Manejo de la congestión de potencia en zonas con alta penetración de energía renovable en Colombia para mitigar restricciones operativas
dc.contributor.advisor | Rivera Rodríguez, Sergio Raúl | spa |
dc.contributor.advisor | Arango Angarita, Dario Mateo | spa |
dc.contributor.author | Ortiz Rosario, Daniel Francisco | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000050 | |
dc.date.accessioned | 2025-07-10T18:51:33Z | |
dc.date.available | 2025-07-10T18:51:33Z | |
dc.date.issued | 2025-06-30 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El presente documento aborda el manejo de la congestión de potencia en zonas con alta penetración de fuentes no convencionales de energía renovable (FNCER) en Colombia, con el objetivo de mitigar las restricciones operativas que comprometen la estabilidad y eficiencia del sistema eléctrico. El trabajo se centra en dos subáreas críticas del Caribe colombiano: GCM (Guajira-Cesar-Magdalena) y Atlántico, donde la creciente demanda y la limitada capacidad de infraestructura han generado cuellos de botella que dificultan la integración efectiva de proyectos solares y eólicos. Para afrontar este reto, se emplean algoritmos de optimización metaheurísticos, específicamente el Particle Swarm Optimization (PSO) y el Algoritmo Genético (GA), con el fin de realizar un despacho óptimo de generación. Además, se incorpora el modelado de incertidumbre asociado a la generación renovable mediante distribuciones Weibull y Lognormal, lo que permite una representación más realista del comportamiento de las FNCER. La investigación incluye la construcción de modelos eléctricos en el software DIgSILENT PowerFactory, la evaluación de condiciones base y de contingencia para los años 2025 y 2033, y la aplicación de técnicas de optimización para reducir sobrecargas, mejorar perfiles de tensión y minimizar costos de despacho. Los resultados mostraron reducciones de cargabilidad superiores al 20 % en elementos críticos, mejor estabilidad de tensión y un despacho más eficiente desde el punto de vista económico. Además, se realizó una comparación entre PSO y GA, destacando que PSO tiende a converger más rápido, mientras que GA ofrece una exploración más diversa del espacio de soluciones. (Texto tomado de la fuente). | spa |
dc.description.abstract | The present research explores the management of power congestion in areas with high penetration of non-conventional renewable energy sources (NCRES) in Colombia, aiming to mitigate operational constraints that affect the stability and efficiency of the power system. The study focuses on two critical subareas of the Colombian Caribbean region—GCM (Guajira-Cesar-Magdalena) and Atlántico—where growing demand and limited transmission infrastructure have created bottlenecks hindering the effective integration of solar and wind energy projects. To tackle this challenge, the research employs metaheuristic optimization algorithms, specifically Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), to achieve an optimal redispatch of power generation. Additionally, uncertainty modeling of renewable generation is incorporated using Weibull and Lognormal distributions, providing a more realistic representation of NCRES behavior. The study involves the development of power system models in DIgSILENT PowerFactory, analysis of base and contingency scenarios for the years 2025 and 2033, and the application of optimization techniques to reduce line and transformer overloads, improve voltage profiles, and minimize dispatch costs. The results showed loading reductions above 20% in critical elements, improved voltage stability, and a more economically efficient dispatch. Additionally, a comparison between PSO and GA was carried out, highlighting that PSO tends to converge more quickly, while GA offers a more diverse exploration of the solution space. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.format.extent | 88 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88324 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 1–10, 2014. | spa |
dc.relation.references | T. Kishore and S. K. Singal, “Optimal economic planning of power transmission lines: A review,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 949–974, 2014. | spa |
dc.relation.references | R. Shah, N. Mithulananthan, R. Bansal, and V. Ramachandaramurthy, “A review of key power system stability challenges for large-scale pv integration,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 1423–1436, 2015. | spa |
dc.relation.references | J. S. Kumar, A. Immanuel, V. U. Reddy, V. R. Kanth, and G. V. Marutheswar, “Location of unified power flow controller for congestion management,” e Manager’s Journal on Electrical Engineering, vol. 5, no. 1, p. 9, 2011. | spa |
dc.relation.references | A. Kumar, S. Srivastava, and S. Singh, “Congestion management in competitive power market: A bibliographical survey,” Electric Power Systems Research, vol. 76, no. 1-3, pp. 153–164, 2005 | spa |
dc.relation.references | A. Pillay, S. P. Karthikeyan, and D. Kothari, “Congestion management in power systems–a review,” International Journal of Electrical Power & Energy Systems, vol. 70, pp. 83–90, 2015. | spa |
dc.relation.references | J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization,” IEEE Transactions on industrial electronics, vol. 58, no. 1, pp. 158– 172, 2010. | spa |
dc.relation.references | A. Narain, S. Srivastava, and S. Singh, “Congestion management approaches in restructured power system: Key issues and challenges,” The Electricity Journal, vol. 33, no. 3, p. 106715, 2020. | spa |
dc.relation.references | M. Bodenstein, I. Liere-Netheler, F. Schuldt, K. von Maydell, A. K. Hartmann, and C. Agert, “Optimized power flow control to minimize congestion in a modern power system,” Energies, vol. 16, no. 12, p. 4594, 2023 | spa |
dc.relation.references | S. Colombia, “Portafolio 2024,” 2024. Accedido el 27 de enero de 2025 | spa |
dc.relation.references | Unidad de Planeación Minero Energética, “Plan maestro de modernización y expansión del sistema de transmisión nacional: Tomo ii - plan de expansión de transmisión 2024-2038,” 2024 | spa |
dc.relation.references | G. Papazoglou and P. Biskas, “Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem,” Energies, vol. 16, no. 3, p. 1152, 2023. | spa |
dc.relation.references | S. Namilakonda and Y. Guduri, “Chaotic darwinian particle swarm optimization for real-time hierarchical congestion management of power system integrated with renewable energy sources,” International Journal of Electrical Power & Energy Systems, vol. 128, p. 106632, 2021. | spa |
dc.relation.references | E. I. Ogunwole and S. Krishnamurthy, “Transmission congestion management using generator sensitivity factors for active and reactive power rescheduling using particle swarm optimization algorithm,” IEEE Access, vol. 10, pp. 122882–122900, 2022. | spa |
dc.relation.references | L. A. Fernandez-Jimenez, C. Monteiro, and I. J. Ramirez-Rosado, “Short-term probabilistic forecasting models using beta distributions for photovoltaic plants,” Energy Reports, vol. 9, no. Supplement 3, pp. 495–502, 2023. | spa |
dc.relation.references | R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties, vol. 29. 2014. | spa |
dc.relation.references | R. Shah, N. Mithulananthan, R. Bansal, and V. Ramachandaramurthy, “A review of key power system stability challenges for large-scale pv integration,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 1423–1436, 2015. | spa |
dc.relation.references | A. Pillay, S. P. Karthikeyan, and D. Kothari, “Congestion management in power systems–a review,” International Journal of Electrical Power & Energy Systems, vol. 70, pp. 83–90, 2015. | spa |
dc.relation.references | S. R. Ghori, R. Upputuri, and N. Kumar, “Congestion management in power system— a review,” in Lecture Notes in Electrical Engineering, pp. 471–481, Springer, 2021. | spa |
dc.relation.references | E. Dehnavi, S. Afsharnia, A. A. S. Akmal, and M. Moeini-Aghtaie, “A novel congestion management method through power system partitioning,” Electric Power Systems Research, vol. 189, p. 106683, 2020. | spa |
dc.relation.references | F. Essallah, D. Said, M. Boudour, and H. Bentarzi, “Review on metaheuristics algorithms and their application to power systems,” Energy Reports, vol. 7, pp. 2774– 2790, 2021. | spa |
dc.relation.references | D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft computing, vol. 22, no. 2, pp. 387–408, 2018. | spa |
dc.relation.references | J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, 2004. | spa |
dc.relation.references | X. Li, “Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), (Seattle, WA, USA), pp. 117–128, June 2004. | spa |
dc.relation.references | A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature review,” in 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), pp. 380–384, IEEE, 2019. | spa |
dc.relation.references | XM, “Reporte de líneas del sistema de transmisión nacional (stn).” https:// paratec.xm.com.co/reportes/lineas, n.d. Paratec - Sistema de Información Eléctrico Colombiano | spa |
dc.relation.references | Ministerio de Minas y Energía de Colombia, “Plan indicativo de expansión de la generación 2023-2037,” tech. rep., República de Colombia, Ministerio de Minas y Energía, Bogotá D.C., Colombia, octubre 2023. Documento oficial del gobierno colombiano sobre la planeación del sector eléctrico | spa |
dc.relation.references | Unidad de Planeación Minero Energética, “Plan de expansión de transmisión 2022- 2036,” 2022. | spa |
dc.relation.references | UPME, “Proyecto primer paquete obras urgentes - 2024,” 2024 | spa |
dc.relation.references | UPME, “Proyección de la demanda de energía eléctrica y potencia máxima 2024- 2038,” 2024. | spa |
dc.relation.references | Unidad de Planeación Minero Energética (UPME), “Proceso de conexiones,” n.d | spa |
dc.relation.references | XM S.A. E.S.P., “Informe de planeamiento operativo de mediano plazo (ipoemp),” tech. rep., Operador del Sistema Interconectado Nacional – XM, Bogotá, Colombia, 2023. | spa |
dc.relation.references | Comisión de Regulación de Energía y Gas (CREG), “Resolución CREG 025 de 1995,” 1995. Código de Redes de Energía Eléctrica | spa |
dc.relation.references | Unidad de Planeación Minero Energética (UPME), “Informe de Asignación Final por Áreas – Atlántico 2,” 2023. | spa |
dc.relation.references | A. Nitola, J. Marin, and S. Rivera, “Scheduling of a microgrid with high penetration of electric vehicles considering congestion and operations costs,” Vehicles, vol. 3, no. 3, pp. 578–594, 2021. | spa |
dc.relation.references | J. Ar´evalo, F. Santos, and S. Rivera, “Application of analytical uncertainty costs of solar, wind and electric vehicles in optimal power dispatch,” Revista Ingenier´ıa, 2017. Received: 08/03/2017. Modified: 05/06/2017. Accepted: 07/07/2017 | spa |
dc.relation.references | I. de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas (IPSE), “Informe de potenciales energéticos,” 2024 | spa |
dc.relation.references | J.-R. Won and Y.-M. Park, “Economic dispatch solutions with piecewise quadratic cost functions using improved genetic algorithm,” International journal of electrical power & energy systems, vol. 25, no. 5, pp. 355–361, 2003. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.proposal | Congestión de potencia | spa |
dc.subject.proposal | Fuentes no convencionales de energía renovable (FNCER) | spa |
dc.subject.proposal | Optimización metaheurística | spa |
dc.subject.proposal | Particle Swarm Optimization (PSO) | eng |
dc.subject.proposal | Restricciones operativas | spa |
dc.subject.proposal | Power congestion | eng |
dc.subject.proposal | Non-conventional renewable energy sources (NCRES) | eng |
dc.subject.proposal | Metaheuristic optimization | eng |
dc.subject.proposal | Operational constraints | eng |
dc.subject.unesco | Abastecimiento de energía | spa |
dc.subject.unesco | Energy supply | eng |
dc.subject.unesco | Economía de la energía | spa |
dc.subject.unesco | Energy economics | eng |
dc.subject.unesco | Ingeniería de la energía solar | spa |
dc.subject.unesco | Solar power engineering | eng |
dc.subject.unesco | Política energética | spa |
dc.subject.unesco | Energy policy | eng |
dc.title | Manejo de la congestión de potencia en zonas con alta penetración de energía renovable en Colombia para mitigar restricciones operativas | spa |
dc.title.translated | Congestion management in areas with high renewable energy penetration in Colombia to mitigate operational constraints | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015439326.2025.pdf
- Tamaño:
- 6.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: