Análisis fractal de las brechas hidrotermales en ambos cinturones esmeraldíferos : Mecanismos de brechamiento y evolución

dc.contributor.advisorKammer, Andreasspa
dc.contributor.authorBetancur Acevedo, Camilo Andresspa
dc.contributor.cvlacBetancur Acevedo, Camilo Andrés [0000108780]spa
dc.contributor.googlescholarBetancur Acevedo, Camilo [https://scholar.google.com/citations?user=2vWYTUcAAAAJ]spa
dc.contributor.orcidBetancur Acevedo, Camilo Andrés [0000-0001-7325-2223]spa
dc.contributor.researcherCDTEC
dc.contributor.researchgateBetancur Acevedo, Camilo Andrés [https://www.researchgate.net/profile/Camilo-Betancur-Acevedo]spa
dc.contributor.researchgroupGrupo de Geología Estructural y Tectónica Aplicadaspa
dc.contributor.researchgroupCentro de Desarrollo Tecnológico de la Esmeralda Colombiana CDTECspa
dc.date.accessioned2025-07-17T00:37:51Z
dc.date.available2025-07-17T00:37:51Z
dc.date.issued2025-07-16
dc.descriptionilustraciones, diagramas, fotografías, mapasspa
dc.description.abstractSe determinaron los mecanismos que dieron lugar al brechamiento que permitió la migración de los fluidos hidrotermales generadores de las esmeraldas colombianas en ambos cinturones esmeraldíferos. A partir del desarrollo de un análisis petrográfico se observaron los diferentes eventos hidrotermales que actuaron en estos cinturones. Posteriormente, se hizo un análisis de espectroscopía Raman en la fase gaseosa presente en las inclusiones fluidas, para determinar las bandas que componen el doblete de Fermi en minerales de las diferentes etapas hidrotermales, con la intención de calcular un acercamiento a la presión a la que fue sometida la roca en dichos eventos. Finalmente, partiendo de un análisis fractal de las brechas presentes en la zona, se determinaron los mecanismos de brechamiento desarrollados en ambos cinturones esmeraldíferos a lo largo de la historia hidrotermal. Aunque ambos cinturones presentaron eventos hidrotermales similares, el cinturón oriental presenta en general presiones más bajas para los eventos hidrotermales en comparación con el occidental. Además, en este cinturón, los mecanismos de brechamiento muestran un evento corrosivo de mayor intensidad y con una energía mecánica menor que en el occidental. Por último, la presencia de procesos de fluidización en el cinturón oriental (al igual que en el occidental) sugiere la posibilidad de una migración de clastos predominantemente asistida por fluidos, en lugar de una migración impulsada por halocinesis. (Texto tomado de la fuente).spa
dc.description.abstractThe present study investigated the breccia mechanisms that allowed emerald-bearing hydrothermal fluids to migrate in both emerald belts in Colombia. Three different hydrothermal events were determined using petrographic analysis. Subsequently, Fermi diad bands were obtained by Raman spectroscopy in gaseous inclusions to calculate the pressure of the rock in minerals of those events. Finally, based on a fractal analysis of the breccias present in the area, the brecciation mechanisms developed in both emerald belts throughout hydrothermal history were determined. Although both belts experienced similar hydrothermal events, the eastern belt generally exhibits lower pressures for hydrothermal events compared to the western belt. Moreover, in the eastern belt, brecciation mechanisms indicate a more intense corrosive event with lower mechanical energy than in the western belt. Lastly, the presence of fluidization processes in the eastern belt (as well as in the western belt) suggests the possibility of clast migration predominantly assisted by fluids, rather than migration driven by halokinesis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.methodsLa investigación integró técnicas petrográficas, análisis fractal y espectroscopía Raman para caracterizar las brechas hidrotermales de ambos cinturones esmeraldíferos. Se realizaron observaciones petrográficas en 74 secciones delgadas utilizando microscopios ópticos ZEISS Axio Scope A1 y Olympus BX51, con el fin de establecer la secuencia paragénetica. Posteriormente, se desarrollaron análisis fractales sobre 28 muestras de brechas (16 del cinturón occidental y 12 del oriental), cuantificando más de 3.000 fragmentos en total. Las imágenes fueron procesadas mediante el software ImageJ y los análisis se llevaron a cabo utilizando los métodos de conteo de cajas (Minkowski–Bouligand) y mapeo de distancias euclidianas, automatizados con scripts desarrollados en Matlab. Además, se empleó espectroscopía Raman (Horiba LabRAM HR Evolution) para estudiar inclusiones fluidas gaseosas ricas en CO₂, con el objetivo de calcular el doblete de Fermi y determinar la presión de atrapamiento. Se adquirieron y procesaron más de 550 espectros, aplicando corrección de línea base, análisis de picos y cálculos de presión con herramientas de procesamiento en Matlab.spa
dc.description.researchareaGeología estructuralspa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88353
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAcosta, J., y Ulloa, C. (2001). Geología de la Plancha 208 Villeta. Escala 1:100.000. INGEOMINAS: 83p.spa
dc.relation.referencesAcosta, J. E., & Ulloa, C. (2002). Mapa geológico del Departamento de Cundinamarca, Escala 1:250.000 Memoria explicativa. 94.spa
dc.relation.referencesAltenberger, U., Rojas-Agramonte, Y., Yang, Y., Fernández-Lamus, J., Häger, T., Guenter, C., Gonzalez-Pinzón, A., Charris-Leal, F., & Artel, J. (2022). In Situ U–Th–Pb Dating of Parisite: Implication for the Age of Mineralization of Colombian Emeralds. Minerals, 12(10), 1232. https://doi.org/10.3390/min12101232spa
dc.relation.referencesArdila Roa, J. (2018). Caracterización de los sistemas de migración de fluidos en rocas arcillosas del Cretácico basal en el sector del Guavio (Colombia). Universidad Nacional de Colombia.spa
dc.relation.referencesBarnett, W. (2004). Subsidence breccias in kimberlite pipes - An application of fractal analysis. Lithos, 76(1-4 SPEC. ISS.), 299–316. https://doi.org/10.1016/j.lithos.2004.03.019spa
dc.relation.referencesBaker, P. J., (1975). Projecto de esmeraldas, informe tecnico final, Naciones Unidas-Ingeominas, COL-72/004, 71pspa
dc.relation.referencesBakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23.spa
dc.relation.referencesBérubé, D., & Jébrak, M. (1999). High precision boundary fractal analysis for shape characterization. Computers and Geosciences, 25(9), 1059–1071. https://doi.org/10.1016/S0098-3004(99)00067-9spa
dc.relation.referencesBlenkinsop, T. G. (1991). Cataclasis and processes of particle size reduction. Pure and Applied Geophysics PAGEOPH, 136(1), 59–86. https://doi.org/10.1007/BF00878888spa
dc.relation.referencesBonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., et al. (2001). Scaling of fracture systems in geological media. Rev. Geophys. 39, 347–383. doi:10.1029/1999rg000074spa
dc.relation.referencesBranquet, Y. (1995) Etude structurale de la mine d'émeraude de Coscuez, Cordillère Orientale. Colombie. DEA Géosciences, I.N.P.L., C.R.P.G.-C.N.R.S., Nancy, France, 95 pspa
dc.relation.referencesBranquet, Y. (1999). Etude structurale et métallogénique des gisements d’émeraude de Colombie : contribution à l’histoire tectono-sédimentaire de la Cordillère Orientale de Colombie.spa
dc.relation.referencesBranquet, Y., Cheilletz, A., Cobbold, P. R., Baby, P., Laumonier, B., & Giuliani, G. (2002). Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque-Medina area), Colombia. Journal of South American Earth Sciences, 15(4), 391–407. https://doi.org/10.1016/S0895-9811(02)00063-9spa
dc.relation.referencesBranquet, Y., Cheilletz, A., Giuliani, G., Laumonier, B., & Blanco, O. (1999a). Fluidized hydrothermal breccia in dilatant faults during thrusting: the Columbian emerald deposits. Geological Society Special Publication, 155, 183–195. https://doi.org/10.1144/GSL.SP.1999.155.01.14spa
dc.relation.referencesBranquet, Y., Giuliani, G., Cheilletz, A., & Laumonier, B. (2015). Colombian Emeralds and Evaporites: Tectono-Stratigraphic Significance of a Regional Emerald-Bearing Evaporitic Breccia Level. Mineral Resources in a Sustainable World, Vols 1-5, September, 1291–1294.spa
dc.relation.referencesBranquet, Y., & Laumonier, B. (1996). Evidences of compressive structures in the Muzo and Coscuez emerald deposits , Eastern Cordillera of Colombia. January, 15–18.spa
dc.relation.referencesBranquet, Y., Laumonier, B., Cheilletz, A., & Giuliani, G. (1999b). Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization. Geology, 27(7), 597–600. https://doi.org/10.1130/0091-7613(1999)027<0597:EITECO<2.3.CO;2spa
dc.relation.referencesBudkewitsch, P., Robin, P.Y., 1994. Modelling the evolution of columnar joints. J. Volcanol. Geotherm. Res. 59, 219–239spa
dc.relation.referencesBurke, E. A. J. (2001). Raman microspectrometry of fluid inclusions. Lithos, 55(1–4), 139–158. https://doi.org/10.1016/S0024-4937(00)00043-8spa
dc.relation.referencesBurkhard, M., 1990. Ductile deformation mechanisms in micritic limestones naturally deformed at low temperature 150–3508.In: Knipe, R.J., Rutter, E.H. Eds, Deformation Mechanisms, Rheology and Tectonics. Geol. Soc. Spec. Publ. 54, pp. 241– 257.spa
dc.relation.referencesCazier, E. C., Cooper, M. A., Eaton, S. G., & Pulham, A. J. (1997). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia: Reply. American Association of Petroleum Geologists Bulletin, 81(8), 1332–1338. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865Dspa
dc.relation.referencesCáceres, C. & Etayo–Serna, F. 1969. Memoria explicativa del cuadrángulo L–10 Fusagasugá. Universidad Nacional de Colombia, 50 p. Bogotá.spa
dc.relation.referencesCampbell, C. J., and Bürgl, H., 1965. Section through the Eastern Cordillera of Colombia, South America. Bulletin of the Geological Society of America 76,567 590.spa
dc.relation.referencesChavez Gil, T., Romero Ordóñez, F., Rubiano L., M & Schultz Güttler, R. (1997). Características mineralógicas y petrológicas de la euclasa del distrito minero de chivor, colombia. Geología Colombiana. 22, pgs. 171-187, 15 Figs.,2 Fotos, 6 Microfotografias, Santate de Bogota.spa
dc.relation.referencesCheilletz, A., Feraud, G., Giuliani, G., & Rodriguez, C. T. (1994). Time-pressure and temperature constraints on the formation of Colombian emeralds: an 40Ar/ 39Ar laser microprobe and fluid inclusion study. Economic Geology, 89(2), 361–380. https://doi.org/10.2113/gsecongeo.89.2.361spa
dc.relation.referencesCheilletz, A., Giuliani, G. (1995) The formation of emeralds in a sedimentary basin: the key-role of alkaline brines and thermochemical sulphate reduction, European Union of Geosciences 8, Strasbourg, 9–12 April 1995, Abstr. Terra Nova 7:203spa
dc.relation.referencesCheilletz, A., and Giuliani, G., 1996, The genesis of Colombian emeralds: A restatement: Mineralium Deposita, v. 3 I, p. 359-364spa
dc.relation.referencesClark, C., & James, P. (2003). Hydrothermal brecciation due to fluid pressure fluctuations: Examples from the Olary Domain, South Australia. Tectonophysics, 366(3–4), 187-206. https://doi.org/10.1016/S0040-1951(03)00095-7spa
dc.relation.referencesCortes, R., & De la Espriella, R. (1983). Contribución al conocimiento del Paleozoico superior en la sección Quetame-Villavicencio. Boletín De Geología, 16(30), 83–101. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/7163spa
dc.relation.referencesCox, S.F., and Munroe, S.M., 2016, Breccia formation by particle fuidization in fault zones: Implications for transitory, rupture-controlled fuid fow regimes in hydrothermal systems: American Journal of Science, v. 316, no. 3, p. 241–278, https://doi.org/10.2475/03.2016.02spa
dc.relation.referencesDe Porta, J. (1961). Algunos problemas estratigráfico-faunísticos de los Vertebrados en Colombia. Boletín De Geología, (7), 83–104. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/8702spa
dc.relation.referencesDellino, P., & La Volpe, L. (1996). Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari ( Aeolian islands, Italy). Journal of Volcanology and Geothermal Research, 71(1), 13–29. https://doi.org/10.1016/0377-0273(95)00062-3spa
dc.relation.referencesDellino, P., Liotino, G., 2002. The fractal and mutifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J. Volcanol. Geotherm. Res. 113, 1–18.spa
dc.relation.referencesDorado, J. (1990). Contribución al conocimiento estratigrá-fico de la Formación Brechas de Buenavista (límite Jurásico-Cretácico), región noreste de Villavicencio (Meta). Geología Colombiana, No. 17, pp. 7-39.spa
dc.relation.referencesDubuc, B., Quiniou, J. F., Roques-Carmes, C., Tricot, C., & Zucker, S. W. (1989). Evaluating the fractal dimension of profiles. Physical Review A, 39(3), 1500–1512. https://doi.org/10.1103/PhysRevA.39.1500spa
dc.relation.referencesEscovar, R., 1975. Geologia y geoquímica de las minas de esmeraldas de Gachalá,. Cundinamarca. Bol. Geol., 22(3): 116-153.spa
dc.relation.referencesEtayo–Serna, F. 1979. Zonation of the Cretaceous of central Colombia by ammonites. Publicaciones Geológicas Especiales del Ingeominas 2, p. 1–186. Bogotá.spa
dc.relation.referencesFall A., Tattitch B. and Bodnar R. J. (2011) Combined microth-ermometric and Raman spectroscopic technique to determinethe salinity of H2O–CO2–NaCl fluid inclusions based onclathrate melting. Geochim. Cosmochim. Acta 75, 951–964.spa
dc.relation.referencesFossen, H. (2016). Structural Geology (2nd ed.). Cambridge University Press.spa
dc.relation.referencesFabre, A. (1983). The subsidence of the Cocuy Basin Colombian Eastern Cordillera during the Cretaceous and Lower Tertiary, Geología Norandina, Bogotá.spa
dc.relation.referencesFrezzotti, M. L. (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos, 55 (1) 273-299 doi:10.1016/s0024-4937(00)00048-7spa
dc.relation.referencesFrezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009spa
dc.relation.referencesGenna, A., Jebrak, M., Marcoux, E., Milesi, J.P., 1996. Genesis of ´ ´ cockade breccias in the tectonic evolution of the Cirotan epithermal gold deposit, W. Java. Can. J. Earth Sci. 33, 93–102.spa
dc.relation.referencesGilles-Guéry, L., Villar de Queiroz, L. A., Schnellrath, J., Williams, B., Williams, C., Laurs, B. M., Galoisy, L., Calas, G., & Barbosa, T. C. (2022). Pink-orange euclase from Bahia, Brazil. The Journal of Gemmology, 38(1), 44-62. https://doi.org/10.15506/JoG.2022.38.1.44spa
dc.relation.referencesGiuliani, G., Christian, F., Cheilletz, A., Coget, P., Branquet, Y., Laumomnier, B., 2000. Sulfate reduction by organic matter in Colombian emerald deposits: chemical and stable isotope (C,O, H) evidence. Economic Geology 95, 1129–1153spa
dc.relation.referencesGiuliani, G., Cheilletz, A.. Arboleda, C., Carrillo, V., Rueda, F., Baker, J. (1995) An evaporitic origin of the parent brines of Colombian emeralds: fluid inclusion and sulfur isotope evidence. Eur. J. Mineral. 7:151–165spa
dc.relation.referencesGiuliani, G., Dubessy, J., Ohnenstetter, D., Banks, D., Branquet, Y., Feneyrol, J., Fallick, A. E., & Martelat, J. E. (2017). The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review. Mineralium Deposita, 53(1), 1–20. https://doi.org/10.1007/s00126-017-0738-4spa
dc.relation.referencesGiuliani, G., Rodriguez, C.T., Rueda, F. (1990) Les gisements d'émeraude de la Cordillère Orientale de la Colombie: nouvelles données métallogéniques. Mineral. Deposita 25:105–111spa
dc.relation.referencesGroat, L. A., Giuliani, G., Marshall, D. D., & Turner, D. (2008). Emerald deposits and occurrences: A review. Ore Geology Reviews, 34(1–2), 87–112. https://doi.org/10.1016/j.oregeorev.2007.09.003spa
dc.relation.referencesGuerrero, J. (2002a). A proposal on the classification of systems tracts: Aplication to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 1: Berriasian to Maastrichtian. Geología Colombiana, a(27), 27–49.spa
dc.relation.referencesGuerrero, J. (2002b). A proposal on the classification of systems tracts: Aplication to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, b(27), 27–49.spa
dc.relation.referencesGuzmán, G. (1985): Los Griferidos Infracretácicos Aetostreon couloni y Ceratostreon boussingaulti, de la Formación Rosablanca, como Indicadores de Oscilaciones Marinas. Proyecto Cretácico, Publicaciones Geológicas especiales del Ingeominas, Nº 16, p. XII.spa
dc.relation.referencesHagiwara, Y., Yoshida, K., Yoneda, A., Torimoto, J., Yamamoto, J. (2021) Experimental variable effects on laser heating of inclusions during Raman spectroscopic analysis. Chemical Geology 559, 119928. https://doi.org/10.1016/j.chemgeo.2020.119928spa
dc.relation.referencesHall, M., (1976) Mineralogia y geoquímica de las vetas esmeraldíferas de Muzo, Departamento de Boyacá, con implicaciones en la prospección futura de esmeraldas en otras partes de Colombia. Universidad Nacional de Colombia, Facultad de Ciencias, Bogotáspa
dc.relation.referencesHastings, H.M. and Sugihara, G. (1993) Fractals: A User’s Guide for the Natural Sciences. Oxford University Press, New York.spa
dc.relation.referencesHettner, A., 1892. Die Kordillere von Bogotá. Peterm. Mitt., Erg. -Bd. 22, Herft No.104, 1892.spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 122(9–10), 1423–1442. https://doi.org/10.1130/B30118.1spa
dc.relation.referencesHubach,E., 1931.- Geología petrolifera del Departamento del Norte de Santander Servicio Geologico Nacional. Bogota.spa
dc.relation.referencesJébrak, M. (1997). Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Reviews, 12(3), 111–134. https://doi.org/10.1016/S0169-1368(97)00009-7spa
dc.relation.referencesJohn, J. (2015). Interbedded metagraywacke-slate (Lake Vermilion Formation, Neoarchean, 2.695-2.722 Ga; Pike River Bridge outcrop, just north of Peyla, Minnesota, USA) 9 [Photograph]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Interbedded_metagraywacke-slate_(Lake_Vermilion_Formation,_Neoarchean,_2.695-2.722_Ga;_Pike_River_Bridge_outcrop,_just_north_of_Peyla,_Minnesota,_USA)_9_(21601767282).jpg. (Licencia CC BY 2.0).spa
dc.relation.referencesJulivert, M. (1968). Lexique Stratigraphique International Amerique Latine, Colombie (premiere partie) - Precambrien, Paleozoique, Mesozoique et intrusions d’age Mesozoique- Tertiaire. Centre Nat. Rech. Sci. Paris., 1–651.spa
dc.relation.referencesKammer, A., & Sánchez, J. (2006). Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4), 412–422. https://doi.org/10.1016/j.jsames.2006.07.006spa
dc.relation.referencesKaye, B. H. (1994). A Random Walk Through Fractal Dimensions: Second Edition. https://doi.org/10.1002/9783527615995spa
dc.relation.referencesKozlowski, A., Metz, P.. and Jaramillo, H.A.E., 1988. Emeralds from Somondoco, Colombia: chemical composition, fluid inclusions and origin: N. Jahrb. Mineral. Abh., 159: 23-49.spa
dc.relation.referencesKunii, D., & Levenspiel, O. (1991). Fluidization engineering (2nd ed.). Butterworth-Heinemann.spa
dc.relation.referencesLamadrid, H.M., Moore, L.R., Moncada, D., Rimstidt, J.D., Burruss, R.C., Bodnar, R.J., 2017. Reassessment of the Raman CO2 densimeter. Chem. Geol. 450, 210–222. https://doi.org/10.1016/j.chemgeo.2016.12.034.spa
dc.relation.referencesLarkin, P. (2017). Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier.spa
dc.relation.referencesLaumonier, B.; Branquet, Y.; Cheilletz, A.; Giuliani, G. (1999). Structural setting and age of the Colombian emerald deposits: implications for the tectonic evolution of the Cordillera Oriental. Fourth ISAG, 2p.spa
dc.relation.referencesLorilleux, G., M. Jebrak, M. Cuney, and D. Baudemont (2002), Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): From fractal analysis to structural significance, J. Struct. Geol., 24, 323–338, doi:10.1016/S0191-8141(01)00068-2.spa
dc.relation.referencesLuppe, M. (2015). Fractal dimension based on Minkowski-Bouligand method using exponential dilations. Electronics Letters, 51(6), 475–477. https://doi.org/10.1049/el.2015.0156spa
dc.relation.referencesMachel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Appl Geochem 10:373–389spa
dc.relation.referencesMandelbrot BB (1975) Les Object Fractals: Forme, hasard et dimension. Flammarion, Parisspa
dc.relation.referencesMantilla, L.C.; Silva, A.; Serrano, J; Conde, J.; Gomez, C.; Ramirez, J.; Meza, J.; Pelayo, Y.; Ortega, L.; Plata, L.; Peña, E. (2007). Investigación petrográfica y geoquímica de las sedimentitas del cretácico inferior (K1) y sus manifestaciones hidrotermales asociadas; planchas 169, 170, 189, 190 (Cordillera Oriental): implicaciones en la búsqueda de esmeraldas. Acuerdo Específico 02 de 2006. INGEOMINAS-Universidad Industrial de Santander (UIS).spa
dc.relation.referencesMaya, M.; Buenaventura, J.; Salinas, R. (2004). Estado del conocimiento de la exploración de esmeraldas en Colombia. INGEOMINAS.spa
dc.relation.referencesMcCallum, M. E. (1985). Experimental evidence for fluidization processes in breccia pipe formation. Economic Geology, 80(6), 1523–1543. https://doi.org/10.2113/gsecongeo.80.6.1523spa
dc.relation.referencesMcLaughlin, D. y Arce, M. (1971). Recursos minerales de parte de los departamentos de Cundinamarca, Boyacá y Meta. Boletín Geológico, 19(1), 10-21.spa
dc.relation.referencesMedina, L. 1970. Consideraciones Sobre la Genesis de los Yacimientos Esmeraldiferos de los Alrededores de MUZO. Ecominas. Bogotá.spa
dc.relation.referencesMendoza, J., Moreno Murillo, J., & Rodríguez Orjuela, G. (2009). Sistema Cárstico de la Formación Rosablanca Cretácico inferior, en la provincia santandereana de Vélez, Colombia. Geología Colombiana, 34(0), 35–44.spa
dc.relation.referencesMora, A., Blanco, V., Naranjo, J., Sanchez, N., Ketcham, R. A., Rubiano, J., Stockli, D. F., Quintero, I., Nemčok, M., Horton, B. K., & Davila, H. (2013). On the lag time between internal strain and basement involved thrust induced exhumation: The case of the Colombian Eastern Cordillera. Journal of Structural Geology, 52(1), 96–118. https://doi.org/10.1016/j.jsg.2013.04.001spa
dc.relation.referencesMora, A., Horton, B. K., Mesa, A., Rubiano, J., Ketcham, R. A., Parra, M., Blanco, V., Garcia, D., & Stockli, D. F. (2010). Migration of cenozoic deformation in the eastern cordillera of colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. AAPG Bulletin, 94(10), 1543–1580. https://doi.org/10.1306/01051009111spa
dc.relation.referencesMora, A., Parra, M., Strecker, M. R., Kammer, A., Dimaté, C., & Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(2), 1–19. https://doi.org/10.1029/2005TC001854spa
dc.relation.referencesMorales, L. G., et al. 1958. General geology and oil occurrences of Middle Magdalena Valley, Colombia. Habitat of Oil Syposium, Am Ass. Petrol. Geol., Tulsa, pp. 641-695.spa
dc.relation.referencesOttaway T.L. (1991) The geochemistry of the Muzo emerald deposit, Colombia. Master’s thesis, University of Toronto, Canada.spa
dc.relation.referencesOttaway, T. L., Wicks, F. J., Bryndzia, L. T., Kyser, T. K., & Spooner, E. T. C. (1994). Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature, 369(6481), 552–554. https://doi.org/10.1038/369552a0spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., Rueda, M., & Torres, V. (2009). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 121(5–6), 780–800. https://doi.org/10.1130/B26257.1spa
dc.relation.referencesPasschier, C. W., & Trouw, R. A. J. (2005). Microtectonics (2nd ed.). Springer.spa
dc.relation.referencesPeitgen, H.; Jurgens, H.; Saupe, D. 1992. Chaos and fractals; new frontiers of science. New York: Springer. p.192-194.spa
dc.relation.referencesPhillips, R., 1972. Hydraulic fracturing and mineralization. J. Geol. Soc. London 128, 337–359.spa
dc.relation.referencesPignatelli, I., Giuliani, G., Morlot, C., Rouer, O., Claiser, N., Chatagnier, P.-Y., & Goubert, D. (2017). Recent advances in understanding the similarities and differences of Colombian euclases. The Canadian Mineralogist, 55(4), 799–820. https://doi.org/10.3749/canmin.1700011spa
dc.relation.referencesPignatelli, I., Giuliani, G., Ohnenstetter, D., Agrosi, G., Mathieu, S., Morlot, C., & Branquet, Y. (2015). Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation. Gems & Gemology, December. https://doi.org/10.5741/GEMS.51.3.222spa
dc.relation.referencesPimpirev, C. T., Patarroyo, P., & Sarmiento, G. (1992). Stratigraphy and facies analysis of the Caqueza Group, a sequence of Lower Cretaceous turbidites in the Cordillera Oriental of the Colombian Andes. Journal of South American Earth Sciences, 5(3–4), 297–308. https://doi.org/10.1016/0895-9811(92)90027-Vspa
dc.relation.referencesRenzoni, G. (1968). Geología del Macizo de Quetame. Geología Colombiana, 5, 75–128.spa
dc.relation.referencesRestrepo, H. 1958. Reconocimiento de Esmeraldas de Muzo, Depto. de Boyacá. Servicio Geológico Nacional. Bogotá.spa
dc.relation.referencesReyes, G., Montoya, D., Terraza, R., Fuquen, J., Mayorga, M., & Gaona, T. (2006). Geología del cinturón esmeraldífero occidental planchas 169, 170, 189 y 190. Ministerio de Energía y Minas, Colombia, 114.spa
dc.relation.referencesReyes, J. (2016). Sediment-derived Euclase mineral characterization and its implications for the evolution of the Colombian emerald deposits. Uniandes. Disponible en: http://hdl.handle.net/1992/14556spa
dc.relation.referencesRodriguez, A. (2001). Mapa Geológico del Departamento del Meta: Memoria Explicativa.spa
dc.relation.referencesRomero, F., Hernández, O. (1999). Características mineralógicas e inclusiones fluidas de las esmeraldas del municipio de san antonio de yacopí, cundinamarca, colombia. Geología Colombiana. 24, 149–158. https://revistas.unal.edu.co/index.php/geocol/article/view/31522spa
dc.relation.referencesRomero, F.H., Schultz-Güttler, R.A. & Kawashita, K. (1999): geoquímica del Rubidio-Estroncio y Edad de las Esmeraldas Colombianas.- GEOLOGIA COLOMBIANA, 25, pgs. 221 - 239, 6 Figs., 5 Tablas, Bogotá.spa
dc.relation.referencesRoy, S. G., Johnson, S. E., Koons, P. O., & Jin, Z. (2012). Fractal analysis and thermal-elastic modeling of a subvolcanic magmatic breccia: The role of post-fragmentation partial melting and thermal fracture in clast size distributions. Geochemistry, Geophysics, Geosystems, 13(5), 1–23. https://doi.org/10.1029/2011GC004018spa
dc.relation.referencesRuss, J.C., (1995). The Image Processing Handbook, 2nd ed. CRC Press, 674 pp.spa
dc.relation.referencesSammis, C.G., Biegel, R.L., (1986). A self-similar model for the kinematics of gouge deformation. AGU fall meeting. Eos Trans. 67 44., 1187.spa
dc.relation.referencesSarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411. https://doi.org/10.1016/j.jsames.2006.07.003spa
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089spa
dc.relation.referencesSchulze HG, Foist RB, Okuda K, Ivanov A, Turner RF. (2012) A small-window moving average-based fully automated baseline estimation method for Raman spectra. Appl Spectrosc. 2012 Jul;66(7):757-64. doi: 10.1366/11-06550. Epub 2012 Jun 15. PMID: 22710274.spa
dc.relation.referencesSegovia, A. (1963). The Geology of Plancha L-12 (Medina Area) of the Geologic Map of Colombia”.spa
dc.relation.referencesSibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213. https://doi.org/10.1144/gsjgs.133.3.0191spa
dc.relation.referencesSibson, R.H., (1986). Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure Appl. Geophys. 124, 159–174.spa
dc.relation.referencesSibson, R. H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8), 1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6spa
dc.relation.referencesSmith, E.; Den, G. (2005). Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons Ltd.: Chichester, UK; ISBN 0471497940spa
dc.relation.referencesTerraza, R. (2019). Notas sobre el contexto tectonoestratigráfico de formación de las esmeraldas colombianas. Boletín Geológico, 45. https://doi.org/10.32685/0120-1425/boletingeo.45.2019.486spa
dc.relation.referencesTerraza, R., Montoya, D., Reyes, G., Moreno, G., Fúquen Bioestratigrafía, J., Etayo, F., Bogotá, S., & De, J. (2008). Geología Del Cinturón Esmeraldífero Oriental Planchas 210, 228 Y 229.spa
dc.relation.referencesTerraza, R., Montoya, D., & Servicio Geológico Colombiano. (2011). Las esmeraldas de Colombia en su ámbito geológico. Excursión Geológica a Los Cinturones Esmeraldíferos de La Cordillera Oriental de Colombia En El Marco Del XIV Congreso Latinoamericano de Geología Del 29 de Agosto Al 2 de Septiembre de 2011, 94.spa
dc.relation.referencesTurcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research, 91(B2), 1921–1926. https://doi.org/10.1029/JB091iB02p01921spa
dc.relation.referencesUlloa, C., & Rodriguez, E. Monroy, G. (1978). Geología del Departamento de Cundinamarca. Informe Interno 1861. Ingeominas. 39 p. Bogotá.spa
dc.relation.referencesUlloa, C., & Rodriguez, E. (1979). Geologia del Cuadranguto K- 12, Guateque. Ingeominas, Boletin Geologico 22 (1), 84 p.spa
dc.relation.referencesVandenabeele, Peter. (2013). Practical Raman Spectroscopy: An Introduction. John Wiley & Sons, Ltd, 2013spa
dc.relation.referencesWang, X., Chou, I.-M., Hu, W., Burruss, R. C., Sun, Q., & Song, Y. (2011). Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochimica et Cosmochimica Acta, 75(14), 4080-4093. https://doi.org/10.1016/j.gca.2011.04.028spa
dc.relation.referencesWang, W., Caumon, M.-C., Tarantola, A., Pironon, J., Lu, W., & Huang, Y. (2019). Raman spectroscopic densimeter for pure CO2 and CO2-H2O-NaCl fluid systems over a wide P-T range up to 360 °C and 50 MPa. Chemical Geology, 528, 119281. https://doi.org/10.1016/j.chemgeo.2019.119281spa
dc.relation.referencesWentworth, C.K. (1922) A Scale of Grade and Class Terms for Clastic Sediments. Journal of Geology, 30, 377-392. https://doi.org/10.1086/622910spa
dc.relation.referencesWheler, O., (1929): Report on the Palmira series with notes on stratigraphy of theUmir, Lisama, and La Paz formation near the eastern part of the Mares concession. IntEmp. Col. Petr.spa
dc.relation.referencesWoodcock, N. H., & Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435-440. https://doi.org/10.1017/S0016756808004883spa
dc.relation.referencesYuan, X., Mayanovic, R. A., Zheng, H., & Sun, Q. (2017). Determination of pressure in aqueo-carbonic fluid inclusions at high temperatures from measured Raman frequency shifts of CO2. American Mineralogist, 102(2), 404–411. https://doi.org/10.2138/am-2017-5405spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::553 - Geología económicaspa
dc.subject.proposalEsmeraldasspa
dc.subject.proposalBrechamientospa
dc.subject.proposalAnálisis fractalspa
dc.subject.proposalDoblete Fermispa
dc.subject.proposalEventos hidrotermalesspa
dc.subject.proposalEmeraldseng
dc.subject.proposalBreccia mechanismseng
dc.subject.proposalFractal analysiseng
dc.subject.proposalFermi diadeng
dc.subject.proposalHydrothermal eventseng
dc.subject.wikidatafluidodinámicaspa
dc.subject.wikidatafluid dynamicseng
dc.subject.wikidatamineralogíaspa
dc.subject.wikidatamineralogyeng
dc.subject.wikidataespectroscopiaspa
dc.subject.wikidataspectroscopyeng
dc.subject.wikidataanálisis químicospa
dc.subject.wikidatachemical analysiseng
dc.titleAnálisis fractal de las brechas hidrotermales en ambos cinturones esmeraldíferos : Mecanismos de brechamiento y evoluciónspa
dc.title.translatedFractal analysis of hydrothermal breccias in both emerald belts: brecciation mechanisms and evolutioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCDTECspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033749074.2025.pdf
Tamaño:
4.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: