Evaluación de aislamientos bacterianos de origen marino, como agentes de control biológico de Microcyclus ulei, causante del Mal Suramericano de las Hojas del Caucho - (SALB)

dc.contributor.advisorMoreno Sarmiento, Nubia Carmenzaspa
dc.contributor.advisorGarcía Romero, Ibonne Aydeespa
dc.contributor.authorTraslaviña Bernal, Cristian Alexanderspa
dc.contributor.researchgroupBioprocesos y Bioprospecciónspa
dc.date.accessioned2023-02-17T12:44:46Z
dc.date.available2023-02-17T12:44:46Z
dc.date.issued2023-02-08
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEvaluación de aislamientos bacterianos de origen marino, como agentes de control biológico de Microcyclus ulei, causante del Mal Suramericano de las Hojas del Caucho - (SALB) La producción de látex del árbol de caucho natural (Hevea brasiliensis), se ve afectada por fitopatógenos, como Colletotrichum gloeosporioides causante de la Antracnosis y Microcyclus ulei (P. Henn.) v. Arx (Ascomycota), causante del mal suramericano de la hoja del caucho (South American Leaf Blight - SALB). Esta última enfermedad, endémica amazónica, se encuentra distribuida en América Central y del Sur, siendo la mayor limitante para su cultivo con pérdidas anuales de 15% y 20% en producción y la muerte de árboles muy susceptibles. El control del SALB es limitado, basando en el control químico, con efectivos preventivos en viveros y jardines clonales, pero representa altos costos y causa impacto negativo al ambiente. En este trabajo de investigación, presentamos el control biológico como alternativa para el manejo del SALB, para ello se realizó un tamizaje a 50 aislamientos bacterianos procedentes de ambientes marinos, contra C. gloeosporioides. Los aislamientos bacterianos seleccionados, fueron evaluados para determinar la capacidad de inhibir la germinación de conidios de M. ulei, y aquellos que lo hicieron fueron probados en condiciones de invernadero, utilizando 20 plántulas del clon RRIM 600 de caucho natural H. brasiliensis, las cuales fueron inoculadas en tratamientos con patógeno y con biocontroladores. El aislamiento bacteriano 72, identificado como Stenotrophomonas maltophilia mediante secuenciación de 16s de rRNA presentó una alta capacidad en la disminución de los síntomas del SALB frente al control en condiciones de invernadero. Finalmente se evaluó la expresión diferencial mediante RT-qPCR de genes asociados a rutas de ácido jasmónico (AJ), ácido salicílico (AS) y actina en plántulas RRIM 600 infectadas con M. ulei y tratadas con filtrados bacterianos de S. maltophilia, obteniendo resultados que asocian el efecto de los tratamientos con posible inducción de Resistencia Sistémica adquirida (SAR). (Texto tomado de la fuente).spa
dc.description.abstractEvaluation of bacterial isolates of marine origin, as biological control agents of Microcyclus ulei, the cause of the South American Disease of Rubber Leaves - (SALB) The production of latex from the natural rubber tree (Hevea brasiliensis) is affected by phytopathogens, such as Colletotrichum gloeosporioides, which causes Anthracnose, and Microcyclus ulei (P. Henn.) v. Arx (Ascomycota), the cause of South American rubber leaf disease (South American Leaf Blight - SALB). This last disease, endemic to the Amazon, is distributed in Central and South America, being the greatest limitation for its cultivation with annual losses of 15% and 20% in production and the death of highly susceptible trees. SALB control is limited, based on chemical control, with preventive measures in nurseries and clonal gardens, but it represents high costs and causes a negative impact on the environment. In this research work, we present the biological control as an alternative for the management of SALB, for which a screening was carried out on 50 bacterial isolates from marine environments, against C. gloeosporioides. The selected bacterial isolates were evaluated to determine the capacity to inhibit the germination of M. ulei conidia, and those that did so were tested under greenhouse conditions, using 20 seedlings of the RRIM 600 clone of natural rubber H. brasiliensis, were inoculated in treatments with pathogen and with biocontrollers. Bacterial isolate 72, identified as Stenotrophomonas maltophilia by 16s rRNA sequencing, showed a high capacity to reduce SALB symptoms compared to the control under greenhouse conditions. Finally, the differential expression was evaluated by RT-qPCR of genes associated with jasmonic acid (JA), salicylic acid (SA) and actin pathways in RRIM 600 seedlings infected with M. ulei and treated with bacterial filtrates of S. maltophilia, obtaining results that join the effect of treatments with possible induction of Systemic Acquired Resistance (SAR).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.methodsSe realizó un tamizaje preliminar en condiciones in vitro mediante las técnicas de difusión en placa y enfrentamiento dual de 50 aislamientos bacterianos de origen marino contra Colletotrichum gloeosporioides, los aislamientos que presentaron mejor actividad antifúngica contra C. gloeosporioides fueron evaluados posteriormente en condiciones in vitro contra Pseucercospora ulei; mediante inhibición de la geminación de conidios. Los aislamientos que presentaron mayor porcentaje de inhibición de la geminación de conidios de P. ulei fueron evaluados en condiciones de invernadero mediante la inoculación de folíolos de clones RRIM600 de Hevea brasiliensis infectados con P. ulei y tratados con suspensiones y filtrados bacterianos del controlador aquí seleccionado. La posible inducción a resistencia sistémica adquirida (SAR) por parte del controlador 72 sobre las plántulas de caucho, fue evaluado mediante RT-qPCR donde se cuantificó la sobre expresión de genes asociados a altas concentraciones de ácido jasmónico y ácido salicílico. Se determinó la capacidad de colonización del aislamiento 72 sobre los folíolos de H. brasiliensis, a partir de inoculaciones de folíolos con suspensiones bacterianas obtenidas de medio LB líquido el cual se dejó crecer por 24 horas, los folíolos tratados fueron recuperados de las plántulas a las 24, 48, 72 y 96 horas después de la inoculación, para ser lavados con agua estéril y etanol al 70%, luego fueron macerados con agua estéril y la fase líquida obtenida fue inoculada en medio manitol e incubada a 28 ºC por 48 horas para el posterior recuento de las colonias bacterianas presentes en las placas de Petri tratadas.spa
dc.description.notesIncluye anexosspa
dc.description.researchareaCaucho natural - Fitopatologíaspa
dc.description.sponsorshipUniversidad Nacional de Colombia _ Instituto de Biotecnología - IBUNspa
dc.format.extentxix, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83510
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAGRONET. 2019. Estadísticas Agrícolas. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Revisado 25/03/2019. En: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1.spa
dc.relation.referencesA. Klindworth, E. Pruesse, Timmy Schweer, Jorg Peplies, Christian Quast, Matthias Horn and Frank Oliver Glockner. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 2013, Vol. 41, No. 1. doi:10.1093/nar/gks808.spa
dc.relation.referencesAloui, H., Licciardello, F., Fhwaldia, K, Hamdi, M., & Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest Green mold caused by Penicillium digitatum. International Journal of Food Microbiology, 200, 22-30.spa
dc.relation.referencesAnnapurna, K., Ramadoss, D., Bose, P., & VithalKumar, L. (2013). In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max. L.). Plant and soil, 373(1-2), 641-648.spa
dc.relation.referencesAnthony R. Carroll;Brent R. Copp;Rohan A. Davis;Robert A. Keyzers;Michèle R. Prinsep; (2021). Marine natural products. Natural Product Reports, (), –. doi:10.1039/d0np00089b.spa
dc.relation.referencesArango; LF. Posada Uribe y JC. Pérez Naranjo. (2012). Distribución Diferencial de Bacterias con Potencial Biocontrolador de Spongospora subterranea en Plantas de Papa (Solanum tuberosum cv. Diacol Capiro). Rev. Fac. Nal. Agr. Medellín 65(1): 6337-6348.spa
dc.relation.referencesArtur Pinski, Joanna Zur, Robert Hasterok and Katarzyna Hupert-Kocurek. (2020). Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Int. J. Mol. Sci. 2020, 21(14), 4922; https://doi.org/10.3390/ijms21144922spa
dc.relation.referencesBaker K.F. (1987). Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathology. 26:67-85.spa
dc.relation.referencesBakker, PAHM., Ran, LX., Pieterse, CMJ., van Loon, LC. 2003. Understanding the involvement of rhizobacteria mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology. 25, 5-9.spa
dc.relation.referencesBallaré, C.L. (2011). Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Pl. Sci., In Press, Corrected Proof (12).spa
dc.relation.referencesBauer, A., Kirby, A., Sherris, J., Turk, M. (1966). Antibiotic susceptibility testing by standardized single disk method. Am J Clin Pathol 45, 493-96.spa
dc.relation.referencesBello, E. I., & Out, F. (2015). Physicochemical Properties of Rubber (Hevea brasiliensis) Seed Oil, Its Biodiesel and Blends with Diesel. British Journal of Applied Science & Technology, 6(3), 261 – 275.spa
dc.relation.referencesBenjamin Youenou, Sabine Favre-Bonte, Josselin Bodilis, Elisabeth Brothier, Audrey Dubost, Daniel Muller, and Sylvie Nazaret. (2015). Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol. Evol. 7(9):2484–2505. doi:10.1093/gbe/evv161.spa
dc.relation.referencesBernsdorff, F.; Döring, A.C.; Gruner, K.; Schuck, S.; Bräutigam, A.; Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell. Vol. 28, 102–129.spa
dc.relation.referencesBlunt JW, Coop BR, Keyzard RA, Munro MHG, Prinsep MR. (2017). Marine natural products. Natural product reports. 34(3): 235 – 94.spa
dc.relation.referencesBraz, T. Junior, Davi Mesquita de Macedo, Robert Weingart Barreto et al., (2014). Erasing the past: A New Identity for the Democlean Pathogen Causing South American Leaft Blight of Rubber. PLoS ONE. Vol. 9: 8 – 12.spa
dc.relation.referencesCABI. Microcyclus ulei (South American leaf blight of rubber). Consultado el 06/02/2016, en: http://www.cabi.org/isc/datasheet/33893#20057006310.spa
dc.relation.referencesCamarena-Gutiérrez, R. de la Torre-Almaráz. (2007). Resistencia sistémica adquirida en plantas: estado actual Revista Chapingo. Serie Ciencias Forestales y del Ambiente, vol. 13, núm. 2, julio-diciembre, pp. 157- 162, Universidad Autónoma Chapingo México.spa
dc.relation.referencesCannon, P. F.; Buddie, A. G.; Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Journal article: Mycotaxon, Vol.104 pp.189-204.spa
dc.relation.referencesCastellanos, O., Foinseca, S., & Barón. M. (2009). Agenda Prospectiva De Investigación Y Desarrollo Tecnológico Para La Cadena Productiva De Caucho Natural Y Su Industria En Colombia. Vol. 29. G. E. Ltda. (Ed.) (pp. 1 209).Revisadoen:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092009000200025&Ing=en&tIng=es.Castro N.O (2011). Caracterización de los patosistemas foliares de importancia económica en caucho (Hevea brasiliensis Mūll. Arg). en la Altillanura estructural plana del Meta (Colombia). M. Sc. Tesis en Ciencias Agrarias, Fac. Ciencias Agrarias, Univ. Nacional de Colombia. P. 58.spa
dc.relation.referencesChauhan H, Bagyaraj D, Selvakumar G, Sundaram S. (2015). Novel plant growth promoting rhizobacteria – Prospects and potential. Applied Soil Ecology. 95: 35 – 53.spa
dc.relation.referencesChee, K.H; Holliday, P., (1986). Enfermedad Suramericana de la Hoja del hule (caucho) Hevea. Instituto para la Investigación y Desarrollo del Hule de Malasia, MRRDB. Monografía no. 13. Presentado en la serie técnica n. 37: avances de la investigación en caucho natural. CONIF.1997. Bogotá, DC. 27 p.spa
dc.relation.referencesCompagnon, P. (1998). El Caucho Natural, Biología - Cultivo - Producción. Consejo Mexicano del Hule – CIRAD. México, D. F. 701 p.spa
dc.relation.referencesCumdom M., Mazza S., Gutierrez S., and Mazzanti M. 2003. Evaluación de Trichoderma sp. Contra Rhizoctonia solani in vitro e invernáculo.spa
dc.relation.referencesDa Hora Junior BT, De Macedo DM, Barreto RW, Evans HC, Mattos CR, Maffia LA, et al. (2014). Erasing the past: a new identity for the damoclean pathogen causing South American leaf blight of rubber. PloS one. 9(8): e104750.spa
dc.relation.referencesDe Donato, M. (2005). Caracterización fenotípica y susceptibilidad antimicrobiana de cepas clínicas de Stenotrophomonas... Kasmera, 33(2), 109-118.spa
dc.relation.referencesDeenamo, N., Kuyyogsuy, A., Khompatara, K., Chanwun, T., Ekchaweng, K., & Churngchow, N. (2018). Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences, 19(7), 1883.spa
dc.relation.referencesDeenamo, Nuramalee; Kuyyogsuy, Arnannit; Khompatara, Khemmikar; Ekchaweng, Kitiya; Churngchow, Nunta, (2018). Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiological and Molecular Plant Pathology, 102, 67–78. doi:10.1016/j.pmpp.2017.12.001.spa
dc.relation.referencesDeLong E.F, Preston C. M, Mincer T, Rich V, Hallam S. J, Frigaard N – U. (2006). Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 311(5760):496-503.spa
dc.relation.referencesDi Francesco, A., Martini, C., Mari, M., (2016). Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action. Eur. Plant pathology. 145, 711-717.spa
dc.relation.referencesDíaz-Puentes L. N. (2012). Resistencia sistémica adquirida mediada por el ácido salicílico. Journal: Biotecnología en el Sector Agropecuario y Agroindustrial. Publisher: Taller Editorial Universidad del Cauca.spa
dc.relation.referencesDuarte, K, Rocha-Santos, T. A. P., Fraitas, A. C., & Duarte, A. C. (2012). Discovery of bioactive compounds from marine fungi: Current analytical techniques and future perspectives. Trends in Analytical Chemistry, 34, 97-110.spa
dc.relation.referencesEgan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. (2013). The seaweed holobiont: understanding seaweed – bacteria interactions. FEMS Microbiology Reviews. 37(3): 462 – 76.spa
dc.relation.referencesEgan S, Thomas T, Kjelleberg S. (2008). Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current option in microbiology. 11(3): 219 – 25.spa
dc.relation.referencesEilenberg, J., Hajek, A., Lomer, C. (2001). Suggestions for unifying the terminology in biological control. Biocontrol. 46, 387 – 400.spa
dc.relation.referencesEkchaweng, K., Evangelisti, E., Schornack, S., Tian, M., & Churngchow, N. (2017). The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. PLOS ONE, 12(5), e0175795. doi:10.1371/journal.pone.0175795.spa
dc.relation.referencesEl–Hossary Em, Cheng C, Hamed MM, Hamed ANE – S, Ohlsen K, Hentschel U, et al. (2016). Antifungal potential of marine natural products. European Journal of Medicinal Chemistry.spa
dc.relation.referencesElkahoui S, Djébali N, Tabbene O, Hadbrahim A, Mnasri B, Mhamdi R, et al. (2012). Evaluation of antifungal activity from Bacillus strain against Rhizoctonia solani. African Journal of Biotechnology. 11(18): 41 – 96.spa
dc.relation.referencesEllis J. Can. (2017). Plant microbiome studies lead to effective biocontrol of plant diseases. Molecular Plant-Microbe Interactions. (ja). Estadual Paulista, Faculdade de Ciências Agronómicas, Botucatu.spa
dc.relation.referencesFan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R. (2011). Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology, 151(4):303-11.spa
dc.relation.referencesFAO. (2019). Rubber Tree Production FAO. Retrieved 25/03/2019. 2019. From http://www.fao.org/faostat/es/#data/QC/visualize).spa
dc.relation.referencesFarmer, E. E.; Calderali, D.; Pearse, G.; Walker-Simmons, M. K.; Ryan, C. A. (1994). Diethyloditiocarbamic acid inhibits the octadecanoid signal pathway for the wound induction of protein.spa
dc.relation.referencesFenical W, Jensen P. R. (2006). Developing a new resource for drug discovery: marine actinomycete bacteria. Nature chemical biology. 2(12):666-73.spa
dc.relation.referencesFurtado E. (1996). Comportamento de cultivares de seringueira em (Hevea spp., frente ao Mal das folhas na região do Valle do Ribeira – SP, Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São paulo, Pircicaba.spa
dc.relation.referencesFurtado, E. L. Trinidade D. R. (2005). Doeças da Seringueira, In: Kimati H; Amorim L; Rezende J. A. M; Bergamin Filho A; Camargo, L.E.A, (Org,), Manual de Fitopatologia, 4 ed, São Paulo: Editora Agronómica Ceres Ltda, v. 2. P. 559 – 567.spa
dc.relation.referencesGarcía, D., Cazaux, E., Rivano, F., & D’Auzac, J. (1995). Chemical and structural barriers to Microcyclus ulei, the agent of South American Leaf Blight, in Hevea spp. Forest Pathology, 25(5),282-292.spa
dc.relation.referencesGarcía, D., Troispoux, V., Grange, N., Rivano, F., & d’Auzac, J. (1999). Evaluation of the resistance of 36 Hevea clones to Microcyclus ulei and relation to their capacity to accumulate scopoletin and lignins. European Journal of Forest Pathology, 29(5), 323–338.spa
dc.relation.referencesGarcía, T. R. (2018). Mecanismos de acción de microorganismos marinos y el inductor de resistencia ulvan para el control de Fusarium proliferatum en frutos de Cucumis melo L. var. Reticulatus.spa
dc.relation.referencesGarcía-Romero, I. A., Aristizábal. F. A., Castaño, D. M. (2006). Revisión sobre el hongo Microcyclus ulei, agente causal de mal suramericano de la hoja del caucho. Revista Colombiana de Biotecnología, 8(2), 50-59.spa
dc.relation.referencesGasparotto L, Figueredo dos Santos A., Pereira J., Ferreira F. (1997). Doenças da seringueira no Brasil. Empresa Brasileira de Pesquisa Agropecuária. Brasília, Brasil.spa
dc.relation.referencesGasparotto L, Pereira JR (2012). Doenças da seringueira no Brasil. In Doenças das folhas. Embrapa, Brasília. Pp. 35 – 95.spa
dc.relation.referencesGasparotto, L.; Lieberei, R.; Trindade, D. (1984). In vitro conidia germination of Microcyclus ulei and its sensitivity to fungicides. Fitopatología Brasileira. 9: 505-511.spa
dc.relation.referencesGasparotto, L.; Zambolin, L.; Junqueira, N.T.V, Mafia, L.A.; Ribeiro, F. X. (1991). Epidemiology of south American leaf blinght of rubber tree. II – Menaus región – AM. Fitopatologia Brasileira. 16(1): 19 – 21.spa
dc.relation.referencesGeels, E., Lamers J., Hoekstra, O., y Schippers B. (1986). Potato plant response to seed tuber bacterization in the field in various rotations. growth promotion rhizobacteria on potato plant development and yield. Phytopathology 70. Netherland Journal of Plant Pathology 92, 257-272.spa
dc.relation.referencesGermaine K, Keogh E, Garcia‐Ceballos G, Borremans B, Lelie D, Barac T, et al. (2004). Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology, 48(1):109-18.spa
dc.relation.referencesGlazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopa., 43(1), p. 205-227.spa
dc.relation.referencesGlick B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica. 2012:1-15.spa
dc.relation.referencesGonçalves P, de S, Bataglia, O, C, Ortolani, A, A, F, da S, Fonseca. (2001). Manual de Heveicultura para o estado de São Paulo, Instituto Agronômico (IAC), Campinas, 78p.spa
dc.relation.referencesGonçalves P, de S, Paiva JRd, de. SRA. (1983). Retrospectiva e atualidade do melhoramento genético da seringueira (Hevea spp.) no Brasil e em países asiáticos. EMBRAPA – CNPSD, editor. Brasil: Embrapa Amazônia Occidental. 1983. 69 p.spa
dc.relation.referencesGonzález-Sayer, S., Oggenfuss, U., García, I., Aristizabal, F., Croll, D., & Riaño-Pachon, D. M. (2022). High-quality genome assembly of Pseudocercospora ulei the main threat to natural rubber trees. Genetics and molecular biology, 45.spa
dc.relation.referencesGuevara, Y. (2017). Identificación de especies de Colletotrichum spp. asociadas a la Antracnosis de tres núcleos productivos de Caucho Natural en Colombia. Tesis de Maestría en microbiología, Facultad de ciencias, Universidad Nacional de Colombia, Bogotá D.C.spa
dc.relation.referencesGupta, V., Willits, M. G., & Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Molecular Plant-Microbe Interactions, 13(5), 503-511.spa
dc.relation.referencesGuyot J, Omanda E.N, Oinard F (2005). Some epidemiological Investigations on Colletotrichum leaf disease on rubber trees, Crop Prot. 24(1):65 – 67.spa
dc.relation.referencesGuyot, J., & Eveno, P. (2015). Maturación of perithecia and ascospores discharge in South American Leaf Blight of Rubber Tree. European Journal of plant Pathology, 143(3):427-436.spa
dc.relation.referencesGuyot, J., Condina, V., Doaré, F., Cilas, C., & Sache, I. (2014). Role of ascospores and conidia in the inhibition and spread of South American Leaf Blight in a Rubber Tree Plantation. Plant Pathology, 63(30, 510-518.spa
dc.relation.referencesH.A.S. Tahir, Q. Gu, H. Wu, W. Raza, A. Hanif, L. Wu, M.V. Colman, X. Gao. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2, Front. Microbiol. 8. 1–11.spa
dc.relation.referencesHernández Montiel, L. G., Rivas García, T., Romero Bastidas, M., Chiquito Contreras, C. J., Ruiz Espinoza, F. H., & Chiquito Contreras, R. G. (2018). Potencial antagónico de bacterias y levaduras marinas para el control de hongos fitopatógenos. Revista mexicana de ciencias agrícolas, 9(SPE20), 4311-4321.spa
dc.relation.referencesHernández-Montiel, L G. (2009). Mecanismos antagónicos de Debaryomyces hansenii hacia Penicillium italicum y su efecto en la protección poscosecha del limón mexicano. Doctor's dissertation, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México, pp. 1-98.spa
dc.relation.referencesHernández-Montiel, L G., Ochoa, J. L. Troyo-Diéguez, E, & Larralde-Corona, C. P. (2010). Biocontrol of postharvest blue mold (Penicillium italicum Whemer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biology and Technology, 56, 181-187.spa
dc.relation.referencesHernández-Montiel, L G., Rueda, P, E., Zulueta, R, R., Quiñonez A, E., Angulo, C., Galicia, R. (2017). Marine yeast and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology. 2017, 1-9.spa
dc.relation.referencesHernández-Montiel, L.G., Gutierrez-Perez, E.D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, 554 R.G., Rincon-Enriquez, G., (2018). Mechanisms employed by Debaryomyces hansenii in biological 555 control of anthracnose disease on papaya fruit. Postharvest Biol. Technol. 139, 31-37.spa
dc.relation.referencesHibbing M.E., Fugua C., Parsek M.R., Peterson S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nat rev Microbiol. 8(1):15-25.spa
dc.relation.referencesHmelo LR. (2017). Quorum Sensing in Marine Microbial Environments. Annual Review of Marine Science 9: 257 – 81.spa
dc.relation.referencesHongwei Li, Wenxiang Huang, Long Xu, Xiaosi Zhou, Hongxia Liu1 and Zhaobang Cheng. (2016). Stenotrophomonas maltophilia HW2 Enhanced Cucumber Resistance Against Cucumber Green Mottle Mosaic Virus. J. Plant Biol. 59:488-495 DOI 10.1007/s12374-016-0246-6spa
dc.relation.referencesHowell, C. (2003). Mechanisms employed by Trichoderma species in the biocontrol of plant diseases: the history and evolution of current concepts. Plant diseases. 87(1):4-10.spa
dc.relation.referencesHui-Ping CHEN,Lang-Lai XU. (2005). Isolation and Characterization of a Novel Chitosan-Binding Protein from Non-Heading Chinese Cabbage Leaves. Journal of Integrative Plant Biology. Volume 47, Pag. 452-456. https://doi.org/10.1111/j.1744-7909.2005.00022.xspa
dc.relation.referencesImhoff, J. F., Labes, A, & Wise, J. (2011). Bio-mining the c=microbial treasures of the ocean: New natural products. Biotechnology Advances, 29, 468-482.spa
dc.relation.referencesIndira Rojo-Báez, Brando Álvarez-Rodríguez, Raymundo S. García-Estrada, Josefina León-Félix, Adriana Sañudo-Barajas, Raúl Allende-Molar. (2017). Situación actual de Colletotrichum spp. En México: Taxonomía, caracterización, patogénesis y control. Revista mexicana de fitopatología versión On-line ISSN 2007-8080 versión impresa ISSN 0185-3309 Rev. mex. fitopatol vol.35 no.3 Texcoco sep. https://doi.org/10.18781/r.mex.fit.1703-9. interação com Microcyclus ulei (Mal das folhas), Tese (Doutorado) – Universidade.spa
dc.relation.referencesJianyou L, Jianrong X, Yongheng C. (2011). Isolation and identification of two marine – derived Streptomyces from marine mud of coast and offshore Zhuhai and bioactive potential for plant pathogenic fungi. African Journal of Biotechnology. 10(56): 11855 – 60.spa
dc.relation.referencesJS. Brooke. (2021). Advances in the Microbiology of Stenotrophomonas maltophilia. ASM Journals Clinical Microbiology Reviews Vol. 34, No.3. 16;34(3). doi.org/10.1128/CMR.00030-19.spa
dc.relation.referencesJunqueira, N. T. V. Gasparotto. L. (1991). Controle viológico de fungos estromáticos causadores de doenças foliares em seringueira. In: Bettiol de (Org.) Controle viológico de doenças de plantas. Jaguariúna, SP: EMBRAPA – CNPDA. Vol. 1:307 – 331.spa
dc.relation.referencesK.L. Sajitha, E.J.Maria Florence, Suma ArunDev. (2014). Screening of bacterial biocontrols against sapstain fungus (Lasiodiplodia theobromae Pat.) of rubberwood (Hevea brasiliensis Muell.Arg.). Research in Microbiology, volume 165, Issue 7, Pag. 541-548. https://doi.org/10.1016/j.resmic.2014.07.002.spa
dc.relation.referencesK.M. Elhalag, N.A.S. Messiha, H.M. Emara and S.A. Abdallah. (2016). Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions. Journal of Applied Microbiology ISSN 1364-5072. doi:10.1111/jam.13097.spa
dc.relation.referencesKloepper, J. (1996). Host specificity in microbe – microbe interactions. BioScience. 46(6), 406 – 409.spa
dc.relation.referencesKong Q, Shan S, Liu Q, Wang X, Yu F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of strain of marine Bacillus megaterium. International Journal of Food Microbiology. 139(1): 31 – 5.spa
dc.relation.referencesKong, Q. (2017). Marine microorganisms as biocontrol agents against fungal phytopathogens and mycotoxins. Biocontrol Science and Technology, 28(1), 77–93. doi:10.1080/09583157.2017.1419164.spa
dc.relation.referencesLe Guen, V., Guyot. J., Mattos, C. R. R., Seguin, M., & garcia. D. (2008). Long lasting rubber tree resistance to Microcyclus ulei characterized by reduced conidial emission and absence of telomorph. Crop protection, 27(12), 1498-1503.spa
dc.relation.referencesLeal M. C, Sheridan C, Osinga R, Dionísio G, Rocha R. J. M, Silva B. (2014). Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drug. 12(7):3929-52.spa
dc.relation.referencesLi, D., Zeng, R., Li, Y., Zhao, M., Chao, J., Li, Y., ... & Liang, C. (2016). Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Scientific reports, 6(1), 1-12.spa
dc.relation.referencesLieberei R. (2007). South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Annuals of botany. 100(6): 1125 – 42.spa
dc.relation.referencesLiu, P., Luo, L, &Long, C. (2013). Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological Control, 67, 257-162.spa
dc.relation.referencesLiu, Y., Wang, R., Cao, Y., & Chen, C. (2016). Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5 L8 isolated from the seeds of maize (Zea mays L, Jingke 968). Annals of Microbiology, 66, 653-660.spa
dc.relation.referencesLiu, Z, Du, S., Ren, Y., Liu, Y., (2018). Biocontrol ability of killer yeast (Saccharomyces cerevisiae) isolated from wine against Colletotrichum gloeosporioides on grape. J. Basic Microbiology. 58, 60 – 67.spa
dc.relation.referencesMaksimov I.V, Abizgil’dina R. R. Pusenkova L.I. (2011). Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens. Applied Biochemistry and Microbiology. 2011(4):333-45.spa
dc.relation.referencesManwar A, Khandelwal S, Chaudhari B, Meyer J, Chincholkar S. (2004). Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology. 118(1-3): 243 – 51.spa
dc.relation.referencesMartinez, G. Martinez, R. Matta, J. (2011). El cultivo de hule en México. Universidad Autónoma Indígena de México. Colegio de postgraduados. Campus Montecillo programa de forestal. México. PP 334.spa
dc.relation.referencesMartínez, R.A. (2016). Debaryomyces hansenii como agente de control biológico y modulador del contenido de compuestos bioactivos en microgreens como plataforma alimentaria. Tesis de maestría, Centro de investigaciones biológicas del noroeste, S.C, La Paz, Baja California Sur.spa
dc.relation.referencesMattos, C.R., García, D., Pinard, F., & Le Guen, V., (2003). Variabilidade de Isolados de Microcyclus ulei Microcyclus ulei no Sudeste de Bahia. Fitopatologia Brasileira 28. (5): 502-507.spa
dc.relation.referencesMattos, C.R.R. (1999). Meios de cultura com água de coco verde para esporulação de Microcyclus ulei. Fitopatologia Brasileira, 24, 470.spa
dc.relation.referencesMattos, C.R.R. García, D., Le Guen, V., (2005). Seleção de Clones de Seringueira com Alta Produção e Resistentes ao Mal-Das-Folhas. Ceplac. Comunição técnico no. 28: 1-9.spa
dc.relation.referencesMayer A. M, Glaser K. B, Cuevas C, Jacobs R. S, Kem Mejía Cáceres, S. A. (2010). Potencialidades para la implementación de cultivos de caucho Hevea brasiliensis en el municipio de Yopal Casanare. Recuperado el 30 de junio de 2012, de www.bdigital.unal.edu.co/2718/1/sandroalbertomejiacaceres.2010.pdf.spa
dc.relation.referencesMelotto, M., Balardin, R. And Kelly, J. (2000). Host pathogen interaction and variability of Colletotrichum lindemuthianum. Colletotrichum host specificity, pathology, and host – pathogen interaction eds. Dov Prusky, Stanley Freeman and Martin B. Dckman St paul, Minnesota ed. APS Press the American Phytopathological Society.spa
dc.relation.referencesMéndez TE., (2017). Identificación de moléculas candidatas a proteínas efectoras de Microcyclus ulei presentes en la interacción con Hevea brasiliensis. Tesis de Maestría en Ciencias Microbiología. Universidad Nacional de Colombia, Facultad de ciencias. Bogotá D.C.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural (3 de octubre de 2009). Boletín Agenda de Investigación de cadenas Productivas. Recuperado el 30de abril de 2012, de http://www.minagricultura.gov.co/archivos/boletin_-_agenda_003.pdf.spa
dc.relation.referencesMoffat, A. S. (1992). Improving plant disease resistance. Science 257: 482-483.spa
dc.relation.referencesMuller, P. Y., Janovjak, H., Miserez, A. R., & Dobbie, Z. (2002). Processing of gene expression data generated by quantitative real-time RT PCR (vol 32, pg 1378, 2002). Biotechniques, 33(3), 514-514.spa
dc.relation.referencesMysore, K. and RYU, C. (2004). Nonhost resistance: how much do we know? Trends Pl. Sci., 9(2), p. 97-104.spa
dc.relation.referencesNystrom, T., Olsson, R. M., & Kjelleberg, S. T. A. F. F. A. N. (1992). Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Applied and Environmental microbiology, 58(1), 55-65.spa
dc.relation.referencesOrtega – Morales BO, Ortega _ Morales Fn, Lara – Reyna J, De la Rosa – Garcia SC, Martinez _ Hernandez A, Montero – M. J. (2009). Antagonism of Bacillus spp. Isolated from Marine Biofilms Against Terrestrial Phytopathogenic Fungi. Marine Biotechnology. 11(3): 375 – 83.spa
dc.relation.referencesOrtega-Morales, B. O., Chan-Bacab, M. J., De la Rosa, S. D. C., & Camacho-Chab, J. C. (2010). Valuable processes and products from marine intertidal microbial communities. Current Opinion in Biotechnology, 21(3), 346-352.spa
dc.relation.referencesOrtolani A.A. (1982). Aptidáo agroclimática para regionalizaçáo da heveicultura no Brazil", A.A. Sudhevea.spa
dc.relation.referencesPal K.K, Gardener B.M. (2006). Biological control of pathogens. The plant health instructor.2:1117-42.spa
dc.relation.referencesPastor, V., Luna, E., Mauch-Mani, B., Ton, J., Flors, V. (2013). Primed plants do not forget. Envir. 701 Exp. Bot. 94, 46-56. doi: 10.1016/j.envexpbot.2012.02.013.spa
dc.relation.referencesPeixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. (2017). Benefical Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilence. Frontiers in Microbiology. 2017; 8.spa
dc.relation.referencesPenesyan A, Kjelleberg S, Egan S. (2010). Development of novel drugs from marine surface associated microorganisms. Marine Drugs. 8(3): 438 – 59.spa
dc.relation.referencesPeralta, A.M; Furtado, E.L; Amorim, M; Filho, A.B. (1990). Melhoramento para resistência ao mal das folhas da seringueira: Revisão. Summa Phytopathologica. 26:11.spa
dc.relation.referencesPettongkhao, Sittiporn; Bilanglod, Abdulmuhaimin; Khompatara, Khemmikar; Churngchow, Nunta. (2019). Sulphated Polysaccharide from Acanthophora spicifera Induced Hevea brasiliensis Defense Responses Against Phytophthora palmivora Infection. Plants, 8(3), 73. doi:10.3390/plants8030073.spa
dc.relation.referencesPiel J. (2006). Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Current medicinal chemistry. 13(1):39-42.spa
dc.relation.referencesPiel J. (2011). Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annual review of microbiology. 65:431-53.spa
dc.relation.referencesPoppinga, L., & Genersch, E. (2012). Heterologous expression of green fluorescent protein in Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. Journal of applied microbiology, 112(3), 430-435.spa
dc.relation.referencesQian P-Y, Xu Y, Fusetani N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 26(2):223-34.spa
dc.relation.referencesQuagliotto. L., Azziz. G., Bajsa N., Vaz, P., Peréz, C., Ducamp, F., Cadenazzi, M., Altier, N., Arias, A. (2009). There native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping – off in alfalfa. Biological control 51, 42 – 50.spa
dc.relation.referencesRajnish P. Singh and Prabhat N. Jha. (2017). The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Front Microbiol. 2017; 8: 1945. Published online 2017 Oct 9. doi: 10.3389/fmicb.2017.01945.spa
dc.relation.referencesRico Virgen, E. G. (2020). Evaluación de la producción de péptidos antimicrobianos por cepas marinas de Bacillus (Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas).spa
dc.relation.referencesRivano F, Vera J, Cevallos V, Almeida D, Maldonado L, Flori A. (2016). Performance of 10 Hevea brasiliensis clones in Ecuador, under South American Leaf Blight escape conditions. Industrial Crops and Products. 94:762-73.spa
dc.relation.referencesRivano F., Mattos C. R. R., Guyot J., Le Guen Vincent, Garcia D. (2011). Nuevas perspectivas para el control sostenible del mal suramericano de la hoja en el cultivo de caucho In: XI Jornadas Latinoamericanas del caucho natural, Medellin, Colombia, 7-11. Consultado en: http://agritrop.cirad.fr/562328/spa
dc.relation.referencesRivano, F., Nicolas, D., Chevaugeon, J. (1989). Résistance de l’hévéa à la maladie Sudaméricaine des feuilles. Perspectives de lutte. Revue Générale des Caoutchoucs et Plastiques, vol 66, n° 690, 199–206.spa
dc.relation.referencesRobert P. Ryan, Sebastien Monchy, Massimiliano Cardinale, Safiyh Taghavi, Lisa Crossman, Matthew B. Avison, Gabriele Berg, Daniel van der Lelie & J. Maxwell Dow. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology. volume 7, pages 514–525. doi:10.1038/nrmicro2163.spa
dc.relation.referencesRoberts DP, Lohrke SM. (2003). United States Department of Agriculture – Agricultural Research Service research programs in biological control of plant diseases. Pest management science. 59(6 – 7): 654 – 64.spa
dc.relation.referencesSalta M, Wharton JA, Blache Y, Stokes KR, Briand JF. (2013). Marine biofilms on artificial surfaces: structure and dynamics. Environmental Microbiology. 15(11): 2879 – 93.spa
dc.relation.referencesSantoyo G, Orozco – Mosqueda MdC, Govindappa M. (2012). Mechanisms of biocontrol and plant growth – promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology. 22(8): 855 – 72.spa
dc.relation.referencesSchubert, k., Ritschel, A., & Braun, U. (2003). A monograph of Fusicladium sp. Lat (Hyphomycetes). Schlenchtendalia, 9, 353-356.spa
dc.relation.referencesSha, J.; KLESSIG, D. F. (1996). Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related β 1,3-glucanase gene, PR-2d. Plant Journal. 10: 1089- 1101.spa
dc.relation.referencesSharma, R.R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control 50, 205 – 221.spa
dc.relation.referencesSharp K. H, Eam B, Faulkner D. J, Haygood M. G. (2007). Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and environmental microbiology. 73(2):622-9.spa
dc.relation.referencesShi-Qing PENG, Jing XU, Hui-Liang LI & Wei-Min TIAN. (2014). Cloning and Molecular Characterization of HbCOI1 from Hevea brasiliensis. Bioscience, Biotechnology, and Biochemistry, 73:3, 665-670, DOI: 10.1271/bbb.80721.spa
dc.relation.referencesSimon C, Daniel R. (2011). Metagenomic analyses: past and future trends. Applied and environmental microbiology. 77(4):1153-61.spa
dc.relation.referencesSmith DC, Simon M, Alldredge AL, Azam F. (1992). Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 359(6391): 139 – 42.spa
dc.relation.referencesSterling C. A., & Rodríguez O. A., (2011). Nuevos clones de caucho natural para la Amazonia Colombiana: Énfasis en la Resistencia al mal suramericano de las hojas de caucho (Microcyclus ulei), Instituto Amazónico de Investigaciones Científicas - Sinchi. Bogotá D.C. p. 17 - 18. Revisado 19/03/2019 en: https://books.google.es/books?hl=es&lr=&id=iZpvAwAAQBAJ&oi=fnd&pg=PA52&dq=caucho+natural&ots=C3ucZ9E_xt&sig=ObMVT7x3zcnvbcgU6chY_tgcRhw#v=onepage&q=caucho%20natural&f=true.spa
dc.relation.referencesSterling C. A., Galindo R. L. C, Correa D. J. (2010). Incidencia Y Severidad de Microcyclus ulei en una Colección de Caucho en la Amazonia Colombiana. Universidad de la Amazonia. I & A Ingenierías & Amazonia. Vol. 3(2). 93 – 104.spa
dc.relation.referencesSterling, C. A., Rodríguez, L. C. H. (2018). Estrategias de manejo para las principales enfermedades y plagas del cultivo del caucho con énfasis en la amazonia colombiana. Instituto Amazónico de Investigaciones Científicas SINCHI. Bogotá, Colombia. 65 p.spa
dc.relation.referencesSuarez YYJ, Molina JR, Furtado EL. (2015). Clones de Hevea brasiliensis de alta productividad caracterizados por resistencia a Microcyclus ulei en jardín clonal en el magdalena medio colombiano. Summa Phytopathologica. 41: 115 – 20.spa
dc.relation.referencesSuárez-Moreno, Z. R., Vinchira-Villarraga, D. M., Vergara-Morales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., ... & Moreno-Sarmiento, N. (2019). Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Frontiers in Microbiology, 10, 290.spa
dc.relation.referencesTalhinhas, P., Sreenivasaprasad, S., Neves-Martin, J., & Oliveira, H. (2002). Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology, 92, 986–996. doi:10.1094/PHYTO.2002.92.9.986.spa
dc.relation.referencesTan, D., Sun, X., & Zhang, J. (2014). Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta, 240(2), 337-344.spa
dc.relation.referencesTapiero, A. (2013). Base de datos preliminar para el desarrollo de un programa de manejo de enfermedades en caucho y formulación optimizada de un prototipo de bioplaguicida para el control del gusano Cachón Erinnyis ello. Informe técnico final. Corpoica C. I. La Libertad.spa
dc.relation.referencesTapiero, A. L. (2011). Manejo biológico de enfermedades en cultivos perennes: SALB en Caucho (Hevea spp.) En: Hoyos, L. Enfermedades de plantas: control biológico, Editorial Ecoe, Universidad Nacional de Colombia, 651-654.spa
dc.relation.referencesTomas Rivas García., Bernardo Murillo Amador., Alejandra Nieto Garibay., Gabriel Rincón Enríquez., Roberto G. Chiquito Contreras., Luis G. Hernández Montiel. (2019). Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryonyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biology and technology. 151. 61 – 67.spa
dc.relation.referencesValland, G. E.; Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science 44: 1920-1934.spa
dc.relation.referencesVero, S., Garmendia, G., González, M. B., & Betancur, o. (2013). Evaluation of yeast obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of Apple (Malus x domestical). FEMS Yeast Research, 13, 189-199.spa
dc.relation.referencesVinchira D. M. (2019). Comunicación personal. Instituto de Biotecnología Universidad Nacional - IBUN, Laboratorio de Fermentaciones, Universidad Nacional de Colombia, Bogotá D.C, 27 de febrero de 2019.spa
dc.relation.referencesVinchira, D. M., Méndez TE., García I. A., Suarez M. Z., Moreno S. N. (2017). Evaluation of Biocontrol Properties of Streptomyces spp. Isolates Against Phytopathogenic Fungi Colletotrichum gloeosporioides and Microcyclus ulei. African Journal of Microbiology Research. Vol. 11(5):141 – 154.spa
dc.relation.referencesVinchira-Villarraga, D. M., (2014). Evaluación de tres aislamientos bacterianos como potenciales promotores de crecimiento vegetal en plantas de arroz (Oryza sativa). Posgrado Interfacultades en Microbiología.spa
dc.relation.referencesVinchira-Villarraga, D. M., Castellanos, L., Moreno-Sarmiento, N., Suarez-Moreno, Z. R., & Ramos, F. A. (2021). Antifungal activity of marine-derived Paenibacillus sp. PNM200 against Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt. Biological Control, 154, 104501.spa
dc.relation.referencesWang, D. (2007). PAJEROWSKA-MUKHTAR, K., CULLER, A.H. and DONG, X.N. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Bio., 17(10), p. 1784-1790.spa
dc.relation.referencesWei, Y., Xu, M., Wu, H., & Tu, S. (2016). Defense response of cherry tomato all different matunity stages to combined treatment of hot air and Cryptococcus laurentii. Postharvest Biology and Technology, 117, 177-186.spa
dc.relation.referencesWilkinson B, & Micklefield J. (2007). Mining and engineering natural-product biosynthetic pathways. Nature Chemical Biology. 21, (3):379-86.spa
dc.relation.referencesZ. Alijani, J. Amini, M. Ashengroph, B. Bahramnejad. (2020). Volatile compounds mediated effects of Stenotrophomonas maltophilia strain UN1512 in plant growth promotion and its potential for the biocontrol of Colletotrichum nymphaeae. Physiological and Molecular Plant Pathology. Volume 112. https://doi.org/10.1016/j.pmpp.2020.101555.spa
dc.relation.referencesZ. Zhang, G. Y. Yuen, G. Sarath, and A. R. Penheiter. (2007). Chitinases from the Plant Disease Biocontrol Agent, Stenotrophomonas maltophilia C3. APS Publications, The American Phytopathological Society (APS). https://doi.org/10.1094/PHYTO.2001.91.2.204.spa
dc.relation.referencesZavaleta, E., (2000). Alternativas del manejo de las enfermedades de las plantas, Terra, 17:202 – 217. México D.F.spa
dc.relation.referencesZhang and G. Y. Yuen. (1999). Biological Control of Bipolaris sorokiniana on Tall Fescue by Stenotrophomonas maltophilia Strain. Publication no. P-1999-0706-02R. The American Phytopathological Society. Phytopathology. Vol. 89, No. 9:817-822.https://apsjournals.apsnet.org/doi/epdf/10.1094/PHYTO.1999.89.9.817.spa
dc.relation.referencesZhongge Zhang and Garry Y. Yuen. (2007). The Role of Chitinase Production by Stenotrophomonas maltophilia Strain C3 in Biological Control of Bipolaris sorokiniana. The American Phytopathological Society. Vol. 90, No. 4. P: 384-389. https://doi.org/10.1094/PHYTO.2000.90.4.384.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocControl de enfermedades de plantasspa
dc.subject.agrovocplant disease controleng
dc.subject.agrovocBacterias entomógenasspa
dc.subject.agrovocentomogenous bacteriaeng
dc.subject.agrovocMicrocyclus uleispa
dc.subject.agrovocMicrocyclus uleieng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalFitopatógenosspa
dc.subject.proposalColletotrichum gloeosporioidesspa
dc.subject.proposalAntracnosisspa
dc.subject.proposalStenotrophomonas maltophiliaspa
dc.subject.proposalHevea brasiliensisspa
dc.subject.proposalRT-qPCRspa
dc.subject.proposalControl biológicospa
dc.subject.proposalPhytopathogenseng
dc.subject.proposalColletotrichum gloeosporioideseng
dc.subject.proposalAnthracnoseeng
dc.subject.proposalStenotrophomonas maltophiliaeng
dc.subject.proposalHevea brasiliensiseng
dc.subject.proposalRT-qPCReng
dc.subject.proposalbiological controleng
dc.titleEvaluación de aislamientos bacterianos de origen marino, como agentes de control biológico de Microcyclus ulei, causante del Mal Suramericano de las Hojas del Caucho - (SALB)spa
dc.title.translatedEvaluation of bacterial isolates of marine origin, such as biological control agents for Microcyclus ulei, the cause of the disease South American Rubber Sheets - (SALB)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombia _ Instituto de Biotecnología - IBUNspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13703626.2022.pdf
Tamaño:
4.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: