Metabolic manipulation as a strategy for the improvement of the biocrude obtained by hydrothermal liquefaction of microalgae

dc.contributor.advisorDepartamento de Ingeniería Química y Ambientalspa
dc.contributor.advisorGodoy Silva, Rubén Daríospa
dc.contributor.authorPalomino Martínez, Alejandraspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-12-11T16:37:16Zspa
dc.date.available2020-12-11T16:37:16Zspa
dc.date.issued2020-12-10spa
dc.description.abstractHydrothermal liquefaction of the microalga was carried out. A response surface methodology was used to explore the effect of reaction temperature, retention time, initial total solids, and biomass composition, as well as their interactions, on the yield and quality of the resultant biocrude. The maximum biocrude yield was obtained between 315–325 °C and 40–45 min, at lipid ratio and initial total solids of 0.65 and 15 %, respectively. Under these conditions, the higher heating value was 35 MJ/kg, the total acid number was 70 mg KOH/g and the carbon, nitrogen and oxygen contents were 72 %, 3.7 % and 13 %, respectively. The inclusion of the chemical composition of the biomass as a modeling factor allowed predicting the yield and quality of the biocrude for several data sets published in the literature. The regression model predicted 61 % of the biocrude yields published within the standard deviation zone of ± 5 %. The degree of success for the models predicting quality parameters ranged from to 50-80 %. A new quantitative model was proposed for the calculation of biocrude yield of microalgae. The new model was tested with large numbers of experimental data published over a wide range of temperatures (200–400 °C), retention times (1–120 min) and chemical composition of microalgae (0.0–66 % lipids, 9–75 % proteins, 5–64 % carbohydrates, in dry basis). This model predicted 45 % of the biocrude yields published within the standard deviation zone of ± 5 % and 78 % of the total data was within the zone of standard deviation of ± 10 %. The effect of reaction temperature, retention time and elementary composition of the biomass was evaluated on the quality of the algae biocrude and used to propose a new quantitative model for the calculation of the elemental composition of this biocrude. The model provided information on the behavior of the reaction temperature and retention time on the carbon, nitrogen, hydrogen, and oxygen content of the algae biocrude. The new model was successful in more than 81 % for predicting the elemental composition of the macroalgae biocrude. The prediction capacity of the carbon, nitrogen, and oxygen content in the microalgae biocrude was between 53 and 81 %. The storage stability of biocrude produced from hydrothermal liquefaction of microalgae was systematically studied over 60 days, and the effect of the storage material, feedstock species, liquefaction temperature and storage temperature were assessed. Biocrudes obtained at 300 °C and 350 °C from the microalgae Spirulina and Chlorella vulgaris were stored at three temperatures: cold (4 °C), ambient (20 °C) and elevated temperatures (35 °C), over the two-month period. The viscosity of the biocrudes only increased considerably at 35 °C. The reaction temperature and biomass type were also strong determining factors of the impact on biocrude stability. Biocrudes produced from C. vulgaris were more stable than the Spirulina, and the crudes formed at 350 °C were considerably less reactive than those produced at 300 °C.spa
dc.description.abstractSe realizó licuefacción hidrotermal de la microalga. Se utilizó una metodología de superficie de respuesta para explorar el efecto de la temperatura de reacción, el tiempo de retención, los sólidos totales iniciales y la composición de la biomasa, así como sus interacciones, sobre el rendimiento y la calidad del biocrudo resultante. El rendimiento máximo de biocrudo se obtuvo entre 315-325 °C y 40-45 min, con una proporción de lípidos y sólidos totales iniciales de 0,65 y 15%, respectivamente. En estas condiciones, el poder calorífico superior fue 35 MJ/kg, el índice de acidez total fue 70 mg KOH/g y los contenidos de carbono, nitrógeno y oxígeno fueron 72%, 3,7% y 13%, respectivamente. La inclusión de la composición química de la biomasa como factor de modelado permitió predecir el rendimiento y la calidad del biocrudo para varios conjuntos de datos publicados en la literatura. El modelo de regresión predijo el 61% de los rendimientos de biocrudo publicados dentro de la zona de desviación estándar de ± 5%. El grado de éxito de los modelos que predicen los parámetros de calidad osciló entre el 50 y el 80%. Se propuso un nuevo modelo cuantitativo para el cálculo del rendimiento de biocrudo de microalgas. El nuevo modelo se probó con una gran cantidad de datos experimentales publicados en una amplia gama de temperaturas (200–400 °C), tiempos de retención (1–120 min) y composición química de las microalgas (0,0–66% de lípidos, 9–75% proteínas, 5-64% de carbohidratos, en base seca). Este modelo predijo el 45% de los rendimientos de biocrudo publicados dentro de la zona de desviación estándar de ± 5% y el 78% de los datos totales estaba dentro de la zona de desviación estándar de ± 10%. Se evaluó el efecto de la temperatura de reacción, el tiempo de retención y la composición elemental de la biomasa sobre la calidad del biocrudo de algas y se utilizó para proponer un nuevo modelo cuantitativo para el cálculo de la composición elemental de este biocrudo. El modelo proporcionó información sobre el comportamiento de la temperatura de reacción y el tiempo de retención en el contenido de carbono, nitrógeno, hidrógeno y oxígeno del biocrudo de algas. El nuevo modelo tuvo éxito en más del 81% para predecir la composición elemental del biocrudo de macroalgas. La capacidad de predicción del contenido de carbono, nitrógeno y oxígeno en el biocrudo de microalgas estuvo entre 53 y 81%. La estabilidad de almacenamiento del biocrudo producido a partir de la licuefacción hidrotermal de microalgas se estudió sistemáticamente durante 60 días y se evaluó el efecto del material de almacenamiento, las especies de materia prima, la temperatura de licuefacción y la temperatura de almacenamiento. Los biocrudos obtenidos a 300 °C y 350 °C de las microalgas Spirulina y Chlorella vulgaris se almacenaron a tres temperaturas: frío (4 °C), ambiente (20 °C) y temperaturas elevadas (35 °C), durante el período de dos meses. período. La viscosidad de los biocrudes solo aumentó considerablemente a 35 °C. La temperatura de reacción y el tipo de biomasa también fueron fuertes factores determinantes del impacto en la estabilidad del biocrudo. Los biocrudos producidos a partir de C. vulgaris eran más estables que la espirulina, y los crudos formados a 350 °C eran considerablemente menos reactivos que los producidos a 300 °C.spa
dc.description.additionalLínea de investigación: Biotecnología y Procesos Químicosspa
dc.description.degreelevelDoctoradospa
dc.format.extent167spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78697
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] International Energy Agency (IEA), Technology Roadmap Biofuels for Transport, 2011.spa
dc.relation.references[2] L. Gouveia, Microalgae as a Feedstock for Biofuels, in: SpringerBriefs Microbiol., 2011: pp. 1–69.spa
dc.relation.references[3] S. Kumar, Sub- and Supercritical Water Technology for Biofuels, in: J.W. Lee (Ed.), Adv. Biofuels Bioprod., Springer New York, 2013: pp. 147–183.spa
dc.relation.references[4] N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. 103 (2006) 15729–15735.spa
dc.relation.references[5] J.P. Maity, J. Bundschuh, C.-Y. Chen, P. Bhattacharya, Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review, Energy. (2014).spa
dc.relation.references[6] G.C. Dismukes, D. Carrieri, N. Bennette, G.M. Ananyev, M.C. Posewitz, Aquatic phototrophs: efficient alternatives to land-based crops for biofuels., Curr. Opin. Biotechnol. 19 (2008) 235–40.spa
dc.relation.references[7] A.E. Harman-Ware, T. Morgan, M. Wilson, M. Crocker, J. Zhang, K. Liu, J. Stork, S. Debolt, Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp., Renew. Energy. 60 (2013) 625–632.spa
dc.relation.references[8] R. Thilakaratne, M.M. Wright, R.C. Brown, A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels, Fuel. 128 (2014) 104–112.spa
dc.relation.references[9] R. Halim, M.K. Danquah, P.A. Webley, Extraction of oil from microalgae for biodiesel production: A review., Biotechnol. Adv. 30 (2012) 709–32.spa
dc.relation.references[10] R. Halim, B. Gladman, M.K. Danquah, P.A. Webley, Oil extraction from microalgae for biodiesel production., Bioresour. Technol. 102 (2011) 178–85.spa
dc.relation.references[11] D. López Barreiro, W. Prins, F. Ronsse, W. Brilman, W. Prins, F. Ronsse, W. Brilman, Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects, Biomass and Bioenergy. 53 (2013) 113–127.spa
dc.relation.references[12] C. Tian, Z. Liu, Y. Zhang, Hydrothermal liquefaction (HTL): A promising pathway for biorefinery of algae, 2017.spa
dc.relation.references[13] S. Kumar, Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels, in: R. Gordon, J. Seckbach (Eds.), Sci. Algal Fuels SE - 25, Springer Netherlands, 2012: pp. 467–493.spa
dc.relation.references[14] G. Yu, Y. Zhang, B. Guo, T. Funk, L. Schideman, Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae, BioEnergy Res. 7 (2014) 1317–1328.spa
dc.relation.references[15] H. Li, Z. Liu, Y. Zhang, B. Li, H. Lu, N. Duan, M. Liu, Z. Zhu, B. Si, Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction., Bioresour. Technol. 154 (2014) 322–9.spa
dc.relation.references[16] L. Leng, J. Li, Z. Wen, W. Zhou, Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process, Bioresour. Technol. (2018).spa
dc.relation.references[17] M. Saber, B. Nakhshiniev, K. Yoshikawa, A review of production and upgrading of algal bio-oil, Renew. Sustain. Energy Rev. 58 (2016) 918–930.spa
dc.relation.references[19] P.J. Valdez, V.J. Tocco, P.E. Savage, A general kinetic model for the hydrothermal liquefaction of microalgae, Bioresour. Technol. 163 (2014) 123–7.spa
dc.relation.references[20] K. Anastasakis, A.B.B. Ross, Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods, Fuel. 139 (2015) 546–553.spa
dc.relation.references[21] R. Singh, B. Balagurumurthy, T. Bhaskar, Hydrothermal liquefaction of macro algae: Effect of feedstock composition, Fuel. 146 (2015) 69–74.spa
dc.relation.references[22] N. Neveux, A.K.L. Yuen, C. Jazrawi, M. Magnusson, B.S. Haynes, A.F. Masters, A. Montoya, N.A. Paul, T. Maschmeyer, R. de Nys, Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae., Bioresour. Technol. 155 (2014) 334–41.spa
dc.relation.references[23] D. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil, Energy & Fuels. 24 (2010) 4054–4061.spa
dc.relation.references[24] P.S. Christensen, G. Peng, F. Vogel, B.B. Iversen, Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum: Impact of Reaction Conditions on Product and Elemental Distribution, Energy & Fuels. 28 (2014) 5792–5803.spa
dc.relation.references[25] D. López Barreiro, C. Zamalloa, N. Boon, W. Vyverman, F. Ronsse, W. Brilman, W. Prins, Influence of strain-specific parameters on hydrothermal liquefaction of microalgae., Bioresour. Technol. 146 (2013) 463–71.spa
dc.relation.references[26] U. Jena, K.C. Das, J.R. Kastner, Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis, Appl. Energy. 98 (2012) 368–375.spa
dc.relation.references[27] W.-T. Chen, Y. Zhang, J. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil, Appl. Energy. 128 (2014) 209–216.spa
dc.relation.references[28] W.-T.W.-T.. Chen, Y. Zhang, J.J.. b Zhang, G.. G. Yu, L.C.L.C.. Schideman, P.P.. P. Zhang, M.M.. M. Minarick, Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil., Bioresour. Technol. 152 (2014) 130–9.spa
dc.relation.references[29] B. Jin, P. Duan, Y. Xu, F. Wang, Y. Fan, Co-liquefaction of micro- and macroalgae in subcritical water., Bioresour. Technol. 149 (2013) 103–10.spa
dc.relation.references[30] Q.-H. Shen, Y.-P. Gong, W.-Z. Fang, Z.-C. Bi, L.-H. Cheng, X.-H. Xu, H.-L. Chen, Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency, Bioresour. Technol. 193 (2015) 68–75.spa
dc.relation.references[31] C. Safi, B. Zebib, O. Merah, P.-Y. Pontalier, C. Vaca-Garcia, Morphology, composition, production, processing and applications of Chlorella vulgaris: A review, Renew. Sustain. Energy Rev. 35 (2014) 265–278.spa
dc.relation.references[32] L.M. Serrano, Estudio de cuatro cepas nativas de microalgas para evaluar su potencial uso en la producción de biodiesel, Universidad Nacional de Colombia, 2012.spa
dc.relation.references[33] K. Anastasakis, A.B. Ross, Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition., Bioresour. Technol. 102 (2011) 4876–83.spa
dc.relation.references[34] U. Jena, K.C. Das, J.R. Kastner, Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis., Bioresour. Technol. 102 (2011) 6221–9.spa
dc.relation.references[35] D. Li, L. Chen, D. Xu, X. Zhang, N. Ye, F. Chen, S. Chen, Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh., Bioresour. Technol. 104 (2012) 737–42.spa
dc.relation.references[36] S. Zou, Y. Wu, M. Yang, C. Li, J. Tong, Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characterization of Bio-oils, Energy & Fuels. 23 (2009) 3753–3758.spa
dc.relation.references[37] B.E. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp., Bioresour. Technol. 170 (2014) 20–9.spa
dc.relation.references[38] P. Duan, P.E. Savage, Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts, Ind. Eng. Chem. Res. 50 (2010) 52–61.spa
dc.relation.references[39] P. Biller, R. Riley, A.B. Ross, Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids., Bioresour. Technol. 102 (2011) 4841–8. https://doi.org/10.1016/j.biortech.2010.12.113.spa
dc.relation.references[40] Y. Xu, X. Zheng, H. Yu, X. Hu, Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5., Bioresour. Technol. 156 (2014) 1–5.spa
dc.relation.references[41] C. Torri, D. Fabbri, L. Garcia-Alba, D.W.F. Brilman, Upgrading of oils derived from hydrothermal treatment of microalgae by catalytic cracking over H-ZSM-5: A comparative Py–GC–MS study, J. Anal. Appl. Pyrolysis. 101 (2013) 28–34.spa
dc.relation.references[42] J. Li, G. Wang, M. Chen, J. Li, Y. Yang, Q. Zhu, X. Jiang, Z. Wang, H. Liu, Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil., Bioresour. Technol. 169 (2014) 110–8.spa
dc.relation.references[43] C. Tian, B. Li, Z. Liu, Y. Zhang, H. Lu, Hydrothermal liquefaction for algal biorefinery: A critical review, Renew. Sustain. Energy Rev. 38 (2014) 933–950.spa
dc.relation.references[44] Y. Guo, T. Yeh, W. Song, D. Xu, S. Wang, A review of bio-oil production from hydrothermal liquefaction of algae, Renew. Sustain. Energy Rev. 48 (2015) 776–790.spa
dc.relation.references[45] G. Yu, Y. Zhang, L. Schideman, T.L. Funk, Z. Wang, Hydrothermal liquefaction of low lipid content microalgae into bio‐crude oil, Am. Soc. Agric. Biol. Eng. 54 (2011) 239–246.spa
dc.relation.references[46] Q.-V. Bach, M.V. Sillero, K.-Q. Tran, J. Skjermo, Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests, Algal Res. 6 (2014) 271–276.spa
dc.relation.references[47] L. Garcia Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A. Kersten, D.W.F. (Wim) Brilman, Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept, Energy & Fuels. 26 (2011) 642–657.spa
dc.relation.references[48] T. Minowa, S. Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel. 74 (1995) 1735–1738.spa
dc.relation.references[49] T.T.-O. Matsui, A. Nishihara, C. Ueda, M. Ohtsuki, N. Ikenaga, T. Suzuki, Liquefaction of micro-algae with iron catalyst, Fuel. 76 (1997) 1043–1048.spa
dc.relation.references[50] P.J. Valdez, M.C. Nelson, H.Y. Wang, X.N. Lin, P.E. Savage, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions, Biomass and Bioenergy. 46 (2012) 317–331.spa
dc.relation.references[51] P.J. Valdez, J.G. Dickinson, P.E. Savage, Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp. and the Influence of Solvents, Energy & Fuels. 25 (2011) 3235–3243.spa
dc.relation.references[52] H. Li, J. Hu, Z. Zhang, H. Wang, F. Ping, C. Zheng, H. Zhang, Q. He, Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil., Bioresour. Technol. 163 (2014) 143–51.spa
dc.relation.references[53] J. Zhang, Y. Zhang, Z. Luo, Hydrothermal Liquefaction of Chlorella pyrenoidosa in Ethanol-water for Bio-crude Production, Energy Procedia. 61 (2014) 1961–1964.spa
dc.relation.references[54] D.R. Vardon, B.K. Sharma, J. Scott, G. Yu, Z. Wang, L. Schideman, Y. Zhang, T.J. Strathmann, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge., Bioresour. Technol. 102 (2011) 8295–303.spa
dc.relation.references[55] B. Patel, K. Hellgardt, Hydrothermal upgrading of algae paste in a continuous flow reactor, Bioresour. Technol. 191 (2015) 460–468.spa
dc.relation.references[56] P. Duan, B. Wang, Y. Xu, Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae, Bioresour. Technol. 186 (2015) 58–66.spa
dc.relation.references[57] D. López Barreiro, C. Samorì, G. Terranella, U. Hornung, A. Kruse, W. Prins, Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction., Bioresour. Technol. 174C (2014) 256–265.spa
dc.relation.references[58] N. Neveux, A.K.L. Yuen, C. Jazrawi, Y. He, M. Magnusson, B.S. Haynes, A.F. Masters, A. Montoya, N.A. Paul, T. Maschmeyer, R. de Nys, Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction, Algal Res. 6 (2014) 22–31.spa
dc.relation.references[59] S. Leow, J.R. Witter, D.R. Vardon, B.K. Sharma, J.S. Guest, T.J. Strathmann, Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition, Green Chem. 17 (2015) 3584–3599.spa
dc.relation.references[60] E.U. Franck, Fluids at high pressures and temperatures, Pure Appl. Chem. 59 (1987) 25.spa
dc.relation.references[61] C. Jazrawi, P. Biller, Y. He, A. Montoya, A.B. Ross, T. Maschmeyer, B.S. Haynes, Two-stage hydrothermal liquefaction of a high-protein microalga, Algal Res. 8 (2015) 15–22.spa
dc.relation.references[62] Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, J. Tong, Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake, Energy. 35 (2010) 5406–5411.spa
dc.relation.references[63] J. Li, G. Wang, Z. Wang, L. Zhang, C. Wang, Z. Yang, Conversion of Enteromorpha prolifera to high-quality liquid oil via deoxy-liquefaction, J. Anal. Appl. Pyrolysis. 104 (2013) 494–501.spa
dc.relation.references[64] S.S. Toor, H. Reddy, S. Deng, J. Hoffmann, D. Spangsmark, L.B. Madsen, J.B. Holm-Nielsen, L.A. Rosendahl, Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions., Bioresour. Technol. 131 (2013) 413–9.spa
dc.relation.references[65] B.E.-O. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation., Bioresour. Technol. 174C (2014) 212–221.spa
dc.relation.references[66] Z. Li, P.E. Savage, Feedstocks for fuels and chemicals from algae: Treatment of crude bio-oil over HZSM-5, Algal Res. 2 (2013) 154–163.spa
dc.relation.references[67] P. Duan, X. Bai, Y. Xu, A. Zhang, F. Wang, L. Zhang, J. Miao, Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water, Fuel. 109 (2013) 225–233.spa
dc.relation.references[68] C. Gai, Y. Zhang, W.-T. Chen, P. Zhang, Y. Dong, An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis, Energy Convers. Manag. 96 (2015) 330–339.spa
dc.relation.references[69] H. Huang, X. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991–998.spa
dc.relation.references[70] D.C. Hietala, C.M. Godwin, B.J. Cardinale, P.E. Savage, The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction, Appl. Energy. (2019) 714–728.spa
dc.relation.references[71] Y. Huang, Y. Chen, J. Xie, H. Liu, X. Yin, C. Wu, Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp., Fuel. 183 (2016) 9–19.spa
dc.relation.references[72] K.P.R. Dandamudi, T. Muppaneni, J.S. Markovski, P. Lammers, S. Deng, Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions, Biomass and Bioenergy. 120 (2019) 224–228.spa
dc.relation.references[73] Y. Li, S. Leow, A.C. Fedders, B.K. Sharma, J.S. Guest, T.J. Strathmann, Quantitative multiphase model for hydrothermal liquefaction of algal biomass, Green Chem. 19 (2017) 1163–1174.spa
dc.relation.references[74] D.C. Hietala, C.K. Koss, A. Narwani, A.R. Lashaway, C.M. Godwin, B.J. Cardinale, P.E. Savage, Influence of biodiversity, biochemical composition, and species identity on the quality of biomass and biocrude oil produced via hydrothermal liquefaction, Algal Res. 26 (2017) 203–214.spa
dc.relation.references[75] W. Song, S. Wang, Y. Guo, D. Xu, Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass: Influence of process variables and their interactions on the product distributions, Int. J. Hydrogen Energy. 42 (2017) 20361–20374.spa
dc.relation.references[76] C. Gai, Y. Zhang, W.-T. Chen, P. Zhang, Y. Dong, Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa, RSC Adv. 4 (2014) 16958–16967.spa
dc.relation.references[77] D. Xu, G. Lin, S. Guo, S. Wang, Y. Guo, Z. Jing, Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review, Renew. Sustain. Energy Rev. 97 (2018) 103–118.spa
dc.relation.references[78] S. Xiu, A. Shahbazi, Bio-oil production and upgrading research: A review, Renew. Sustain. Energy Rev. 16 (2012) 4406–4414.spa
dc.relation.references[79] R. Shakya, J. Whelen, S. Adhikari, R. Mahadevan, S. Neupane, Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae, Algal Res. 12 (2015) 80–90.spa
dc.relation.references[80] R. Shakya, S. Adhikari, R. Mahadevan, S.R. Shanmugam, H. Nam, E.B. Hassan, T.A. Dempster, Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties, Bioresour. Technol. 243 (2017) 1112–1120.spa
dc.relation.references[81] S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel. 81 (2002) 1051–1063.spa
dc.relation.references[82] M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem. 28 (1956) 350–356.spa
dc.relation.references[83] Y.S. Cheng, Y. Zheng, J.S. VanderGheynst, Rapid quantitative analysis of lipids using a colorimetric method in a microplate format, Lipids. 46 (2011) 95–103.spa
dc.relation.references[84] T.K. Vo, S.-S. Kim, H.V. Ly, E.Y. Lee, C.-G. Lee, J. Kim, A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp., Bioresour. Technol. 241 (2017) 610–619.spa
dc.relation.references[85] T.K. Vo, O.K. Lee, E.Y. Lee, C.H. Kim, J.-W. Seo, J. Kim, S.-S. Kim, Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101, Chem. Eng. J. 306 (2016) 763–771.spa
dc.relation.references[86] X. Bai, P. Duan, Y. Xu, A. Zhang, P.E. Savage, Hydrothermal catalytic processing of pretreated algal oil: A catalyst screening study, Fuel. 120 (2014) 141–149.spa
dc.relation.references[87] Y.-P. Xu, P.-G. Duan, F. Wang, Q.-Q. Guan, Liquid fuel generation from algal biomass via a two-step process: Effect of feedstocks, Biotechnol. Biofuels. 11 (2018).spa
dc.relation.references[88] ASTM, ASTM International Designation: Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate, ASTM Int. D6751-19 (2019) 1–10.spa
dc.relation.references[89] T.M. Brown, P. Duan, P.E. Savage, Hydrothermal Liquefaction and Gasification of Nannochloropsis sp., Energy & Fuels. 24 (2010) 3639–3646.spa
dc.relation.references[90] R.C. Selley, S.A. Sonnenberg, Chapter 2 - The Physical and Chemical Properties of Petroleum, in: R.C. Selley, S.A. Sonnenberg (Eds.), Elem. Pet. Geol., Third Edit, Academic Press, Boston, 2015: pp. 13–39.spa
dc.relation.references[91] F. Obeid, T. Chu Van, R. Brown, T. Rainey, Nitrogen and sulphur in algal biocrude: A review of the HTL process, upgrading, engine performance and emissions, Energy Convers. Manag. 181 (2019) 105–119.spa
dc.relation.references[92] S. Oh, H.S. Choi, U.-J. Kim, I.-G. Choi, J.W. Choi, Storage performance of bio-oil after hydrodeoxygenative upgrading with noble metal catalysts, Fuel. 182 (2016) 154–160.spa
dc.relation.references[93] Z. Yang, A. Kumar, R.L. Huhnke, Review of recent developments to improve storage and transportation stability of bio-oil, Renew. Sustain. Energy Rev. 50 (2015) 859–870.spa
dc.relation.references[94] Z. He, D. Xu, L. Liu, Y. Wang, S. Wang, Y. Guo, Z. Jing, Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae, Algal Res. 33 (2018) 8–15.spa
dc.relation.references[95] B.P. Hollebone, Oil Physical Properties: Measurement and Correlation, Handb. Oil Spill Sci. Technol. (2015) 37–50.spa
dc.relation.references[96] D. Chen, J. Zhou, Q. Zhang, X. Zhu, Evaluation methods and research progresses in bio-oil storage stability, Renew. Sustain. Energy Rev. 40 (2014) 69–79.spa
dc.relation.references[97] M.S. Haider, D. Castello, K.M. Michalski, T.H. Pedersen, L.A. Rosendahl, Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts, Energies. 11 (2018).spa
dc.relation.references[98] D. López Barreiro, F.J. Martin-Martinez, C. Torri, W. Prins, M.J. Buehler, Molecular characterization and atomistic model of biocrude oils from hydrothermal liquefaction of microalgae, Algal Res. 35 (2018) 262–273.spa
dc.relation.references[99] L. Gouveia, A.C. Oliveira, Microalgae as a raw material for biofuels production, J Ind Microbiol Biot. 36 (2009).spa
dc.relation.references[100] S. Jones, Y. Zhu, D. Anderson, R.T. Hallen, D.C. Elliott, Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons : Whole Algae Hydrothermal Liquefaction and Upgrading, 2014.spa
dc.relation.references[101] J. Wagner, R. Bransgrove, T.A. Beacham, M.J. Allen, K. Meixner, B. Drosg, V.P. Ting, C.J. Chuck, Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria, Bioresour. Technol. 207 (2016) 166–174.spa
dc.relation.references[102] G. Teri, L. Luo, P.E. Savage, Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures, Energy & Fuels. 28 (2014) 7501–7509.spa
dc.relation.references[103] J. Lu, Z. Liu, Y. Zhang, P.E. Savage, Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin, ACS Sustain. Chem. Eng. 6 (2018) 14501–14509.spa
dc.relation.references[104] L. Sheng, X. Wang, X. Yang, Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds, Bioresour. Technol. 247 (2017) 14–20.spa
dc.relation.references[105] P.J. Valdez, P.E. Savage, A reaction network for the hydrothermal liquefaction of Nannochloropsis sp., Algal Res. 2 (2013) 416–425.spa
dc.relation.references[106] J.D. Sheehan, P.E. Savage, Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction, Bioresour. Technol. 239 (2017) 144–150.spa
dc.relation.references[107] D.C. Hietala, J.L. Faeth, P.E. Savage, A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp., Bioresour. Technol. 214 (2016) 102–111.spa
dc.relation.references[108] Z. Liu, H. Li, J. Zeng, M. Liu, Y. Zhang, Z. Liu, Influence of Fe/HZSM-5 catalyst on elemental distribution and product properties during hydrothermal liquefaction of Nannochloropsis sp., Algal Res. 35 (2018) 1–9.spa
dc.relation.references[109] H.K. Reddy, T. Muppaneni, S. Ponnusamy, N. Sudasinghe, A. Pegallapati, T. Selvaratnam, M. Seger, B. Dungan, N. Nirmalakhandan, T. Schaub, F.O. Holguin, P. Lammers, W. Voorhies, S. Deng, Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp., Appl. Energy. 165 (2016) 943–951.spa
dc.relation.references[110] S. Chaudry, P.A. Bahri, N.R. Moheimani, Pathways of processing of wet microalgae for liquid fuel production: A critical review, Renew. Sustain. Energy Rev. 52 (2015) 1240–1250. https://doi.org/10.1016/j.rser.2015.08.005.spa
dc.relation.references[111] H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production: Progress and perspectives, Renew. Sustain. Energy Rev. 47 (2015) 427–437.spa
dc.relation.references[112] T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sustain. Energy Rev. 55 (2016) 909–941.spa
dc.relation.references[113] U. Jena, K.C. Das, Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae, Energy & Fuels. 25 (2011) 5472–5482.spa
dc.relation.references[114] A. Palomino, L.C. Montenegro-Ruíz, R.D. Godoy-Silva, Evaluation of yield-predictive models of biocrude from hydrothermal liquefaction of microalgae, Algal Res. 44 (2019).spa
dc.relation.references[115] Y. Chen, Y. Huang, J. Xie, X. Yin, C. Wu, Hydrothermal reaction of phenylalanine as a model compound of algal protein, J. Fuel Chem. Technol. 42 (2014) 61–67.spa
dc.relation.references[116] L. Luo, J.D. Sheehan, L. Dai, P.E. Savage, Products and Kinetics for Isothermal Hydrothermal Liquefaction of Soy Protein Concentrate, ACS Sustain. Chem. Eng. 4 (2016) 2725–2733.spa
dc.relation.references[117] E. Barbarino, S.O. Lourenço, An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae, J. Appl. Phycol. 17 (2005) 447–460.spa
dc.relation.references[118] C. Safi, M. Charton, O. Pignolet, F. Silvestre, C. Vaca-Garcia, P.-Y. Pontalier, Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors, J. Appl. Phycol. 25 (2013) 523–529.spa
dc.relation.references[119] M. Bjarnadóttir, B.V. Aðalbjörnsson, A. Nilsson, R. Slizyte, M.Y. Roleda, G.Ó. Hreggviðsson, Ó.H. Friðjónsson, R. Jónsdóttir, Palmaria palmata as an alternative protein source: enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor, J. Appl. Phycol. 30 (2018) 2061–2070.spa
dc.relation.references[120] J. Cheng, R. Huang, T. Yu, T. Li, J. Zhou, K. Cen, Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction., Bioresour. Technol. 151 (2014) 415–8.spa
dc.relation.references[121] A.R.K. Gollakota, N. Kishore, S. Gu, A review on hydrothermal liquefaction of biomass, Renew. Sustain. Energy Rev. (2016) 1–15.spa
dc.relation.references[122] A. Galadima, O. Muraza, Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts, Renew. Sustain. Energy Rev. 81 (2018) 1037–1048.spa
dc.relation.references[123] K.O. Albrecht, Y. Zhu, A.J. Schmidt, J.M. Billing, T.R. Hart, S.B. Jones, G. Maupin, R. Hallen, T. Ahrens, D. Anderson, Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors, Algal Res. 14 (2016) 17–27.spa
dc.relation.references[124] D. Elliott, T. Hart, A. Schmidt, G. Neuenschwander, L. Rotness, M. Olarte, A. Zacher, K. Albrecht, R. Hallen, J. Holladay, Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor, Algal Res. 2 (2013) 445–454.spa
dc.relation.references[125] D.C. Elliott, T.R. Hart, G.G. Neuenschwander, L.J. Rotness, G. Roesijadi, A.H. Zacher, J.K. Magnuson, Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors, ACS Sustain. Chem. Eng. 2 (2013) 207–215.spa
dc.relation.references[126] Y.. Chen, N.. Zhao, Y.. b Wu, K.. Wu, X.. Wu, J.. Liu, M.. Yang, Distributions of organic compounds to the products from hydrothermal liquefaction of microalgae, Environ. Prog. Sustain. Energy. 36 (2017) 259–268.spa
dc.relation.references[127] S. Czernik, D.K. Johnson, S. Black, Stability of wood fast pyrolysis oil, Biomass and Bioenergy. 7 (1994) 187–192.spa
dc.relation.references[128] R.N. Hilten, K.C. Das, Comparison of three accelerated aging procedures to assess bio-oil stability, Fuel. 89 (2010) 2741–2749.spa
dc.relation.references[129] O.D. Mante, F.A. Agblevor, Storage stability of biocrude oils from fast pyrolysis of poultry litter, Waste Manag. 32 (2012) 67–76.spa
dc.relation.references[130] J. Kosinkova, J.A. Ramirez, Z.D. Ristovski, R.J. Brown, T.J. Rainey, Physical and Chemical Stability of Bagasse Bio-crude from Liquefaction Stored in Real Conditions, Energy & Fuels. (2016).spa
dc.relation.references[131] T.-S. Kim, J.-Y. Kim, K.-H. Kim, S. Lee, D. Choi, I.-G. Choi, J.W. Choi, The effect of storage duration on bio-oil properties, J. Anal. Appl. Pyrolysis. 95 (2012) 118–125.spa
dc.relation.references[132] J.P. Diebold, A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils, NREL, 2000.spa
dc.relation.references[133] M.. Boucher, A. Chaala, H. Pakdel, C. Roy, Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase, Biomass and Bioenergy. 19 (2000) 351–361.spa
dc.relation.references[134] H. Li, S. Xia, Y. Li, P. Ma, C. Zhao, Stability evaluation of fast pyrolysis oil from rice straw, Chem. Eng. Sci. 135 (2015) 258–265.spa
dc.relation.references[135] A. Oasmaa, J. Korhonen, E. Kuoppala, An Approach for Stability Measurement of Wood-Based Fast Pyrolysis Bio-Oils, Energy & Fuels. 25 (2011) 3307–3313.spa
dc.relation.references[136] A. Oasmaa, E. Kuoppala, Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel, Energy and Fuels. 17 (2003) 1075–1084.spa
dc.relation.references[137] J. Meng, A. Moore, D.C. Tilotta, S.S. Kelley, S. Adhikari, S. Park, Thermal and Storage Stability of Bio-Oil from Pyrolysis of Torrefied Wood, Energy & Fuels. 29 (2015) 5117–5126.spa
dc.relation.references[138] L. Zhu, K. Li, H. Ding, X. Zhu, Studying on properties of bio-oil by adding blended additive during aging, Fuel. 211 (2018) 704–711.spa
dc.relation.references[139] S. Raikova, H. Smith-Baedorf, R. Bransgrove, O. Barlow, F. Santomauro, J.L. Wagner, M.J. Allen, C.G. Bryan, D. Sapsford, C.J. Chuck, Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage, Fuel Process. Technol. 142 (2016) 219–227.spa
dc.relation.references[140] J.-H. Yang, H.-Y. Shin, Y.-J. Ryu, C.-G. Lee, Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery, J. Ind. Eng. Chem. 68 (2018) 267–273.spa
dc.relation.references[141] Y. Dote, S. Sawayama, S. Inoue, T. Minowa, S. Yokoyama, Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction, Fuel. 73 (1994) 1855–1857.spa
dc.relation.references[142] Y. He, X. Liang, C. Jazrawi, A. Montoya, A. Yuen, A.J. Cole, N. Neveux, N.A. Paul, R. de Nys, T. Maschmeyer, B.S. Haynes, Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents, Algal Res. 17 (2016) 185–195.spa
dc.relation.references[143] S. Ren, X.P. Ye, Stability of crude bio-oil and its water-extracted fractions, J. Anal. Appl. Pyrolysis. 132 (2018) 151–162.spa
dc.relation.references[144] M. Garcìa-Pèrez, A. Chaala, H. Pakdel, D. Kretschmer, D. Rodrigue, C. Roy, Evaluation of the Influence of Stainless Steel and Copper on the Aging Process of Bio-Oil, Energy & Fuels. 20 (2006) 786–795.spa
dc.relation.references[145] S. Liu, M. Chen, Q. Hu, J. Wang, L. Kong, The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil, Bioresour. Technol. 129 (2013) 381–386.spa
dc.relation.references[146] T.N. Trinh, P.A. Jensen, K. Dam-Johansen, N.O. Knudsen, H.R. Sørensen, S. Hvilsted, Comparison of Lignin, Macroalgae, Wood, and Straw Fast Pyrolysis, Energy & Fuels. 27 (2013) 1399–1409.spa
dc.relation.references[147] H. Jo, D. Verma, J. Kim, Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol, Fuel. 232 (2018) 610–619.spa
dc.relation.references[148] H. Hwang, J.-H. Lee, J. Moon, U.-J. Kim, I.-G. Choi, J.W. Choi, Influence of K and Mg Concentration on the Storage Stability of Bio-Oil, ACS Sustain. Chem. Eng. 4 (2016) 4346–4353.spa
dc.relation.references[149] J.D. Adjaye, R.K. Sharma, N.N. Bakhshi, Characterization and stability analysis of wood-derived bio-oil, Fuel Process. Technol. 31 (1992) 241–256.spa
dc.relation.references[150] H. Talbi, G. Monard, M. Loos, D. Billaud, Theoretical study of indole polymerization, J. Mol. Struct. THEOCHEM. 434 (1998) 129–134.spa
dc.relation.references[151] F. Yu, S. Deng, P. Chen, Y. Liu, Y. Wan, A. Olson, D. Kittelson, R. Ruan, Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover, Appl. Biochem. Biotechnol. 137 (2007) 957–970.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalResponse surface analysiseng
dc.subject.proposalAnálisis de superficie de respuestaspa
dc.subject.proposalCombined modeleng
dc.subject.proposalModelo combinadospa
dc.subject.proposalRegresión multivariablespa
dc.subject.proposalMultivariable regressioneng
dc.subject.proposalRendimientospa
dc.subject.proposalYieldeng
dc.subject.proposalElemental compositioneng
dc.subject.proposalComposición elementalspa
dc.subject.proposalEnvejecimientospa
dc.subject.proposalAgeingeng
dc.subject.proposalStorage stabilityeng
dc.subject.proposalEstabilidad de almacenamientospa
dc.titleMetabolic manipulation as a strategy for the improvement of the biocrude obtained by hydrothermal liquefaction of microalgaespa
dc.title.alternativeManipulación metabólica como estrategia para el mejoramiento del biocrudo obtenido por licuefacción hidrotermal de microalgasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
1130668980.2020.pdf
Tamaño:
3.12 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
1130668980.2020.Table A 6.xlsx
Tamaño:
25.99 KB
Formato:
Microsoft Excel XML
Cargando...
Miniatura
Nombre:
1130668980.2020.Table B 2.xlsx
Tamaño:
66.17 KB
Formato:
Microsoft Excel XML
Cargando...
Miniatura
Nombre:
1130668980.2020.Table C1 and Table C 2.xlsx
Tamaño:
124.57 KB
Formato:
Microsoft Excel XML

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: