Raíces matriciales de matrices estocásticas

authorProfile.orcidCalceteros, Cristian Erickson [000900073226080X]
dc.contributor.advisorJiménez Moscoso, José Alfredospa
dc.contributor.authorCalceteros, Cristian Ericksonspa
dc.contributor.orcidJiménez Moscoso, José Alfredo [0000000223912809]
dc.date.accessioned2025-07-28T17:38:35Z
dc.date.available2025-07-28T17:38:35Z
dc.date.issued2025
dc.description.abstractLas cadenas de Markov de tiempo discreto han sido ampliamente utilizadas para modelar procesos que evolucionan con el tiempo en diversos campos, como son la evaluación del riesgo de crédito en la industria financiera (Higham & Lin [2011]), el progreso de enfermedades crónicas (Charitos et al. [2008]), la planificación de mano de obra disponible por periodos (Guerry [2014]) y la predicción del estado del tiempo en aeropuertos (Jacquillat [2012]), entre otros. En estos modelos, la estimación de la matriz de transición suele estar restringida a un periodo de tiempo determinado. Sin embargo, en muchas aplicaciones se requiere conocer la evolución del sistema en escalas temporales menores a las de la estimación original. En este contexto, y basándose en conceptos de matrices estocásticas, descomposiciones matriciales y teoría de raíces matriciales, este trabajo se enfoca en caracterizar las condiciones bajo las cuales una matriz estocástica dada admite una raíz estocástica de orden m, así como en el desarrollo de algunos algoritmos para su obtención. Se presentan resultados para matrices estocásticas de tamaños 2 × 2, 3 × 3 y 4 × 4 en términos de sus valores propios, trazas y determinantes. Adicionalmente, se analizan casos en los que aparecen matrices estocásticas con estados absorbentes y matrices doblemente estocásticas, contribuyendo así al estudio teórico y computacional de las raíces de matrices estocásticas (Texto tomado de la fuente).spa
dc.description.abstractDiscrete-time Markov chains have been widely used to model processes that evolve over time in various fields, such as credit risk assessment in the financial industry (Higham & Lin [2011]), chronic disease progression (Charitos et al. [2008]), period-based available labor planning (Guerry [2014]), and airport weather prediction (Jacquillat [2012]), among others. In these models, the estimation of the transition matrix is usually restricted to a given time period. However, in many applications it is necessary to know the evolution of the system on time scales smaller than those of the original estimation. In this context, and based on concepts of stochastic matrices, matrix decompositions and matrix root theory, this research focuses on characterizing the conditions under which a given stochastic matrix admits a stochastic root of order m, as well as on the development of some algorithms to obtain it. Results are presented for stochastic matrices of sizes 2×2, 3×3 and 4×4 in terms of their eigenvalues, traces and determinants. Additionally, cases involving stochastic matrices with absorbing states and doubly stochastic matrices are analyzed, thus contributing to the theoretical and computational study of the roots of stochastic matrices.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Estadísticaspa
dc.description.methodsPara alcanzar los objetivos propuestos, se tendrán en cuenta los desarrollos teóricos acerca de raíces matriciales de orden m, descritos en el capítulo 2, con base en modelos conceptuales de matrices de transición y sus características especiales. Después de establecer las características teóricas requeridas, se obtienen las conclusiones correspondientes, relacionadas con la metodología, así como de la aplicación a datos reales.spa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88387
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAllen, E. J.: , 1999; Stochastic differential equations and persistence time for two interacting populations; Dynamics of Continuous, Discrete and Impulsive Systems; 5 (1-4): 271--281; https: //www.researchgate.net/publication/260128718.spa
dc.relation.referencesBjörck, Å. & Hammarling, S.: , 1983; A Schur method for the square root of a matrix; Linear Algebra and its Applications: 127--140; https://doi.org/10.1016/0024-3795(83)80010-X.spa
dc.relation.referencesBlanco, L.; Arunachalam, V. & Dharmaraja, S.: , 2012; Introduction To Probability And Stochastic Processes With Applications; Jhon Wiley & Sons Inc.; ISBN 978-1-118-29440-6.spa
dc.relation.referencesBlumen, I.; Kogan, M. & McCarthy, P.: , 1955; The Industrial Mobility of Labor as a Probability Process; Cornell studies in industrial and labor relations; Cornell University; https://books. google.com.co/books?id=iDDgzwEACAAJ.spa
dc.relation.referencesBäuerle, N. & Rieder, U.: , 2011; Markov decision processes with applications to finance; Springer Science & Business Media; ISBN 978-3-642-18323-2.spa
dc.relation.referencesCayley, A.: , 1858; A memoir on the theory of matrices; Philosophical Transactions of the Royal Society of London; 148: 17--37; http://doi.org/10.1098/rstl.1858.0002.spa
dc.relation.referencesCayley, A.: , 1872; On the extraction of the square root of a matrix of the third order; Proceedings of the Royal Society of Edinburgh; 7: 675--682; https://doi.org/10.1017/S0370164600042887.spa
dc.relation.referencesCharitos, T.; de Waal, P. & van der Gaag, L.: , 2008; Computing short-interval transition matrices of a discrete-time Markov chain from partially observed data.; Stat Med.; 27: 905--921; http: //doi.org/10.1002/sim.2970.spa
dc.relation.referencesChetina, Y.: , 2018; Geometric Model of Roots of Stochastic Matrices; Master’s thesis; University of Windsor; https://scholar.uwindsor.ca/major-papers/32/.spa
dc.relation.referencesCox, D.: , 2012; Galois Theory; Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts; Wiley; ISBN 9781118072059; https://books.google.com.co/books?id= TshTYrh7MDYC.spa
dc.relation.referencesFawcett, T.: , 2006; An introduction to ROC analysis; Pattern Recognition Letters; 27 (8): 861--874; https://doi.org/10.1016/j.patrec.2005.10.010.spa
dc.relation.referencesGeorgiou, A. & Tsantas, N.: , 2002; Modelling recruitment training in mathematical human resource planning; Applied Stochastic Models in Business and Industry; 18 (1): 53--74; https: //doi.org/10.1002/asmb.454.spa
dc.relation.referencesGoodman, L. A.: , 1961; Statistical methods for the mover-stayer model; Journal of the American Statistical Association; 56 (296): 841--868; https://doi.org/10.1080/01621459.1961.10482130.spa
dc.relation.referencesGordon, C. M.: , 2007; The Square Root Function of a Matrix; Master’s thesis; Georgia State University; https://doi.org/10.57709/1059680.spa
dc.relation.referencesGrossman, S. I.: , 2008; Álgebra Lineal; McGraw-Hill/Interamericana Editores, S.A., México; 6a edición; ISBN 978-970-10-6517-4.spa
dc.relation.referencesGuerry, M.-A.: , 2014; Some results on the embeddable problem for discrete-time Markov models in manpower planning; Communications in Statistics-Theory and Methods; 43 (7): 1575--1584; https://doi.org/10.1080/03610926.2012.742543.spa
dc.relation.referencesGuerry, M.-A.: , 2019; Sufficient embedding conditions for three-state discrete-time Markov chains with real eigenvalues; Linear and Multilinear Algebra; 67 (1): 106--120; https://doi.org/10. 1080/03081087.2017.1411462.spa
dc.relation.referencesGuerry, M.-A.: , 2022; Matrix roots and embedding conditions for three-state discrete-time Markov chains with complex eigenvalues; Communications in Mathematics and Statistics; 10 (3): 435--450; https://doi.org/10.1007/s40304-020-00226-3.spa
dc.relation.referencesHe, Q.-M. & Gunn, E.: , 2003; A note on the stochastic roots of stochastic matrices; Journal of Systems Science and Systems Engineering; 12 (2): 210--223; https://doi.org/10.1007/ s11518-006-0131-9.spa
dc.relation.referencesHengeveld, R.: , 1989; Dynamics of Biological Invasions; Landmarks in Rhetoric and Public; Springer Netherlands; ISBN 9780412314704; https://books.google.com.co/books?id=IG04k4ebDkAC.spa
dc.relation.referencesHigham, N.: , 2008; Functions Of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics; ISBN 978-0-89871-646-7.spa
dc.relation.referencesHigham, N. & Al-Mohy, A.: , 2010; Computing matrix functions; Acta Numerica; 19: 159--208; https://doi.org/10.1017/S0962492910000036.spa
dc.relation.referencesHigham, N. J. & Lin, L.: , 2011; On pth roots of stochastic matrices; Linear Algebra and its Applications; 435 (3): 448--463; https://doi.org/10.1016/j.laa.2010.04.007.spa
dc.relation.referencesHorn, R. A. & Johnson, C. R.: , 2013; Matrix Analysis; Cambridge University Press; 2a edición; ISBN 978-0-521-83940-2.spa
dc.relation.referencesHuisman, J. & Weissing, F. J.: , 2001; Biological conditions for oscillations and chaos generated by multispecies competition; Ecology; 82 (10): 2682--2695; https://doi.org/10.2307/2679953.spa
dc.relation.referencesIrving, R. S.: , 2006; Integers, Polynomials, and Rings; Undergraduate Texts in Mathematics Series; Springer, New York.spa
dc.relation.referencesJacquillat, A.: , 2012; A Queuing Model of Airport Congestion and Policy Implications at JFK and EWR; Master’s thesis; Massachusetts Institute of Technology; https://dspace.mit.edu/ handle/1721.1/72652.spa
dc.relation.referencesJiménez Moscoso, J. A.: , 2017; Álgebra Matricial con Aplicaciones en Estadística; Unibiblos; 3a edición; ISBN 978-958-783-009-5.spa
dc.relation.referencesJones, M. T.: , 2005; Estimating markov transition matrices using proportions data: An application to credit risk; IMF Working Paper 05/219 ; International Monetary Fund; https://www.imf. org/external/pubs/ft/wp/2005/wp05219.pdf.spa
dc.relation.referencesLin, L.: , 2011; Roots of Stochastic Matrices and Fractional Matrix Powers; Ph.d. dissertation; The University of Manchester; Manchester, UK; https://eprints.maths.manchester.ac.uk/ 1563/1/thesis_final.pdf.spa
dc.relation.referencesMarcus, M. & Minc, H.: , 1962; Some results on doubly stochastic matrices; Proceedings of the American Mathematical Society; 13 (4): 571--579; https://doi.org/10.1090/ S0002-9939-1962-0139625-6.spa
dc.relation.referencesMeyer, C.: , 2000; Matrix Analysis and Applied Linear Algebra; Other Titles in Applied Mathematics; Society for Industrial and Applied Mathematics; ISBN 9780898714548; URL https://books. google.com.co/books?id=HoNgdpJWnWMC.spa
dc.relation.referencesMooney, D. & Swift, R.: , 1999; A Course in Mathematical Modeling; Classroom Resource Materials; Mathematical Association of America; ISBN 9780883857120; https://books.google.com.co/ books?id=yCP3DwAAQBAJ.spa
dc.relation.referencesPaparella, P.: , 2013; Matrix Roots of Nonnegative and Eventually Nonnegative Matrices; Ph.D. dissertation; Washington State University; https://hdl.handle.net/2376/4963.spa
dc.relation.referencesPoliti, T. & Popolizio, M.: , 2015; On stochasticity preserving methods for the computation of the matrix pth root; Mathematics and Computers in Simulation; 110: 53--68; https://doi.org/10. 1016/j.matcom.2014.01.002.spa
dc.relation.referencesReynolds, J. C.: , 1985; Details of the geographic replacement of the red squirrel (sciurus vulgaris) by the grey squirrel (sciurus carolinensis) in eastern england; Journal of Animal Ecology; 54 (1): 149--162; https://doi.org/10.2307/4627.spa
dc.relation.referencesShigesada, N. & Kawasaki, K.: , 1997; Biological Invasions: Theory and Practice; Oxford University Press, UK; ISBN 9780191589829; https://books.google.com.co/books?id=Ri-hle_zdpsC.spa
dc.relation.referencesSpilerman, S.: , 1972; Extensions of the mover-stayer model; American Journal of Sociology - AJS; 78 (3): 599--626; http://doi.org/10.1086/225366.spa
dc.relation.referencesTakada, T.; Miyamoto, A. & Hasegawa, S.: , 2010; Derivation of a yearly transition probability matrix for land-use dynamics and its applications; Landscape Ecology; 25: 561--572; http: //doi.org/10.1007/s10980-009-9433-x.spa
dc.relation.referencesUsher, M. B.; Crawford, T. J. & Banwell, J. L.: , 1992; An american invasion of great britain: The case of the native and alien squirrel (sciurus) species; Conservation Biology; 6 (1): 108--115; https://doi.org/10.1046/j.1523-1739.1992.610108.x.spa
dc.relation.referencesWilliamson, M.: , 1996; Biological Invasions; Biological Invasions; Springer Netherlands; ISBN 9780412591907; URL https://books.google.com.co/books?id=eWUdzI6j3V8C.spa
dc.relation.referencesWolkowicz, H. & Styan, G. P.: , 1980; Bounds for eigenvalues using traces; Linear Algebra and its Applications; 29: 471--506; http://doi.org/10.1016/0024-3795(80)90258-x.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembPROCESOS DE MARKOVspa
dc.subject.lembMarkov processeseng
dc.subject.lembPROCESOS ESTOCASTICOSspa
dc.subject.lembStochastic processeseng
dc.subject.lembSISTEMAS ESTOCASTICOSspa
dc.subject.lembStochastic systemseng
dc.subject.lembCAMPOS ALEATORIOSspa
dc.subject.lembRandom fieldseng
dc.subject.lembPROBABILIDADESspa
dc.subject.lembProbabilitieseng
dc.subject.lembEVALUACION DE RIESGOSspa
dc.subject.lembRisk assessmenteng
dc.subject.lembESTADISTICA MATEMATICAspa
dc.subject.lembMathematical statisticseng
dc.subject.proposalCadenas de Markovspa
dc.subject.proposalMatrices estocásticasspa
dc.subject.proposalRaíces matricialesspa
dc.subject.proposalDescomposición matricialspa
dc.subject.proposalAlgoritmos numéricosspa
dc.subject.proposalMarkov chainseng
dc.subject.proposalStochastic matriceseng
dc.subject.proposalMatrix rootseng
dc.subject.proposalMatrix decompositioneng
dc.subject.proposalNumerical algorithmseng
dc.titleRaíces matriciales de matrices estocásticasspa
dc.title.translatedMatrix roots of stochastic matriceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070326413.2025.pdf
Tamaño:
995.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: