Raíces matriciales de matrices estocásticas
authorProfile.orcid | Calceteros, Cristian Erickson [000900073226080X] | |
dc.contributor.advisor | Jiménez Moscoso, José Alfredo | spa |
dc.contributor.author | Calceteros, Cristian Erickson | spa |
dc.contributor.orcid | Jiménez Moscoso, José Alfredo [0000000223912809] | |
dc.date.accessioned | 2025-07-28T17:38:35Z | |
dc.date.available | 2025-07-28T17:38:35Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Las cadenas de Markov de tiempo discreto han sido ampliamente utilizadas para modelar procesos que evolucionan con el tiempo en diversos campos, como son la evaluación del riesgo de crédito en la industria financiera (Higham & Lin [2011]), el progreso de enfermedades crónicas (Charitos et al. [2008]), la planificación de mano de obra disponible por periodos (Guerry [2014]) y la predicción del estado del tiempo en aeropuertos (Jacquillat [2012]), entre otros. En estos modelos, la estimación de la matriz de transición suele estar restringida a un periodo de tiempo determinado. Sin embargo, en muchas aplicaciones se requiere conocer la evolución del sistema en escalas temporales menores a las de la estimación original. En este contexto, y basándose en conceptos de matrices estocásticas, descomposiciones matriciales y teoría de raíces matriciales, este trabajo se enfoca en caracterizar las condiciones bajo las cuales una matriz estocástica dada admite una raíz estocástica de orden m, así como en el desarrollo de algunos algoritmos para su obtención. Se presentan resultados para matrices estocásticas de tamaños 2 × 2, 3 × 3 y 4 × 4 en términos de sus valores propios, trazas y determinantes. Adicionalmente, se analizan casos en los que aparecen matrices estocásticas con estados absorbentes y matrices doblemente estocásticas, contribuyendo así al estudio teórico y computacional de las raíces de matrices estocásticas (Texto tomado de la fuente). | spa |
dc.description.abstract | Discrete-time Markov chains have been widely used to model processes that evolve over time in various fields, such as credit risk assessment in the financial industry (Higham & Lin [2011]), chronic disease progression (Charitos et al. [2008]), period-based available labor planning (Guerry [2014]), and airport weather prediction (Jacquillat [2012]), among others. In these models, the estimation of the transition matrix is usually restricted to a given time period. However, in many applications it is necessary to know the evolution of the system on time scales smaller than those of the original estimation. In this context, and based on concepts of stochastic matrices, matrix decompositions and matrix root theory, this research focuses on characterizing the conditions under which a given stochastic matrix admits a stochastic root of order m, as well as on the development of some algorithms to obtain it. Results are presented for stochastic matrices of sizes 2×2, 3×3 and 4×4 in terms of their eigenvalues, traces and determinants. Additionally, cases involving stochastic matrices with absorbing states and doubly stochastic matrices are analyzed, thus contributing to the theoretical and computational study of the roots of stochastic matrices. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Estadística | spa |
dc.description.methods | Para alcanzar los objetivos propuestos, se tendrán en cuenta los desarrollos teóricos acerca de raíces matriciales de orden m, descritos en el capítulo 2, con base en modelos conceptuales de matrices de transición y sus características especiales. Después de establecer las características teóricas requeridas, se obtienen las conclusiones correspondientes, relacionadas con la metodología, así como de la aplicación a datos reales. | spa |
dc.format.extent | 96 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88387 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | Allen, E. J.: , 1999; Stochastic differential equations and persistence time for two interacting populations; Dynamics of Continuous, Discrete and Impulsive Systems; 5 (1-4): 271--281; https: //www.researchgate.net/publication/260128718. | spa |
dc.relation.references | Björck, Å. & Hammarling, S.: , 1983; A Schur method for the square root of a matrix; Linear Algebra and its Applications: 127--140; https://doi.org/10.1016/0024-3795(83)80010-X. | spa |
dc.relation.references | Blanco, L.; Arunachalam, V. & Dharmaraja, S.: , 2012; Introduction To Probability And Stochastic Processes With Applications; Jhon Wiley & Sons Inc.; ISBN 978-1-118-29440-6. | spa |
dc.relation.references | Blumen, I.; Kogan, M. & McCarthy, P.: , 1955; The Industrial Mobility of Labor as a Probability Process; Cornell studies in industrial and labor relations; Cornell University; https://books. google.com.co/books?id=iDDgzwEACAAJ. | spa |
dc.relation.references | Bäuerle, N. & Rieder, U.: , 2011; Markov decision processes with applications to finance; Springer Science & Business Media; ISBN 978-3-642-18323-2. | spa |
dc.relation.references | Cayley, A.: , 1858; A memoir on the theory of matrices; Philosophical Transactions of the Royal Society of London; 148: 17--37; http://doi.org/10.1098/rstl.1858.0002. | spa |
dc.relation.references | Cayley, A.: , 1872; On the extraction of the square root of a matrix of the third order; Proceedings of the Royal Society of Edinburgh; 7: 675--682; https://doi.org/10.1017/S0370164600042887. | spa |
dc.relation.references | Charitos, T.; de Waal, P. & van der Gaag, L.: , 2008; Computing short-interval transition matrices of a discrete-time Markov chain from partially observed data.; Stat Med.; 27: 905--921; http: //doi.org/10.1002/sim.2970. | spa |
dc.relation.references | Chetina, Y.: , 2018; Geometric Model of Roots of Stochastic Matrices; Master’s thesis; University of Windsor; https://scholar.uwindsor.ca/major-papers/32/. | spa |
dc.relation.references | Cox, D.: , 2012; Galois Theory; Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts; Wiley; ISBN 9781118072059; https://books.google.com.co/books?id= TshTYrh7MDYC. | spa |
dc.relation.references | Fawcett, T.: , 2006; An introduction to ROC analysis; Pattern Recognition Letters; 27 (8): 861--874; https://doi.org/10.1016/j.patrec.2005.10.010. | spa |
dc.relation.references | Georgiou, A. & Tsantas, N.: , 2002; Modelling recruitment training in mathematical human resource planning; Applied Stochastic Models in Business and Industry; 18 (1): 53--74; https: //doi.org/10.1002/asmb.454. | spa |
dc.relation.references | Goodman, L. A.: , 1961; Statistical methods for the mover-stayer model; Journal of the American Statistical Association; 56 (296): 841--868; https://doi.org/10.1080/01621459.1961.10482130. | spa |
dc.relation.references | Gordon, C. M.: , 2007; The Square Root Function of a Matrix; Master’s thesis; Georgia State University; https://doi.org/10.57709/1059680. | spa |
dc.relation.references | Grossman, S. I.: , 2008; Álgebra Lineal; McGraw-Hill/Interamericana Editores, S.A., México; 6a edición; ISBN 978-970-10-6517-4. | spa |
dc.relation.references | Guerry, M.-A.: , 2014; Some results on the embeddable problem for discrete-time Markov models in manpower planning; Communications in Statistics-Theory and Methods; 43 (7): 1575--1584; https://doi.org/10.1080/03610926.2012.742543. | spa |
dc.relation.references | Guerry, M.-A.: , 2019; Sufficient embedding conditions for three-state discrete-time Markov chains with real eigenvalues; Linear and Multilinear Algebra; 67 (1): 106--120; https://doi.org/10. 1080/03081087.2017.1411462. | spa |
dc.relation.references | Guerry, M.-A.: , 2022; Matrix roots and embedding conditions for three-state discrete-time Markov chains with complex eigenvalues; Communications in Mathematics and Statistics; 10 (3): 435--450; https://doi.org/10.1007/s40304-020-00226-3. | spa |
dc.relation.references | He, Q.-M. & Gunn, E.: , 2003; A note on the stochastic roots of stochastic matrices; Journal of Systems Science and Systems Engineering; 12 (2): 210--223; https://doi.org/10.1007/ s11518-006-0131-9. | spa |
dc.relation.references | Hengeveld, R.: , 1989; Dynamics of Biological Invasions; Landmarks in Rhetoric and Public; Springer Netherlands; ISBN 9780412314704; https://books.google.com.co/books?id=IG04k4ebDkAC. | spa |
dc.relation.references | Higham, N.: , 2008; Functions Of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics; ISBN 978-0-89871-646-7. | spa |
dc.relation.references | Higham, N. & Al-Mohy, A.: , 2010; Computing matrix functions; Acta Numerica; 19: 159--208; https://doi.org/10.1017/S0962492910000036. | spa |
dc.relation.references | Higham, N. J. & Lin, L.: , 2011; On pth roots of stochastic matrices; Linear Algebra and its Applications; 435 (3): 448--463; https://doi.org/10.1016/j.laa.2010.04.007. | spa |
dc.relation.references | Horn, R. A. & Johnson, C. R.: , 2013; Matrix Analysis; Cambridge University Press; 2a edición; ISBN 978-0-521-83940-2. | spa |
dc.relation.references | Huisman, J. & Weissing, F. J.: , 2001; Biological conditions for oscillations and chaos generated by multispecies competition; Ecology; 82 (10): 2682--2695; https://doi.org/10.2307/2679953. | spa |
dc.relation.references | Irving, R. S.: , 2006; Integers, Polynomials, and Rings; Undergraduate Texts in Mathematics Series; Springer, New York. | spa |
dc.relation.references | Jacquillat, A.: , 2012; A Queuing Model of Airport Congestion and Policy Implications at JFK and EWR; Master’s thesis; Massachusetts Institute of Technology; https://dspace.mit.edu/ handle/1721.1/72652. | spa |
dc.relation.references | Jiménez Moscoso, J. A.: , 2017; Álgebra Matricial con Aplicaciones en Estadística; Unibiblos; 3a edición; ISBN 978-958-783-009-5. | spa |
dc.relation.references | Jones, M. T.: , 2005; Estimating markov transition matrices using proportions data: An application to credit risk; IMF Working Paper 05/219 ; International Monetary Fund; https://www.imf. org/external/pubs/ft/wp/2005/wp05219.pdf. | spa |
dc.relation.references | Lin, L.: , 2011; Roots of Stochastic Matrices and Fractional Matrix Powers; Ph.d. dissertation; The University of Manchester; Manchester, UK; https://eprints.maths.manchester.ac.uk/ 1563/1/thesis_final.pdf. | spa |
dc.relation.references | Marcus, M. & Minc, H.: , 1962; Some results on doubly stochastic matrices; Proceedings of the American Mathematical Society; 13 (4): 571--579; https://doi.org/10.1090/ S0002-9939-1962-0139625-6. | spa |
dc.relation.references | Meyer, C.: , 2000; Matrix Analysis and Applied Linear Algebra; Other Titles in Applied Mathematics; Society for Industrial and Applied Mathematics; ISBN 9780898714548; URL https://books. google.com.co/books?id=HoNgdpJWnWMC. | spa |
dc.relation.references | Mooney, D. & Swift, R.: , 1999; A Course in Mathematical Modeling; Classroom Resource Materials; Mathematical Association of America; ISBN 9780883857120; https://books.google.com.co/ books?id=yCP3DwAAQBAJ. | spa |
dc.relation.references | Paparella, P.: , 2013; Matrix Roots of Nonnegative and Eventually Nonnegative Matrices; Ph.D. dissertation; Washington State University; https://hdl.handle.net/2376/4963. | spa |
dc.relation.references | Politi, T. & Popolizio, M.: , 2015; On stochasticity preserving methods for the computation of the matrix pth root; Mathematics and Computers in Simulation; 110: 53--68; https://doi.org/10. 1016/j.matcom.2014.01.002. | spa |
dc.relation.references | Reynolds, J. C.: , 1985; Details of the geographic replacement of the red squirrel (sciurus vulgaris) by the grey squirrel (sciurus carolinensis) in eastern england; Journal of Animal Ecology; 54 (1): 149--162; https://doi.org/10.2307/4627. | spa |
dc.relation.references | Shigesada, N. & Kawasaki, K.: , 1997; Biological Invasions: Theory and Practice; Oxford University Press, UK; ISBN 9780191589829; https://books.google.com.co/books?id=Ri-hle_zdpsC. | spa |
dc.relation.references | Spilerman, S.: , 1972; Extensions of the mover-stayer model; American Journal of Sociology - AJS; 78 (3): 599--626; http://doi.org/10.1086/225366. | spa |
dc.relation.references | Takada, T.; Miyamoto, A. & Hasegawa, S.: , 2010; Derivation of a yearly transition probability matrix for land-use dynamics and its applications; Landscape Ecology; 25: 561--572; http: //doi.org/10.1007/s10980-009-9433-x. | spa |
dc.relation.references | Usher, M. B.; Crawford, T. J. & Banwell, J. L.: , 1992; An american invasion of great britain: The case of the native and alien squirrel (sciurus) species; Conservation Biology; 6 (1): 108--115; https://doi.org/10.1046/j.1523-1739.1992.610108.x. | spa |
dc.relation.references | Williamson, M.: , 1996; Biological Invasions; Biological Invasions; Springer Netherlands; ISBN 9780412591907; URL https://books.google.com.co/books?id=eWUdzI6j3V8C. | spa |
dc.relation.references | Wolkowicz, H. & Styan, G. P.: , 1980; Bounds for eigenvalues using traces; Linear Algebra and its Applications; 29: 471--506; http://doi.org/10.1016/0024-3795(80)90258-x. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | PROCESOS DE MARKOV | spa |
dc.subject.lemb | Markov processes | eng |
dc.subject.lemb | PROCESOS ESTOCASTICOS | spa |
dc.subject.lemb | Stochastic processes | eng |
dc.subject.lemb | SISTEMAS ESTOCASTICOS | spa |
dc.subject.lemb | Stochastic systems | eng |
dc.subject.lemb | CAMPOS ALEATORIOS | spa |
dc.subject.lemb | Random fields | eng |
dc.subject.lemb | PROBABILIDADES | spa |
dc.subject.lemb | Probabilities | eng |
dc.subject.lemb | EVALUACION DE RIESGOS | spa |
dc.subject.lemb | Risk assessment | eng |
dc.subject.lemb | ESTADISTICA MATEMATICA | spa |
dc.subject.lemb | Mathematical statistics | eng |
dc.subject.proposal | Cadenas de Markov | spa |
dc.subject.proposal | Matrices estocásticas | spa |
dc.subject.proposal | Raíces matriciales | spa |
dc.subject.proposal | Descomposición matricial | spa |
dc.subject.proposal | Algoritmos numéricos | spa |
dc.subject.proposal | Markov chains | eng |
dc.subject.proposal | Stochastic matrices | eng |
dc.subject.proposal | Matrix roots | eng |
dc.subject.proposal | Matrix decomposition | eng |
dc.subject.proposal | Numerical algorithms | eng |
dc.title | Raíces matriciales de matrices estocásticas | spa |
dc.title.translated | Matrix roots of stochastic matrices | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1070326413.2025.pdf
- Tamaño:
- 995.17 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: