2025 10:1 [Internet]. 2025 Mar 28 [cited 2025 Apr 17];10(1):1–12. Available from: https://www.nature.com/articles/s41541-025-01110-3 | |
dc.relation.references | Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest. 2024 Jan 2;134(1). | |
dc.relation.references | Díaz-Otero F, Jaramillo-Meza L, Manzo-Sandoval A, Olguín-Alor R, Diosdado-Vargas F. Comparative longitudinal analysis of T lymphocyte subpopulations in calves vaccinated with different doses of BCG-Phipps or with culture filtrate protein extract of Mycobacterium bovis in a natural transmission setting. BMC Vet Res [Internet]. 2025 Dec 1 [cited 2025 Apr 6];21(1):1–16. Available from: https://link.springer.com/articles/10.1186/s12917-025-04572-8 | |
dc.relation.references | De Matteis G, Scatà MC, Zampieri M, Grandoni F, Elnaggar MM, Schiavo L, et al. Flow cytometric detection of IFN-γ production and Caspase-3 activation in CD4+ T lymphocytes to discriminate between healthy and Mycobacterium bovis naturally infected water buffaloes. Tuberculosis. 2023 Mar 1;139:102327. | |
dc.relation.references | Robi DT, Teklemariam T, Gebreyes BG, Bogale A, Haile T, Aleme M, et al. Bovine tuberculosis reactor cattle in Southwest Ethiopia: Risk factors for bovine tuberculosis. J Clin Tuberc Other Mycobact Dis. 2024 Dec 1;37:100492. | |
dc.relation.references | Pereira AC, Pinto D, Cunha M V. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal-environment interface. J Hazard Mater. 2024 Jul 5;472:134473. | |
dc.relation.references | Varela-Castro L, Gerrikagoitia X, Alvarez V, Geijo M V., Barral M, Sevilla IA. A long-term survey on Mycobacterium tuberculosis complex in wild mammals from a bovine tuberculosis low prevalence area. Eur J Wildl Res [Internet]. 2021 Jun 1 [cited 2025 Apr 17];67(3):1–8. Available from: https://link.springer.com/article/10.1007/s10344-021-01489-z | |
dc.relation.references | Allen AR, Ford T, Skuce RA. Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Vet Med Int [Internet]. 2021 Jan 1 [cited 2025 Apr 6];2021(1):8812898. Available from: https://onlinelibrary.wiley.com/doi/full/10.1155/2021/8812898 | |
dc.relation.references | Romha G, Gebru G, Asefa A, Mamo G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Prev Vet Med. 2018 Oct 1;158:1–17. | |
dc.relation.references | Wiseman J, Cassidy JP, Gormley E. The problem that residual Mycobacterium bovis infection poses for the eradication of bovine tuberculosis. The Veterinary Journal. 2024 Dec 1;308:106266. | |
dc.relation.references | Walker HL, Miller RS, Pomeroy LW, Arruda AG. Characterizing risk factors for infection of Mycobacterium bovis between wild pigs and domestic cattle from an outbreak response — California, 1961–1967. Prev Vet Med. 2025 Feb 1;235:106399. | |
dc.relation.references | Livingstone PG, Hancox N, Nugent G, de Lisle GW. Toward eradication: the effect of Mycobacterium bovis infection in wildlife on the evolution and future direction of bovine tuberculosis management in New Zealand. N Z Vet J [Internet]. 2015 Mar 25 [cited 2025 Apr 6];63:4–18. Available from: https://www.tandfonline.com/doi/abs/10.1080/00480169.2014.971082 | |
dc.relation.references | Valentina J, Ana C, Murillo M, Lilian A, León B. PREVENCIÓN Y DIAGNÓSTICO EN TUBERCULOSIS BOVINA PREVENTION AND DIAGNOSIS OF BOVINE TUBERCULOSIS. 2021. | |
dc.relation.references | Arrieta-Villegas C, Allepuz A, Grasa M, Martín M, Cervera Z, Mercader I, et al. Long-term efficacy of BCG vaccination in goat herds with a high prevalence of tuberculosis. Scientific Reports 2020 10:1 [Internet]. 2020 Nov 23 [cited 2025 Apr 6];10(1):1–12. Available from: https://nature.unalproxy.elogim.com/articles/s41598-020-77334-1 | |
dc.relation.references | INSTITUTO COLOMBIANO AGROPECUARIO- ICA. Resolución 115687 2021 tuberculosis bovina. 2021 Dec. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. Resolución 000043 de 2002. 2002 Feb. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. Resolución 000366 de 2022. 2022 Oct. | |
dc.relation.references | Instituto Colombiano Agropecuario. Resolución 13170 de 2016. 2016 Sep. | |
dc.relation.references | FAO, OIE, WHO. The FAO-OIE-WHO Collaboration Sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces. 2010 Apr. | |
dc.relation.references | Singhla T, Boonyayatra S. Prevalence, Risk Factors, and Diagnostic Efficacy of Bovine Tuberculosis in Slaughtered Animals at the Chiang Mai Municipal Abattoir, Thailand. Front Vet Sci [Internet]. 2022 Mar 29 [cited 2025 Apr 6];9:846423. Available from: www.frontiersin.org | |
dc.relation.references | Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, et al. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci. 2022 Sep 23;9:1000124. | |
dc.relation.references | Vera-Salmoral E, Sánchez-Carvajal JM, Gómez-Gascón L, Larenas-Muñoz F, Tarradas C, Gómez-Laguna J, et al. Assessment of the diagnostic performance of intradermal tuberculin test and post-mortem inspection for the diagnosis of bovine tuberculosis according to WOAH guidelines. Res Vet Sci. 2024 Mar 1;168:105159. | |
dc.relation.references | Larenas-Muñoz F, Sánchez-Carvajal JM, Galán-Relaño Á, Ruedas-Torres I, Vera-Salmoral E, Gómez-Gascón L, et al. The Role of Histopathology as a Complementary Diagnostic Tool in the Monitoring of Bovine Tuberculosis. Front Vet Sci [Internet]. 2022 May 13 [cited 2025 Apr 6];9:816190. Available from: www.frontiersin.org | |
dc.relation.references | Ghielmetti G, Landolt P, Friedel U, Morach M, Hartnack S, Stephan R, et al. Evaluation of Three Commercial Interferon-γ Assays in a Bovine Tuberculosis Free Population. Front Vet Sci [Internet]. 2021 Jun 10 [cited 2025 Apr 6];8:682466. Available from: www.frontiersin.org | |
dc.relation.references | Chen Y, Ma H, Duan Y, Ma X, Tan L, Dong J, et al. Mycobacterium tuberculosis/Mycobacterium bovis triggered different variations in lipid composition of Bovine Alveolar Macrophages. Scientific Reports 2022 12:1 [Internet]. 2022 Jul 30 [cited 2025 Apr 7];12(1):1–14. Available from: https://www.nature.com/articles/s41598-022-17531-2 | |
dc.relation.references | Matteo MJ, Latini MC, Martinovic DN, Bottiglieri M. Update of diagnostic methods in tuberculosis (TB). Rev Argent Microbiol. 2025 Jan 1;57(1):49–53. | |
dc.relation.references | Refaya AK, Bhargavi G, Mathew NC, Rajendran A, Krishnamoorthy R, Swaminathan S, et al. A review on bovine tuberculosis in India. Tuberculosis. 2020 May 1;122:101923. | |
dc.relation.references | Tuaillon E, Mwyia M, Bollore K, Pisoni A, Rubbo PA, Richard M, et al. Combination of serological and cytokine release assays for improved diagnosis of childhood tuberculosis in Zambia (PROMISE-TB). International Journal of Infectious Diseases. 2024 Nov 1;148:107248. | |
dc.relation.references | Almagidi DAA, Yousif EH. Histopathological changes of real time-PCR detection for Mycobacterium bovis of cattle in Iraq. Journal of Medicinal and Pharmaceutical Chemistry Research. 2025 Sep 1;7(9):2018–33. | |
dc.relation.references | Sierra A, Camelo D, Lota C, Arenas NE, Soto CY. Specific identification of Mycobacterium bovis by Loop-Mediated Isothermal Amplification (LAMP) targeting the Region of Difference 12 (RD12) of the M. tuberculosis complex. MethodsX. 2023 Jan 1;10:102223. | |
dc.relation.references | Oliveira BB, Veigas B, Baptista PV. Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors [Internet]. 2021 Sep 28 [cited 2025 Apr 7];2:752600. Available from: www.frontiersin.org | |
dc.relation.references | Soroka M, Wasowicz B, Rymaszewska A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021, Vol 10, Page 1931 [Internet]. 2021 Jul 29 [cited 2025 Apr 7];10(8):1931. Available from: https://www.mdpi.com/2073-4409/10/8/1931/htm | |
dc.relation.references | Zhang Y, Wei Z, Zhang J, Chen C, Liu F. Application of PCR and PCR-derived technologies for the detection of pathogens infecting crops. Physiol Mol Plant Pathol. 2025 Mar 1;136:102589. | |
dc.relation.references | Gavrilov M, Yang JYC, Zou RS, Ma W, Lee CY, Mohapatra S, et al. Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics. Nature Communications 2022 13:1 [Internet]. 2022 Oct 23 [cited 2025 Apr 7];13(1):1–14. Available from: https://www.nature.com/articles/s41467-022-34076-0 | |
dc.relation.references | Patricia C, Peña T. Desarrollo de un candidato a material de referencia para la detección y cuantificación de Escherichia coli O157:H7 por PCR. | |
dc.relation.references | Huggett JF, Cowen S, Foy CA. Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool. Clin Chem [Internet]. 2015 Jan 1 [cited 2025 Apr 17];61(1):79–88. Available from: https://dx.doi.org/10.1373/clinchem.2014.221366 | |
dc.relation.references | Mahanama A, Wilson-Davies E. Insight into PCR testing for surgeons. Surgery (Oxford). 2021 Nov 1;39(11):759–68. | |
dc.relation.references | Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta. 2021 Jan 25;1143:250–66. | |
dc.relation.references | Tao Y, Yun J, Wang J, Xu P, Li C, Liu H, et al. High-performance detection of Mycobacterium bovis in milk using digital LAMP. Food Chem. 2020 Oct 15;327:126945. | |
dc.relation.references | Wang CH, Chang JR, Hung SC, Dou HY, Lee G Bin. Rapid molecular diagnosis of live Mycobacterium tuberculosis on an integrated microfluidic system. Sens Actuators B Chem. 2022 Aug 15;365:131968. | |
dc.relation.references | Fromsa A, Conlan AJK, Srinivasan S, Zeleke M, Worku D, Lakew M, et al. Bovine tuberculosis in Central Ethiopian slaughterhouses and the identification of causative mycobacteria by multiplex real-time PCR. BMC Microbiol [Internet]. 2024 Oct 9 [cited 2025 Apr 17];24(1):394. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39379812 | |
dc.relation.references | Qu Y, Liu M, Sun X, Liu Y, Liu J, Hu L, et al. Development and evaluation of a triplex droplet digital PCR method for differentiation of M. tuberculosis, M. bovis and BCG. Front Microbiol. 2024 Jun 14;15:1397792. | |
dc.relation.references | Oryan A, Yazdi HS, Alidadi S, Doostmohammadi S. Use of a gyrB PCR-RFLP method to diagnose tuberculosis and identify the causative Mycobacterium sp. in cattle and humans. Comp Immunol Microbiol Infect Dis. 2022 Mar 1;82:101767. | |
dc.relation.references | Kapalamula TF, Thapa J, Akapelwa ML, Hayashida K, Gordon S V., Hang’ombe BM, et al. Development of a loop-mediated isothermal amplification (LAMP) method for specific detection of Mycobacterium bovis. PLoS Negl Trop Dis [Internet]. 2021 [cited 2025 Apr 7];15(1):1–15. Available from: https://pubmed.ncbi.nlm.nih.gov/33493196/ | |
dc.relation.references | Zeineldin MM, Lehman K, Camp P, Farrell D, Thacker TC. Diagnostic Evaluation of the IS1081-Targeted Real-Time PCR for Detection of Mycobacterium bovis DNA in Bovine Milk Samples. Pathogens [Internet]. 2023 Aug 1 [cited 2025 Apr 17];12(8):972. Available from: https://www.mdpi.com/2076-0817/12/8/972/htm | |
dc.relation.references | Jastrzebsky FA, Vega LE, Maruñak SL, Esquivel GP, Montesi AM, Almirón EC, et al. Utilidad de PCR anidada en el diagnóstico de leishmaniosis canina en Corrientes. Revista veterinaria [Internet]. 2024 [cited 2025 Apr 17];35(1):1–7. Available from: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1669-68402024000100001&lng=es&nrm=iso&tlng=es | |
dc.relation.references | Rattalino DL, Otero ML, Moriconi DN, C.Rivera P, Rattalino DL, Otero ML, et al. Mejora de la detección del patotipo no defoliante de Verticillium dahliae en olivo mediante PCR anidada. Agriscientia [Internet]. 2021 [cited 2025 Apr 17];38(1):111–20. Available from: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1668-298X2021000100111&lng=es&nrm=iso&tlng=en | |
dc.relation.references | Kim TW, Jang YH, Jeong MK, Kim JM, Lee YJ, Kim SB, et al. Detection of Mycobacterium bovis in environmental samples using nested PCR. Journal of the Preventive Veterinary Medicine [Internet]. 2021 Mar 31 [cited 2025 Aug 4];45(1):30–43. Available from: https://www.researchgate.net/publication/351484741_Detection_of_Mycobacterium_bovis_in_environmental_samples_using_nested_PCR | |
dc.relation.references | Morris RP, Montoya T, Price N, Nicklin B, Hogarth PJ, Mayers J, et al. Development and validation of a one-tube, nested real-time PCR method suitable for routine detection of Mycobacterium bovis in animal tissue. J Appl Microbiol [Internet]. 2023 Mar 1 [cited 2025 Aug 4];134(3). Available from: https://dx.doi.org/10.1093/jambio/lxad038 | |
dc.relation.references | Schuele L, Murhula Masirika L, Udahemuka JC, Siangoli FB, Mbiribindi JB, Ndishimye P, et al. Real-time PCR assay to detect the novel Clade Ib monkeypox virus, September 2023 to May 2024. Eurosurveillance [Internet]. 2024 Aug 8 [cited 2025 Apr 17];29(32):2400486. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11312019/ | |
dc.relation.references | Harshitha R, Arunraj DR. Real-time quantitative PCR: A tool for absolute and relative quantification. Biochemistry and Molecular Biology Education [Internet]. 2021 Sep 1 [cited 2025 Apr 7];49(5):800–12. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/bmb.21552 | |
dc.relation.references | Sánchez-Carvajal JM, Galán-Relaño Á, Ruedas-Torres I, Jurado-Martos F, Larenas-Muñoz F, Vera E, et al. Real-Time PCR Validation for Mycobacterium tuberculosis Complex Detection Targeting IS6110 Directly From Bovine Lymph Nodes. Front Vet Sci [Internet]. 2021 Apr 26 [cited 2025 Aug 4];8:643111. Available from: www.frontiersin.org | |
dc.relation.references | Zeineldin MM, Lehman K, Camp P, Farrell D, Thacker TC. Diagnostic Evaluation of the IS1081-Targeted Real-Time PCR for Detection of Mycobacterium bovis DNA in Bovine Milk Samples. Pathogens [Internet]. 2023 Aug 1 [cited 2025 Aug 4];12(8):972. Available from: https://www.mdpi.com/2076-0817/12/8/972/htm | |
dc.relation.references | Prasolova O V., Soltynskaya I V., Sukhoedova A V., Gergel MA, Kish LK. Comparative estimation of metrological characteristics of different PCR types for quantitative material assessment in complex matrices on the example of soybeans’ GM line. E3S Web of Conferences [Internet]. 2021 May 5 [cited 2025 Apr 7];254:03005. Available from: https://www.e3s-conferences.org/articles/e3sconf/abs/2021/30/e3sconf_farba2021_03005/e3sconf_farba2021_03005.html | |
dc.relation.references | Sánchez-Carvajal JM, Vera-Salmoral E, Huerta B, Galán-Relaño Á, Ruedas-Torres I, Larenas-Muñoz F, et al. Droplet digital PCR as alternative to microbiological culture for Mycobacterium tuberculosis complex detection in bovine lymph node tissue samples. Front Cell Infect Microbiol. 2024 Feb 26;14:1349999. | |
dc.relation.references | Qu Y, Liu M, Sun X, Liu Y, Liu J, Hu L, et al. Development and evaluation of a triplex droplet digital PCR method for differentiation of M. tuberculosis, M. bovis and BCG. Front Microbiol. 2024 Jun 14;15:1397792. | |
dc.relation.references | Ye J, Li Z, Sun FY, Guo L, Feng E, Bai X, et al. Development of a triple NanoPCR method for feline calicivirus, feline panleukopenia syndrome virus, and feline herpesvirus type I virus. BMC Vet Res [Internet]. 2022 Dec 1 [cited 2025 Apr 7];18(1):1–7. Available from: https://link.springer.com/articles/10.1186/s12917-022-03460-9 | |
dc.relation.references | Kamra E, Prasad T, Rais A, Dahiya B, Sheoran A, Soni A, et al. Diagnosis of genitourinary tuberculosis: detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep [Internet]. 2023 Dec 1 [cited 2025 Aug 4];13(1):1–14. Available from: https://www.nature.com/articles/s41598-023-38740-3 | |
dc.relation.references | Darie AM, Khanna N, Jahn K, Osthoff M, Bassetti S, Osthoff M, et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): a multicentre, randomised controlled trial. Lancet Respir Med [Internet]. 2022 Sep 1 [cited 2025 Apr 7];10(9):877–87. Available from: https://www.thelancet.com/action/showFullText?pii=S2213260022000868 | |
dc.relation.references | Duffy SC, Venkatesan M, Chothe S, Poojary I, Verghese VP, Kapur V, et al. Development of a Multiplex Real-Time PCR Assay for Mycobacterium bovis BCG and Validation in a Clinical Laboratory. Microbiol Spectr [Internet]. 2021 Oct 31 [cited 2025 Aug 4];9(2). Available from: /doi/pdf/10.1128/spectrum.01098-21?download=true | |
dc.relation.references | Pecoraro V, Negro A, Pirotti T, Trenti T. Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. Eur J Clin Invest [Internet]. 2022 Feb 1 [cited 2025 Apr 7];52(2):e13706. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/eci.13706 | |
dc.relation.references | Chang M, Venkatasubramanian S, Barrett H, Urdahl KB, Weigel KM, Cangelosi GA, et al. Molecular detection of pre-ribosomal RNAs of Mycobacterium bovis bacille Calmette-Guérin and Mycobacterium tuberculosis to enhance pre-clinical tuberculosis drug and vaccine development. Diagn Microbiol Infect Dis [Internet]. 2024 Jan 1 [cited 2025 Aug 4];108(1):116106. Available from: https://www.sciencedirect.com/science/article/pii/S0732889323002158 | |
dc.relation.references | Abay ZhS, Sadikalieva SO, Shorayeva KA, Espembetov BA, Nurpeisova AS. Evaluation of the genetic stability of recombinant flu vectors encoding Mycobacterium bovis proteins using RT-PCR and optimization of their cultivation conditions. Proceedings of the National Academy of Sciences of Belarus, Biological Series [Internet]. 2023 Feb 10 [cited 2025 Aug 4];68(1):38–46. Available from: https://vestibio.belnauka.by/jour/article/view/848 | |
dc.relation.references | Bio-Rad. Bio-Rad. [cited 2025 Apr 17]. What is Real-Time PCR (qPCR)? . Available from: https://www.bio-rad.com/es-co/applications-technologies/what-real-time-pcr-qpcr?ID=LUSO4W8UU | |
dc.relation.references | Zhao H, Xiao X, Sun Y, Chen Y, Zhang Y, Li P, et al. A Simple and Sensitive RT-qPCR Technology for Rapid Detection of Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci [Internet]. 2025 Jan 1 [cited 2025 Apr 7];12(1):26. Available from: https://www.mdpi.com/2306-7381/12/1/26/htm | |
dc.relation.references | Dávila González S. FORTALECIMIENTO DE LA RED NACIONAL DE LABORATORIOS QUE REALIZAN DETECCIÓN DE SARS-COV-2 POR PCR A TRAVÉS DEL DESARROLLO DE HERRAMIENTAS METROLÓGICAS PARA EL ASEGURAMIENTO DE LA CALIDAD DE LOS RESULTADOS DE MEDICIÓN. [Bogotá]: Universidad Nacional de Colombia; 2022. | |
dc.relation.references | Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes 2022, Vol 13, Page 2387 [Internet]. 2022 Dec 16 [cited 2025 Apr 7];13(12):2387. Available from: https://www.mdpi.com/2073-4425/13/12/2387/htm | |
dc.relation.references | Herrera Díaz J. Universidad Ncional Autónoma de México. 2023 [cited 2025 Apr 17]. PCR en tiempo real - Facultad de Química. Available from: https://quimica.unam.mx/investigacion/servicios-para-la-investigacion/usaii/pcr-en-tiempo-real/ | |
dc.relation.references | Ke L, Hou G, Cao P, Ding Y, Zhao C, Wang F, et al. Establishment and validation of a real-time fluorescent PCR freeze-dried type assay for 11 sheep and goats pathogens. The Veterinary Journal. 2024 Dec 1;308:106255. | |
dc.relation.references | Tao Y, Yue Y, Qiu G, Ji Z, Spillman M, Gai Z, et al. Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Appl Microbiol Biotechnol [Internet]. 2022 Mar 1 [cited 2025 Apr 7];106(5–6):2207–18. Available from: https://link.springer.com/article/10.1007/s00253-022-11822-4 | |
dc.relation.references | Wang J, Hong C, Lin Z, Huang ZY. Fluorescence detection of malachite green in fish based on aptamer and SYBR Green I. J Food Drug Anal [Internet]. 2022 [cited 2025 Apr 7];30(3):369. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9635913/ | |
dc.relation.references | Pereira-Gómez M, Fajardo Á, Echeverría N, López-Tort F, Perbolianachis P, Costábile A, et al. Evaluation of SYBR Green real time PCR for detecting SARS-CoV-2 from clinical samples. J Virol Methods. 2021 Mar 1;289:114035. | |
dc.relation.references | Chen WF, Fu YW, Zeng ZY, Guo SQ, Yan YL, Tu YF, et al. Establishment and application of a TaqMan probe–based qPCR for the detection of Enterocytozoon hepatopenaei in shrimp Litopenaeus vannamei. Parasitol Res [Internet]. 2022 Aug 1 [cited 2025 Apr 7];121(8):2263–74. Available from: https://link.springer.com/article/10.1007/s00436-022-07559-8 | |
dc.relation.references | Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39(1):75–85. | |
dc.relation.references | Sánchez-Carvajal JM, Galán-Relaño Á, Ruedas-Torres I, Jurado-Martos F, Larenas-Muñoz F, Vera E, et al. Real-Time PCR Validation for Mycobacterium tuberculosis Complex Detection Targeting IS6110 Directly From Bovine Lymph Nodes. Front Vet Sci [Internet]. 2021 Apr 26 [cited 2025 Apr 7];8:643111. Available from: www.frontiersin.org | |
dc.relation.references | Vera-Salmoral E, Gómez-Laguna J, Galán-Relaño Á, Ruedas-Torres I, Carrasco L, Luque I, et al. Optimization of real-time PCR protocols from lymph node bovine tissue for direct detection of Mycobacterium tuberculosis complex . Microbiol Spectr [Internet]. 2023 Oct 17 [cited 2025 Apr 17];11(5). Available from: https://journals.asm.org/doi/10.1128/spectrum.00348-23 | |
dc.relation.references | Boko CK, Zoclanclounon AR, Adoligbe CM, Dedehouanou H, M’Po M, Mantip S, et al. Molecular diagnosis of bovine tuberculosis on postmortem carcasses during routine meat inspection in Benin: GeneXpert® testing to improve diagnostic scheme. Vet World [Internet]. 2022 Oct 1 [cited 2025 Apr 17];15(10):2506. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9682402/ | |
dc.relation.references | Brebu M, Simion VE, Andronie V, Jaimes-Mogollón AL, Beleño-Sáenz K de J, Ionescu F, et al. Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle. Mol Cell Biochem [Internet]. 2023 Nov 1 [cited 2025 Apr 17];478(11):2473–80. Available from: https://link.springer.com/article/10.1007/s11010-023-04676-5 | |
dc.relation.references | Palmer S, Williams GA, Brady C, Ryan E, Malczewska K, Bull TJ, et al. Assessment of the frequency of Mycobacterium bovis shedding in the faeces of naturally and experimentally TB infected cattle. J Appl Microbiol [Internet]. 2022 Sep 1 [cited 2025 Apr 17];133(3):1832–42. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jam.15677 | |
dc.relation.references | Elsayed MSAE, Salah A, Elbadee AA, Roshdy T. Real-time PCR using atpE, conventional PCR targeting different regions of difference, and flow cytometry for confirmation of Mycobacterium bovis in buffaloes and cattle from the Delta area of Egypt. BMC Microbiol [Internet]. 2022 Dec 1 [cited 2025 Apr 17];22(1):1–15. Available from: https://link.springer.com/articles/10.1186/s12866-022-02568-0 | |
dc.relation.references | Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab Chip [Internet]. 2023 Mar 1 [cited 2025 Apr 7];23(5):1258–78. Available from: https://pubs.rsc.org/en/content/articlehtml/2023/lc/d2lc00814a | |
dc.relation.references | Velapatiño B, Locher K, Belanger CR, Charles MK. Mycobacterium tuberculosis DNA detection in formalin-fixed paraffin-embedded tissue using Digital PCR: a proof-of-concept study. Diagn Microbiol Infect Dis. 2025 Mar 1;111(3):116697. | |
dc.relation.references | Zhang L, Parvin R, Fan Q, Ye F. Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 2022 Sep 1;211:114344. | |
dc.relation.references | Song Y, Lim S, Kim YT, Park YM, Jo DA, Bae NH, et al. Deep learning enables accurate analysis of images generated from droplet-based digital polymerase chain reaction (dPCR). Sens Actuators B Chem. 2023 Mar 15;379:133241. | |
dc.relation.references | Belanger CR, Locher K, Velapatiño B, Charles MK. Detection of bacterial pathogens directly from synovial fluids using digital PCR: A proof of concept study. Diagn Microbiol Infect Dis. 2025 May 1;112(1):116749. | |
dc.relation.references | Wainman LM, Sathyanarayana SH, Lefferts JA. Applications of Digital Polymerase Chain Reaction (dPCR) in Molecular and Clinical Testing. J Appl Lab Med [Internet]. 2024 Jan 3 [cited 2025 Apr 7];9(1):124–37. Available from: https://dx.doi.org/10.1093/jalm/jfad103 | |
dc.relation.references | Moreno-Manuel A, Calabuig-Fariñas S, Obrador-Hevia A, Blasco A, Fernández-Díaz A, Sirera R, et al. dPCR application in liquid biopsies: divide and conquer. Expert Rev Mol Diagn [Internet]. 2021 Jan 2 [cited 2025 Apr 18];21(1):3–15. Available from: https://www.tandfonline.com/doi/abs/10.1080/14737159.2021.1860759 | |
dc.relation.references | LEE D. Introduction of Digital Polymerase Chain Reaction: Comparison with Real-time Polymerase Chain Reaction. Korean Journal of Clinical Laboratory Science [Internet]. 2024 Dec 31 [cited 2025 Apr 7];56(4):307–20. Available from: https://www.kjcls.org/journal/view.html?doi=10.15324/kjcls.2024.56.4.307 | |
dc.relation.references | Belay M, Tulu B, Younis S, Jolliffe DA, Tayachew D, Manwandu H, et al. Detection of Mycobacterium tuberculosis complex DNA in CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: an observational study. Lancet Microbe. 2021 Jun 1;2(6):e267–75. | |
dc.relation.references | Fan Y, Chen J, Liu M, Xu X, Zhang Y, Yue P, et al. Application of Droplet Digital PCR to Detection of Mycobacterium tuberculosis and Mycobacterium leprae Infections: A Narrative Review. Infect Drug Resist. 2022;15:1067–76. | |
dc.relation.references | Qu Y, Liu M, Sun X, Liu Y, Liu J, Hu L, et al. Development and evaluation of a triplex droplet digital PCR method for differentiation of M. tuberculosis, M. bovis and BCG. Front Microbiol. 2024 Jun 14;15:1397792. | |
dc.relation.references | Lei X, Lv Q, Qin Y, Chen W, Hu Y, Zhao C, et al. Establishment of a chip digital PCR detection method for canine circovirus. Heliyon [Internet]. 2024 May 15 [cited 2025 Apr 7];10(9):e30859. Available from: https://www.cell.com/action/showFullText?pii=S2405844024068907 | |
dc.relation.references | Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends in Analytical Chemistry. 2023 Jan 1;158:116897. | |
dc.relation.references | Chen B, Jiang Y, Cao X, Liu C, Zhang N, Shi D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clinica Chimica Acta. 2021 Jun 1;517:156–61. | |
dc.relation.references | Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol [Internet]. 2021 Jul 1 [cited 2025 Apr 7];93(7):4182–97. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.26846 | |
dc.relation.references | Bio-Rad. Bio-Rad. [cited 2025 Apr 14]. Tecnología de PCR digital de gotas (ddPCR) . Available from: https://www.bio-rad.com/es-co/life-science/learning-center/introduction-to-digital-pcr/what-is-droplet-digital-pcr?ID=MDV31M4VY | |
dc.relation.references | Zuñe Esquén BT. Detección y Cuantificación de Mycobacterium tuberculosis con PCR digital en gotas de muestras extrapulmonares de pacientes con sospecha clínica de tuberculosis del Hospital Regional de Lambayeque 2020 [Internet]. [Lambayeque]: Universidad Nacional Pedro Ruiz Gallo; 2022 [cited 2025 Apr 14]. Available from: http://repositorio.unprg.edu.pe/handle/20.500.12893/10647 | |
dc.relation.references | Bio-Rad. QX200 TM Droplet Generator para IVD Manual de instrucciones [Internet]. Pleasanton; 2018 Apr. Available from: www.consult.bio-rad.com | |
dc.relation.references | Bio-Rad. QX100 TM Droplet Digital TM PCR System Droplet Digital PCR: QX100 System. Pleasanton; | |
dc.relation.references | Jing K, Lam K, Arogundade O, Clelland C. Polymerase Chain Reaction (PCR) and Droplet Digital PCR (ddPCR) Protocol. San Francisco | |
dc.relation.references | Przybylska A, Obrępalska-Stęplowska A. LAMP and real-time PCR assays for rapid identification of Frankliniella intonsa. Crop Protection. 2020 Sep 1;135:105220. | |
dc.relation.references | Thakur M, Mewara A, Lakshmi PVM, Guleria S, Khurana S. Evaluation of loop mediated isothermal amplification, quantitative real-time PCR, conventional PCR methods for identifying Ascaris lumbricoides in human stool samples. Diagn Microbiol Infect Dis. 2025 Jul 1;112(3):116808. | |
dc.relation.references | Hardinge P, Murray JAH. Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification using Quenched Fluorescent Primers. Sci Rep. 2019 Dec 1;9(1). | |
dc.relation.references | Khamsingnok P, Rapichai W, Rattanasrisomporn A, Rungsuriyawiboon O, Choowongkomon K, Rattanasrisomporn J. Comparison of PCR, Nested PCR, and RT-LAMP for Rapid Detection of Feline Calicivirus Infection in Clinical Samples. Animals [Internet]. 2024 Aug 1 [cited 2025 Apr 7];14(16):2432. Available from: https://www.mdpi.com/2076-2615/14/16/2432/htm | |
dc.relation.references | Matteo MJ, Latini MC, Martinovic DN, Bottiglieri M. Update of diagnostic methods in tuberculosis (TB). Rev Argent Microbiol. 2025 Jan 1;57(1):49–53. | |
dc.relation.references | Bohorquez JA, Lanka S, Rosell R, Pérez-Simó M, Alberch M, Rodriguez F, et al. Efficient detection of African Swine Fever Virus using minimal equipment through a LAMP PCR method. Front Cell Infect Microbiol [Internet]. 2023 Jan 27 [cited 2025 Apr 7];13:1114772. Available from: https://www.idtdna.com/pages/tools/ | |
dc.relation.references | Przybylska A, Obrępalska-Stęplowska A. LAMP and real-time PCR assays for rapid identification of Frankliniella intonsa. Crop Protection [Internet]. 2020 Sep 1 [cited 2025 Aug 4];135:105220. Available from: https://sciencedirect.unalproxy.elogim.com/science/article/pii/S0261219420301538 | |
dc.relation.references | García-Bernalt Diego J, Fernández-Soto P, Muro A, Molyneux DH, Hotez PJ, Fenwick A. LAMP in Neglected Tropical Diseases: A Focus on Parasites. Diagnostics 2021, Vol 11, Page 521 [Internet]. 2021 Mar 15 [cited 2025 Apr 7];11(3):521. Available from: https://www.mdpi.com/2075-4418/11/3/521/htm | |
dc.relation.references | Kapalamula TF, Thapa J, Akapelwa ML, Hayashida K, Gordon S V., Hang’ombe BM, et al. Development of a loop-mediated isothermal amplification (LAMP) method for specific detection of Mycobacterium bovis. PLoS Negl Trop Dis [Internet]. 2021 [cited 2025 Apr 18];15(1):e0008996. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008996 | |
dc.relation.references | Kechin A, Oscorbin I, Cherednichenko A, Khrapov E, Schwartz Y, Stavitskaya N, et al. Selection of IS6110 conserved regions for the detection of Mycobacterium tuberculosis using qPCR and LAMP. Arch Microbiol [Internet]. 2023 Feb 1 [cited 2025 Apr 18];205(2):1–9. Available from: https://link.springer.com/article/10.1007/s00203-023-03410-5 | |
dc.relation.references | Sorochynskyi B V. Detection of genetically modified plants using LAMP (loop-mediated amplification) technologies. Plant varieties studying and protection [Internet]. 2021 Apr 6 [cited 2025 Apr 7];17(1):51–9. Available from: https://journal.sops.gov.ua/article/view/228209 | |
dc.relation.references | Mannier C, Yoon JY. Progression of LAMP as a Result of the COVID-19 Pandemic: Is PCR Finally Rivaled? Biosensors 2022, Vol 12, Page 492 [Internet]. 2022 Jul 6 [cited 2025 Apr 7];12(7):492. Available from: https://www.mdpi.com/2079-6374/12/7/492/htm | |
dc.relation.references | Brown RJC. Measuring measurement – What is metrology and why does it matter? Measurement. 2021 Jan 15;168:108408. | |
dc.relation.references | Farfán-Vargas HM, Espinoza-Morriberon D, Moya-Salazar MM, Contreras-Pulache H, Moya-Salazar J. Systematic review on the implementation of metrological assurance systems for medical devices in Latin America. Front Med (Lausanne) [Internet]. 2024 [cited 2025 Apr 7];11:1281199. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11224529/ | |
dc.relation.references | Costa Monteiro E, Summers R. Metrological requirements for biomedical device assessment and their ethical implications. Measurement: Sensors. 2022 Dec 1;24:100574. | |
dc.relation.references | Tosello G. Micro Injection Molding. Vol. 1, Micro Injection Molding. Carl Hanser Verlag GmbH & Co. KG; 2018. 241–250 p. | |
dc.relation.references | Barbosa CRH, Sousa MC, Almeida MFL, Calili RF. Smart Manufacturing and Digitalization of Metrology: A Systematic Literature Review and a Research Agenda. Sensors 2022, Vol 22, Page 6114 [Internet]. 2022 Aug 16 [cited 2025 Apr 7];22(16):6114. Available from: https://www.mdpi.com/1424-8220/22/16/6114/htm | |
dc.relation.references | ISO. Online Browsing Platform (OBP). 2017 [cited 2025 Apr 7]. ISO/IEC 17025:2017(es), Requisitos generales para la competencia de los laboratorios de ensayo y calibración. Available from: https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-3:v2:es | |
dc.relation.references | Mekid Samir. Metrology and instrumentation : practical applications for engineering and manufacturing. 1st ed. Vol. 1. John Wiley & Sons, Inc.; 2022. | |
dc.relation.references | Melin J, Cano SJ, Flöel A, Göschel L, Pendrill LR. Construct specification equations: ‘Recipes’ for certified reference materials in cognitive measurement. Measurement: Sensors. 2021 Dec 1;18:100290. | |
dc.relation.references | Ruminó Espinoza NG. Metodología de análisis de incertidumbre geológica para planificación minera a cielo abierto de largo plazo. 2021 [cited 2025 Apr 7]; Available from: https://repositorio.uchile.cl/handle/2250/180754 | |
dc.relation.references | Maldonado FLM, Yánez KAY, Salgado JDM. Una aproximación a la metodología de la investigación jurídica. Revista Pedagogía Universitaria y Didáctica del Derecho. 2021;8(2):81–96. | |
dc.relation.references | Squara P, Scheeren TWL, Aya HD, Bakker J, Cecconi M, Einav S, et al. Metrology part 2: Procedures for the validation of major measurement quality criteria and measuring instrument properties. J Clin Monit Comput [Internet]. 2021 Feb 1 [cited 2025 Apr 7];35(1):27–37. Available from: https://link.springer.com/article/10.1007/s10877-020-00495-x | |
dc.relation.references | Ceylan E, Amezquita A, Anderson N, Betts R, Blayo L, Garces-Vega F, et al. Guidance on validation of lethal control measures for foodborne pathogens in foods. Compr Rev Food Sci Food Saf [Internet]. 2021 May 1 [cited 2025 Apr 7];20(3):2825–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12746 | |
dc.relation.references | Wei F, Yu Y, Hu Z, Wang R, Guo X, Jin H, et al. Laboratory validation of an RNA/DNA hybrid tagmentation based mNGS workflow on SARS-CoV-2 and other respiratory RNA viruses detection. medRxiv [Internet]. 2020 May 14 [cited 2025 Apr 7];2020.05.12.20099754. Available from: https://www.medrxiv.org/content/10.1101/2020.05.12.20099754v1 | |
dc.relation.references | Ermer J, Nethercote P. Method Validation in Pharmaceutical Analysis: A Guide to Best Practice - Google Libros [Internet]. 3rd ed. Benshem: WILEY; 2025 [cited 2025 Apr 7]. Available from: https://books.google.com.co/books?hl=es&lr=&id=nClNEQAAQBAJ&oi=fnd&pg=PR17&dq=method+validation,+metrology&ots=gtX3blz860&sig=cEfM0487YJOzvsffYFucl24IEF0&redir_esc=y#v=onepage&q=method%20validation%2C%20metrology&f=false | |
dc.relation.references | Recknagel S, Bresch H, Kipphardt H, Koch M, Rosner M, Resch-Genger U. Trends in selected fields of reference material production. Anal Bioanal Chem [Internet]. 2022 Jun 1 [cited 2025 Apr 7];414(15):4281. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9142448/ | |
dc.relation.references | Acharki N, Bertoncello A, Garnier J. Robust prediction interval estimation for Gaussian processes by cross-validation method. Comput Stat Data Anal. 2023 Feb 1;178:107597. | |
dc.relation.references | Squara P, Scheeren TWL, Aya HD, Bakker J, Cecconi M, Einav S, et al. Metrology part 1: definition of quality criteria. J Clin Monit Comput [Internet]. 2021 Feb 1 [cited 2025 Apr 7];35(1):17–25. Available from: https://link.springer.com/article/10.1007/s10877-020-00494-y | |
dc.relation.references | ISO, IEC. Online Browsing Platform (OBP). 2007 [cited 2025 Apr 7]. Guide 99:2007(en), International vocabulary of metrology — Basic and general concepts and associated terms (VIM). Available from: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:guide:99:ed-1:v2:en | |
dc.relation.references | Bringert G. Calibration and Metrology. Handbook of Validation in Pharmaceutical Processes: Fourth Edition [Internet]. 2021 Jan 1 [cited 2025 Apr 7];147–57. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003163138-8/calibration-metrology-g%C3%B6ran-bringert | |
dc.relation.references | Ramaye Y, Dabrio M, Roebben G, Kestens V. Development and Validation of Optical Methods for Zeta Potential Determination of Silica and Polystyrene Particles in Aqueous Suspensions. Materials 2021, Vol 14, Page 290 [Internet]. 2021 Jan 8 [cited 2025 Apr 7];14(2):290. Available from: https://www.mdpi.com/1996-1944/14/2/290/htm | |
dc.relation.references | ISO. Online Browsing Platform (OBP). 2020 [cited 2025 Apr 7]. ISO 17511:2020(en), In vitro diagnostic medical devices — Requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:17511:ed-2:v1:en | |
dc.relation.references | ISO. Online Browsing Platform (OBP). 2007 [cited 2025 Apr 7]. ISO/IEC Guide 99:2007(en), International vocabulary of metrology — Basic and general concepts and associated terms (VIM). Available from: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:guide:99:ed-1:v2:en | |
dc.relation.references | Rigo-Bonnin R, Díaz-Troyano N, García-Tejada L, Marcè-Galindo A, Valbuena-Asensio M, Canalias F. Estimation of the measurement uncertainty and practical suggestion for the description of the metrological traceability in clinical laboratories. Biochem Med (Zagreb) [Internet]. 2021 Feb 15 [cited 2025 Apr 7];31(1):15–26. Available from: https://doi.org/10.11613/BM.2021.010501BiochemMed | |
dc.relation.references | Costa Monteiro E, Summers R. Metrological requirements for biomedical device assessment and their ethical implications. Measurement: Sensors. 2022 Dec 1;24:100574. | |
dc.relation.references | Theodorsson E, Meijer P, Badrick T. External quality assurance in the era of standardization. Clinica Chimica Acta. 2024 Apr 15;557:117876. | |
dc.relation.references | Seghers J, Stefaniak EA, La Spina R, Cella C, Mehn D, Gilliland D, et al. Preparation of a reference material for microplastics in water—evaluation of homogeneity. Anal Bioanal Chem [Internet]. 2022 Jan 1 [cited 2025 Apr 7];414(1):385–97. Available from: https://link.springer.com/article/10.1007/s00216-021-03198-7 | |
dc.relation.references | Panteghini M, Braga F. Implementation of metrological traceability in laboratory medicine: where we are and what is missing. Clin Chem Lab Med [Internet]. 2020 Aug 1 [cited 2025 Apr 7];58(8):1200–4. Available from: https://pubmed.ncbi.nlm.nih.gov/32069227/ | |
dc.relation.references | ISO. Plataforma de navegación en línea (OBP). 2015 [cited 2025 Apr 7]. ISO/Guide 30:2015(en), Reference materials — Selected terms and definitions. Available from: https://www.iso.org/obp/ui/es/#iso:std:iso:guide:30:ed-3:v1:en | |
dc.relation.references | ISO. Plataforma de navegación en línea (OBP). 2024 [cited 2025 Apr 7]. ISO 33405:2024(en), Reference materials — Approaches for characterization and assessment of homogeneity and stability. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:33405:ed-1:v1:en | |
dc.relation.references | ISO. Plataforma de navegación en línea (OBP). 2024 [cited 2025 Apr 7]. ISO 33401:2024(en), Reference materials — Contents of certificates, labels and accompanying documentation. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:33401:ed-1:v1:en | |
dc.relation.references | ISO. Plataforma de navegación en línea (OBP). 2016 [cited 2025 Apr 7]. ISO 17034:2016(es), Requisitos generales para la competencia de los productores de materiales de referencia. Available from: https://www.iso.org/obp/ui#iso:std:iso:17034:ed-1:v1:es | |
dc.relation.references | ISO. Plataforma de navegación en línea (OBP). 2024 [cited 2025 Apr 7]. ISO 33403:2024(en), Reference materials — Requirements and recommendations for use. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:33403:ed-1:v1:en | |
dc.relation.references | Couto C de C, Santos DG dos, Oliveira EMM, Freitas-Silva O. Global situation of reference materials to assure coffee, cocoa, and tea quality and safety. TrAC Trends in Analytical Chemistry. 2021 Oct 1;143:116381. | |
dc.relation.references | Ellison SLR, Williams A, editors. Trazabilidad Metrológica en la Medición Química: una guía para lograr resultados comparables en medición química. 2020 [cited 2025 Apr 7];12–4. Available from: www.eurachem.org | |
dc.relation.references | Trapmann S, Ellison SLR, Davis WC, Possolo A, Zheng J, Botha A. Approaches for the production of reference materials with qualitative properties—The new International Standard ISO 33406. Accreditation and Quality Assurance. 2024 Aug 1;29(4):269–76. | |
dc.relation.references | Gaedigk A, Turner AJ, Moyer AM, Zubiaur P, Boone EC, Wang WY, et al. Characterization of Reference Materials for DPYD: A GeT-RM Collaborative Project. The Journal of Molecular Diagnostics. 2024 Oct 1;26(10):864–75. | |
dc.relation.references | Gab-Allah MA, Getachew Lijalem Y, Yu H, Lee S, Baek SY, Han J, et al. Development of a certified reference material for the accurate determination of type B trichothecenes in corn. Food Chem. 2023 Mar 15;404:134542. | |
dc.relation.references | ISO. Online Browsing Platform (OBP). 2024 [cited 2025 Apr 7]. ISO 33406:2024(en), Approaches for the production of reference materials with qualitative properties. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:33406:ed-1:v1:en | |
dc.relation.references | Ramos J. AGRONEGOCIOS. 2025 [cited 2025 Apr 7]. Exportaciones de carne mejoraron en 2024, mientras que las de lácteos se dispararon | Agronegocios.co. Available from: https://www.agronegocios.co/agricultura/las-exportaciones-agropecuarias-de-colombia-viven-un-panorama-mixto-en-el-comercio-4045391#google_vignette | |
dc.relation.references | Venugopal S, Walther M, Harper K, McGlyn E. La carne bovina colombiana. 2021 Feb. | |
dc.relation.references | Sectorial. GANADERO Agosto de 2023. 2023 Aug. | |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. Resolución No. 000136 de 2020. 2020 Jun 3 | |
dc.relation.references | Cadavid PP, Balvin DI, Buitrago JR, Julio RV, Ramos EM, Gutierrez JB, et al. Bovine Tuberculosis in Colombia; Findings from Histopathological, Microbiological and Molecular Tests. 2021 Oct 6 [cited 2025 Apr 7]; Available from: https://www.researchsquare.com | |
dc.relation.references | Wang CH, Chang JR, Hung SC, Dou HY, Lee G Bin. Rapid molecular diagnosis of live Mycobacterium tuberculosis on an integrated microfluidic system. Sens Actuators B Chem. 2022 Aug 15;365:131968. | |
dc.relation.references | Rigo-Bonnin R, Díaz-Troyano N, García-Tejada L, Marcè-Galindo A, Valbuena-Asensio M, Canalias F. Estimation of the measurement uncertainty and practical suggestion for the description of the metrological traceability in clinical laboratories. Biochem Med (Zagreb). 2021 Feb 15;31(1):15–26. | |
dc.relation.references | ISO. ISO 17034:2016. Guía CG 4 EURACHEM / CITAC [Internet]. 2016 [cited 2022 Oct 10];1–144. Available from: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1_ES.pdf | |
dc.relation.references | Lee MJ, Lee SH, Jung Y. Development of concrete reference material for quality assurance/quality control of gamma radioactivity measurement for nuclear power plant decommissioning waste. J Environ Radioact. 2022 Dec 1;255:107031. | |
dc.relation.references | Singh KA, Rai R, Nair SS. Review on development of assigned value microbiological reference materials used in food testing. Food Microbiol [Internet]. 2022 Apr 1 [cited 2025 Apr 7];102. Available from: https://pubmed.ncbi.nlm.nih.gov/34809936/ | |
dc.relation.references | Bio-Rad. iTaq Universal Probes Supermix [Internet]. Available from: http://frodo.wi.mit.edu/ | |
dc.relation.references | Bio-Rad. ddPCRTM Supermix for Probes. | |
dc.relation.references | Biolabs. Biolabs. [cited 2025 Apr 7]. WarmStart Colorimetric LAMP 2X Master Mix Typical LAMP Protocol (M1800) | NEB. Available from: https://www.neb.com/en/protocols/2016/08/15/warmstart-colorimetric-lamp-2x-master-mix-typical-lamp-protocol-m1800 | |
dc.relation.references | Dong Y, Ou X, Liu C, Fan W, Zhao Y, Zhou X. Diversity of glpK Gene and Its Effect on Drug Sensitivity in Mycobacterium bovis. Infect Drug Resist. 2022;15:1467–75. | |
dc.relation.references | Pérez Reyes MC, Sánchez Hernández G. Protocolo de extracción de DNA genómico [Internet]. Cautitlán: UNAM; 2020 [cited 2025 Apr 18]. Available from: https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/protocolo_extraccion_dna_genomico.html | |
dc.relation.references | Stanbury PF, Whitaker A, Hall SJ. Principles of Fermentation Technology: Third Edition [Internet]. Principles of Fermentation Technology: Third Edition. Elsevier Inc.; 2016 [cited 2025 Apr 18]. 1–803 p. Available from: http://www.sciencedirect.com:5070/book/9780080999531/principles-of-fermentation-technology | |
dc.relation.references | Wu Y, Cai P, Jing X, Niu X, Ji D, Ashry NM, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environ Int. 2019 Nov 1;132:105116. | |
dc.relation.references | Gamboa-Delgado J, Gabriel Alvarado Ibarra A, Izahi Morales Navarro Martha Nieto-López YG, Villarreal-Cavazos D, Maldonado-Muñiz Mireya Tapia-Salazar M, Ricque-Marie D, et al. La biomasa microbiana como ingrediente en la nutrición acuícola. 2017. 213–263 p. | |
dc.relation.references | Hoyos MM. ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis. 2021. | |
dc.relation.references | La Clave del Éxito en Biología Molecular: Evalúa la Calidad de tu ADN y ARN como un Experto - Tiaris Biosciences S.L. [Internet]. [cited 2025 Apr 18]. Available from: https://tiarisbiosciences.com/calidad-adn-arn/ | |
dc.relation.references | Guzmán Rodríguez LF, Cortés Cruz MA, Pichardo González JM, Arteaga Garibay RI, Guzmán Rodríguez LF, Cortés Cruz MA, et al. Comparación de protocolos de aislamiento de DNA a partir de semilla de soya. Rev Mex De Cienc Agric [Internet]. 2018 Dec 6 [cited 2025 Apr 18];9(8):1691–701. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342018001001691&lng=es&nrm=iso&tlng=es | |
dc.relation.references | Álvarez López A. Biosíntesis y caracterización físico-química de polímeros recombinantes. 2022 [cited 2025 Apr 18]; Available from: https://uvadoc.uva.es/handle/10324/57426 | |
dc.relation.references | Angulo Graterol L, Jenny Ángel Molina I, de El Salvador San Salvador U, Salvador E, Figueroa-Ruiz R, Parada Berríos F. Optimización de un protocolo para aislamiento de ADN en tejido foliar de cacao (Theobroma cacao L.) para la amplificación con marcadores moleculares. REVISTA CIENTÍFICA ECOCIENCIA [Internet]. 2023 Dec 30 [cited 2025 Apr 18];10(4):68–87. Available from: https://revistas.ecotec.edu.ec/index.php/ecociencia/article/view/835 | |
dc.relation.references | Qamar W, Khan MR, Arafah A. Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method. Saudi J Biol Sci. 2017 Nov 1;24(7):1465–9. | |
dc.relation.references | Biskup E, Schejbel L, Oliveira DNP de, Høgdall E. Test of an Improved DNA and RNA Purification Protocol—Importance of Proteinase K and Co-Purified Small RNAs. Separations [Internet]. 2022 Nov 1 [cited 2025 Apr 18];9(11):324. Available from: https://www.mdpi.com/2297-8739/9/11/324/htm | |
dc.relation.references | Arias Muñoz F, Figueroa Oviedo J, Scappaticcio Bordón A. GUÍA TÉCNICA PARA CULTIVO DE MICOBACTERIAS EN MEDIO LÍQUIDO. Santiago de Chile; 2018. | |
dc.relation.references | Placencio Cabrera K. MYCOBACTERIUM TBC (TUBERCULOSIS), CULTIVO ACELERADO. Red de Salud. 2023 | |
dc.relation.references | Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. Phenomics 2024 4:5 [Internet]. 2024 Mar 6 [cited 2025 Aug 4];4(5):487–521. Available from: https://link.springer.com/article/10.1007/s43657-023-00153-7 | |
dc.relation.references | SIGMA. ¿Qué son los materiales de referencia? [Internet]. [cited 2025 Aug 4]. Available from: https://laboratoriosigma.com/blog/que-son-materiales-de-referencia/ | |
dc.relation.references | Mycobrowser. Mycobrowser [Internet]. 2025 [cited 2025 Aug 4]. Available from: https://mycobrowser.epfl.ch/genes/Mb3145 | |
dc.relation.references | Florczyk MA, McCue LA, Stack RF, Hauer CR, McDonough KA. Identification and Characterization of Mycobacterial Proteins Differentially Expressed under Standing and Shaking Culture Conditions, Including Rv2623 from a Novel Class of Putative ATP-Binding Proteins. Infect Immun [Internet]. 2001 [cited 2025 Aug 4];69(9):5777. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC98695/ | |
dc.relation.references | Thompson D, Lei Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports. 2020 Nov 1;2(1):100017. | |
dc.relation.references | Mao Z. Evaluation and Impact of Measurement Uncertainty in Laboratory Instruments and Analytical Methods: A Comprehensive Study of Volumetric, Chromatographic, and Gravimetric Techniques. International Journal of Chemistry and Materials Science [Internet]. 2024 Oct 2 [cited 2025 Apr 18];1(1):1–20. Available from: https://papers.ssrn.com/abstract=5040531 | |
dc.relation.references | Bio-Rad. qPCR Analysis [Internet]. [cited 2025 Apr 18]. Available from: https://www.bio-rad.com/es-co/applications-technologies/qpcr-analysis?ID=8bf12444-522e-e3cb-18cd-ccd0ec94f91a | |
dc.relation.references | Gamal M, Ibrahim MA. Introducing the f 0% method: a reliable and accurate approach for qPCR analysis. BMC Bioinformatics [Internet]. 2024 Dec 1 [cited 2025 Apr 18];25(1):1–18. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05630-y | |
dc.relation.references | Xu Y, Borgaro JG, Ren G, Vrtis KB, Patton GC, Nichols NM. Optimized conditions for the CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay using Luna ® One-Step RT-qPCR Reagents. 2022. | |
dc.relation.references | Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif [Internet]. 2017 Jun 1 [cited 2025 Apr 7];12:1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/28702366/ | |
dc.relation.references | Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA Part A [Internet]. 2016 Jan 2 [cited 2025 Apr 19];27(1):742–6. Available from: https://www.tandfonline.com/doi/abs/10.3109/19401736.2014.913168 | |
dc.relation.references | Whale AS, Huggett JF, Tzonev S. Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif. 2016 Dec 1;10:15–23. | |
dc.relation.references | BIO-RAD. Droplet Digital TM PCR Droplet Digital TM PCR Applications Guide. | |
dc.relation.references | Basu AS. Digital Assays Part I: Partitioning Statistics and Digital PCR. SLAS Technol [Internet]. 2017 Aug 1 [cited 2025 Apr 7];22(4):369–86. Available from: https://pubmed.ncbi.nlm.nih.gov/28448765/ | |
dc.relation.references | BIO-RAD. Applications Guide Real-Time PCR Applications Guide. 2006. | |
dc.relation.references | Mascarenhas DR, Schwarz DGG, Fonseca Júnior AA, Oliveira TFP, Moreira MAS. Validation of real-time PCR technique for detection of Mycobacterium bovis and Brucella abortus in bovine raw milk. Brazilian Journal of Microbiology [Internet]. 2020 Dec 1 [cited 2025 Aug 5];51(4):2095. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7688862/ | |
dc.relation.references | Sánchez-Carvajal JM, Galán-Relaño Á, Ruedas-Torres I, Jurado-Martos F, Larenas-Muñoz F, Vera E, et al. Real-Time PCR Validation for Mycobacterium tuberculosis Complex Detection Targeting IS6110 Directly From Bovine Lymph Nodes. Front Vet Sci [Internet]. 2021 Apr 26 [cited 2025 Aug 5];8:643111. Available from: www.frontiersin.org | |
dc.relation.references | Vera-Salmoral E, Gómez-Laguna J, Galán-Relaño Á, Ruedas-Torres I, Carrasco L, Luque I, et al. Optimization of real-time PCR protocols from lymph node bovine tissue for direct detection of Mycobacterium tuberculosis complex. Microbiol Spectr [Internet]. 2023 Oct 17 [cited 2025 Aug 5];11(5):e00348-23. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10581224/ | |
dc.relation.references | Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol [Internet]. 2012 Feb 1 [cited 2025 Apr 19];3(1):129–37. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2011.00125.x | |
dc.relation.references | Titosky J, Momenimovahed A, Corbin J, Thomson K, Smallwood G, Olfert JS. Repeatability and intermediate precision of a mass concentration calibration system. Aerosol Science and Technology [Internet]. 2019 Jun 3 [cited 2025 Apr 19];53(6):701–11. Available from: https://www.tandfonline.com/doi/abs/10.1080/02786826.2019.1592103 | |
dc.relation.references | Villamil C, Calderon MN, Arias MM, Leguizamon JE. Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification. Front Microbiol [Internet]. 2020 Jul 7 [cited 2025 Apr 7];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32733415/ | |
dc.relation.references | Deprez L, Corbisier P, Kortekaas AM, Mazoua S, Beaz Hidalgo R, Trapmann S, et al. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomol Detect Quantif [Internet]. 2016 Sep 1 [cited 2025 Apr 7];9:29–39. Available from: https://pubmed.ncbi.nlm.nih.gov/27617230/ | |
dc.relation.references | Chang T De, Xu YZ, Wang YF, Wang XR, Tsai SH, Wu Z Bin, et al. Development of Rapid Detection Methods for Fusarium oysporum f. sp. melonis in Melon Seeds. International Journal of Molecular Sciences 2024, Vol 25, Page 5371 [Internet]. 2024 May 14 [cited 2025 Apr 7];25(10):5371. Available from: https://www.mdpi.com/1422-0067/25/10/5371/htm | |
dc.relation.references | Tere-Peña CP, Calderon-Ozuna MN, Leguizamón Guerrero JE. Digital PCR Validation for Characterization of Quantitative Reference Material of Escherichia coli O157:H7 Genomic DNA. Methods Protoc [Internet]. 2024 Dec 1 [cited 2025 Apr 7];7(6):94. Available from: https://www.mdpi.com/2409-9279/7/6/94/htm | |
dc.relation.references | Hays A, Islam R, Matys K, Williams D. Best Practices in qPCR and dPCR Validation in Regulated Bioanalytical Laboratories. AAPS Journal [Internet]. 2022 Mar 1 [cited 2025 Apr 7];24(2):1–9. Available from: https://link.springer.com/article/10.1208/s12248-022-00686-1 | |
dc.relation.references | Dos Santos Soares T, Bello GL, dos Santos Petry IM, Nicola MRC, Vitoria da Silva L, Barcellos RB, et al. Laboratory validation of a simplified DNA extraction protocol followed by a portable qPCR detection of M. tuberculosis DNA suitable for point of care settings. PLoS One [Internet]. 2024 Dec 1 [cited 2025 Aug 5];19(12):e0302345. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302345 | |
dc.relation.references | Lorente-Leal V, Liandris E, Castellanos E, Bezos J, Domínguez L, de Juan L, et al. Validation of a real-time PCR for the detection of mycobacterium tuberculosis complex members in Bovine tissue samples. Front Vet Sci [Internet]. 2019 Mar 4 [cited 2025 Aug 5];6(MAR):411190. Available from: www.frontiersin.org | |
dc.relation.references | Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 2015 Mar 1;3:9–16. | |
dc.relation.references | Langlois VS, Allison MJ, Bergman LC, To TA, Helbing CC. The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environmental DNA [Internet]. 2021 May 1 [cited 2025 Apr 19];3(3):519–27. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/edn3.164 | |
dc.relation.references | Varela AR, Oliveira MY, Luz F, Trindade CS, Silva MJ, Valdiviesso T, et al. Real-time PCR assay for the early detection and relative quantification of the Rubus idaeus pathogen Aculeastrum americanum. Physiol Mol Plant Pathol. 2025 Mar 1;136:102602. | |
dc.relation.references | Andrés-Lasheras S, Zaheer R, Ha R, Lee C, Jelinski M, McAllister TA. A direct qPCR screening approach to improve the efficiency of Mycoplasma bovis isolation in the frame of a broad surveillance study. J Microbiol Methods [Internet]. 2020 Feb 1 [cited 2025 Aug 5];169:105805. Available from: https://www.sciencedirect.com/science/article/pii/S0167701219309935 | |
dc.relation.references | Thacker TC, Harris B, Palmer M V., Waters WR. Improved specificity for detection of Mycobacterium bovis in fresh tissues using IS6110 real-time PCR. BMC Vet Res [Internet]. 2011 Aug 25 [cited 2025 Aug 5];7(1):1–5. Available from: https://link.springer.com/articles/10.1186/1746-6148-7-50 | |
dc.relation.references | Russo S, Cortimiglia C, Filippi A, Palladini G, Garbarino C, Massella E, et al. Validation of digital PCR assay for the quantification of Mycobacterium avium subsp. paratuberculosis in bovine faeces according to the ISO 20395:2019. J Microbiol Methods [Internet]. 2023 Oct 1 [cited 2025 Aug 5];213:106825. Available from: https://www.sciencedirect.com/science/article/pii/S0167701223001598 | |
dc.relation.references | Lyu L, Li Z, Pan L, Jia H, Sun Q, Liu Q, et al. Evaluation of digital PCR assay in detection of M.tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis [Internet]. 2020 Sep 7 [cited 2025 Aug 5];20(1):1–9. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05375-y | |
dc.relation.references | Song N, Tan Y, Zhang L, Luo W, Guan Q, Yan MZ, et al. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis. Emerg Microbes Infect [Internet]. 2018 Dec 1 [cited 2025 Aug 5];7(1):78. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5915492/ | |
dc.relation.references | Antonello M, Scutari R, Lauricella C, Renica S, Motta V, Torri S, et al. Rapid Detection and Quantification of Mycobacterium tuberculosis DNA in Paraffinized Samples by Droplet Digital PCR: A Preliminary Study. Front Microbiol [Internet]. 2021 Sep 13 [cited 2025 Aug 5];12:727774. Available from: www.frontiersin.org | |
dc.relation.references | Nuraeni U, Malau J, Astuti RT, Dewantoro A, Apriori D, Lusiana ED, et al. Droplet digital PCR versus real-time PCR for in-house validation of porcine detection and quantification protocol: An artificial recombinant plasmid approach. PLoS One [Internet]. 2023 Jul 1 [cited 2025 Apr 7];18(7):e0287712. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287712 | |
dc.relation.references | Di J, Sheng T, Arora R, Stocks-Candelaria J, Wei S, Lutz C, et al. The Validation of Digital PCR–Based Minimal Residual Disease Detection for the Common Mutations in IDH1 and IDH2 Genes in Patients with Acute Myeloid Leukemia. The Journal of Molecular Diagnostics. 2025 Feb 1;27(2):100–8. | |
dc.relation.references | Hays A, Wissel M, Colletti K, Soon R, Azadeh M, Smith J, et al. Recommendations for Method Development and Validation of qPCR and dPCR Assays in Support of Cell and Gene Therapy Drug Development. AAPS Journal [Internet]. 2024 Feb 1 [cited 2025 Apr 7];26(1):1–31. Available from: https://link.springer.com/article/10.1208/s12248-023-00880-9 | |
dc.relation.references | Hue ES, Fortier CI, Laurent AM, Quesnelle YF, Fortier GD, Legrand LJ, et al. Development and Validation of a Quantitative PCR Method for Equid Herpesvirus-2 Diagnostics in Respiratory Fluids. JoVE (Journal of Visualized Experiments) [Internet]. 2016 Mar 17 [cited 2025 Apr 19];2016(109):e53672. Available from: https://www.jove.com/t/53672/development-validation-quantitative-pcr-method-for-equid-herpesvirus?language=Spanish | |
dc.relation.references | Vallejo CV, Tere CP, Calderon MN, Arias MM, Leguizamon JE. Development of a genomic DNA reference material for Salmonella enteritidis detection using polymerase chain reaction. Mol Cell Probes [Internet]. 2021 Feb 1 [cited 2025 Aug 5];55:101690. Available from: https://www.sciencedirect.com/science/article/pii/S089085082030579X?via%3Dihub | |
dc.relation.references | González-Estrada E, Cosmes W. Shapiro–Wilk test for skew normal distributions based on data transformations. J Stat Comput Simul [Internet]. 2019 Nov 22 [cited 2025 Apr 19];89(17):3258–72. Available from: https://www.tandfonline.com/doi/abs/10.1080/00949655.2019.1658763 | |
dc.relation.references | Kapalamula TF, Thapa J, Akapelwa ML, Hayashida K, Gordon S V., Hang’ombe BM, et al. Development of a loop-mediated isothermal amplification (LAMP) method for specific detection of Mycobacterium bovis. PLoS Negl Trop Dis [Internet]. 2021 [cited 2025 Aug 5];15(1):e0008996. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008996 | |
dc.relation.references | Jaroenram W, Kampeera J, Arunrut N, Sirithammajak S, Jaitrong S, Boonnak K, et al. Ultrasensitive detection of Mycobacterium tuberculosis by a rapid and specific probe-triggered one-step, simultaneous DNA hybridization and isothermal amplification combined with a lateral flow dipstick. Sci Rep [Internet]. 2020 Dec 1 [cited 2025 Aug 5];10(1):1–11. Available from: https://www.nature.com/articles/s41598-020-73981-6 | |
dc.relation.references | Johnson W. Método LAMP: ¿Una alternativa a la PCR, sencilla, rápida y económica? . 3tres3, Comunidad Profesional Porcina [Internet]. 2023 May 23 [cited 2025 Apr 19];2. Available from: https://www.3tres3.com/es-mx/articulos/metodo-lamp-%C2%BFuna-alternativa-a-la-pcr-sencilla-rapida-y-economica_14814/ | |
dc.relation.references | Rasool G, Khan AM, Mohy-Ud-Din R, Riaz M. Detection of Mycobacterium tuberculosis in AFB smear-negative sputum specimens through MTB culture and GeneXpert® MTB/RIF assay. Int J Immunopathol Pharmacol [Internet]. 2019 [cited 2025 Apr 7];33. Available from: https://pubmed.ncbi.nlm.nih.gov/30791749/ | |
dc.relation.references | Sharma S, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res [Internet]. 2020 Sep 1 [cited 2025 Apr 7];152(3):185–226. Available from: https://pubmed.ncbi.nlm.nih.gov/33107481/ | |
dc.relation.references | Yang X, Huang J, Chen X, Xiao Z, Wang X, Chen Y, et al. Rapid and Visual Differentiation of Mycobacterium tuberculosis From the Mycobacterium tuberculosis Complex Using Multiplex Loop-Mediated Isothermal Amplification Coupled With a Nanoparticle-Based Lateral Flow Biosensor. Front Microbiol [Internet]. 2021 Aug 2 [cited 2025 Apr 19];12:708658. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8365424/ | |
dc.relation.references | Boyle DS, McNerney R, Teng Low H, Leader BT, Pérez-Osorio AC, Meyer JC, et al. Rapid Detection of Mycobacterium tuberculosis by Recombinase Polymerase Amplification. PLoS One [Internet]. 2014 Aug 13 [cited 2025 Apr 19];9(8):e103091. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4138011/ | |
dc.relation.references | Serna Quintana GJ, Aristizábal Bernal BH. Vista de Características operativas de la reacción en cadena de la polimerasa en tiempo real y la amplificación isotérmica mediada por bucle en la detección de tuberculosis pulmonar: una revisión sistemática. Medicina UPB [Internet]. 2011 [cited 2025 Aug 5];30(1):36. Available from: https://revistas.upb.edu.co/index.php/medicina/article/view/1917/1717 | |
dc.relation.references | Singhla T, Pikulkaew S, Boonyayatra S. Performance of Loop-Mediated Isothermal Amplification Technique in Milk Samples for the Diagnosis of Bovine Tuberculosis in Dairy Cattle Using a Bayesian Approach. Pathogens 2022, Vol 11, Page 573 [Internet]. 2022 May 12 [cited 2025 Apr 19];11(5):573. Available from: https://www.mdpi.com/2076-0817/11/5/573/htm | |
dc.relation.references | Kouzaki Y, Maeda T, Sasaki H, Tamura S, Hamamoto T, Yuki A, et al. A Simple and Rapid Identification Method for Mycobacterium bovis BCG with Loop-Mediated Isothermal Amplification. PLoS One [Internet]. 2015 Jul 24 [cited 2025 Apr 19];10(7):e0133759. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133759 | |
dc.relation.references | Zhang J, Zhang GH, Yang L, Huang R, Zhang Y, Jia K, et al. Development of a loop-mediated isothermal amplification assay for the detection of Mycobacterium bovis. The Veterinary Journal. 2011 Mar 1;187(3):393–6. | |
dc.relation.references | Milián Suazo F, Harris B, Arriaga Díaz C, Thomsenb B, Stuber T, González Suárez D, et al. Sensibilidad y especificidad de PCR anidada y Spoligotyping como pruebas rápidas de diagnóstico de tuberculosis bovina en tejido fresco. Rev Mex Cienc Pecu [Internet]. 2010 Dec [cited 2025 Apr 19];1(4). Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242010000400008 | |
dc.relation.references | Ashraf A, Imran M, Yaqub T, Tayyab M, Shehzad W, Mingala CN, et al. Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk. Folia Microbiol (Praha) [Internet]. 2018 May 1 [cited 2025 Aug 5];63(3):373–80. Available from: https://link.springer.com/article/10.1007/s12223-017-0576-x | |
dc.relation.references | Akapelwa ML, Kapalamula TF, Moonga LC, Bwalya P, Solo ES, Chizimu JY, et al. Development of a multiplex loop-mediated isothermal amplification (LAMP) method for differential detection of Mycobacterium bovis and Mycobacterium tuberculosis by dipstick DNA chromatography . Microbiol Spectr [Internet]. 2025 Jun 3 [cited 2025 Aug 5];13(6). Available from: /doi/pdf/10.1128/spectrum.02421-24?download=true | |
dc.relation.references | Wong YP, Othman S, Lau YL, Radu S, Chee HY. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol [Internet]. 2018 Mar 1 [cited 2025 Apr 19];124(3):626–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13647 | |
dc.relation.references | Peltzer D, Tobler K, Fraefel C, Maley M, Bachofen C. Rapid and simple colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Bovine alphaherpesvirus 1. J Virol Methods. 2021 Mar 1;289:114041. | |
dc.relation.references | Zhu RY, Zhang KX, Zhao MQ, Liu YH, Xu YY, Ju CM, et al. Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods [Internet]. 2009 Sep 1 [cited 2025 Aug 5];78(3):339–43. Available from: https://www.sciencedirect.com/science/article/pii/S0167701209002206 | |
dc.relation.references | Zhang J, Zhang GH, Yang L, Huang R, Zhang Y, Jia K, et al. Development of a loop-mediated isothermal amplification assay for the detection of Mycobacterium bovis. The Veterinary Journal [Internet]. 2011 Mar 1 [cited 2025 Aug 5];187(3):393–6. Available from: https://www.sciencedirect.com/science/article/pii/S109002331000002X | |
dc.relation.references | Zhang H, Wang Z, Cao X, Wang Z, Sheng J, Wang Y, et al. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis. Arch Microbiol [Internet]. 2016 Nov 1 [cited 2025 Aug 5];198(9):905–11. Available from: https://link.springer.com/article/10.1007/s00203-016-1232-6 | |
dc.relation.references | Thompson M, Ellison SLR, Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure and Applied Chemistry [Internet]. 2002 Jan 1 [cited 2025 Apr 7];74(5):835–55. Available from: https://www.degruyterbrill.com/document/doi/10.1351/pac200274050835/html | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.bne | Salud pública veterinaria | spa |
dc.subject.bne | Veterinary public health | eng |
dc.subject.decs | Mycobacterium bovis -- Aislamiento & purificación | spa |
dc.subject.decs | Tuberculosis bovina -- Diagnóstico | spa |
dc.subject.decs | Tuberculosis, Bovine -- Diagnosis | eng |
dc.subject.decs | Reacción en Cadena de la Polimerasa | spa |
dc.subject.decs | Polymerase Chain Reaction | eng |
dc.subject.proposal | Mycobacterium bovis | eng |
dc.subject.proposal | Tuberculosis bovina | spa |
dc.subject.proposal | PCR tiempo real | spa |
dc.subject.proposal | PCR digital | spa |
dc.subject.proposal | Piloto M. bovis | spa |
dc.subject.proposal | PCR LAMP | spa |
dc.subject.proposal | Bovine tuberculosis | eng |
dc.subject.proposal | Real-time PCR | eng |
dc.subject.proposal | Digital PCR | eng |
dc.subject.proposal | M. bovis pilot | eng |
dc.title | Producción de un material de referencia para la detección de Mycobacterium bovis a nivel de ácidos nucleicos, para ser utilizado en métodos de medición basados en PCR | spa |
dc.title.translated | Production of reference material for the detection of Mycobacterium bovis at the nucleic acid level, to be used in PCR-based measurement methods | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Fortalecimiento del sistema nacional de medidas sanitarias mediante el desarrollo de herramientas metrológicas basadas en PCR para el diagnóstico de tuberculosis y brucelosis bovina | |
oaire.fundername | MINCIENCIAS |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Producción de un material de referencia para la detección de Mycobacterium bovis a nivel de ácidos nucleicos, para ser utilizado en métodos de medición basados en PCR.pdf
- Tamaño:
- 19.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: