En 21 día(s), 19 hora(s) y 12 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos

dc.contributor.advisorLizarazo Salcedo, Iván
dc.contributor.authorRico Cabrera, Ronald
dc.date.accessioned2022-03-22T19:39:02Z
dc.date.available2022-03-22T19:39:02Z
dc.date.issued2021-12
dc.description.abstractLos humedales son algunos de los ecosistemas más importantes de la tierra y han sido señala- dos como soluciones naturales a la crisis mundial del agua. Por esta razón su monitoreo es necesario, y para esta tarea los datos de sensores remotos han sido ampliamente usados. Sin embargo, estos ecosistemas son difıciles de mapear y clasificar debido a su alto grado de variabilidad espacial y temporal, por lo que persisten incertidumbres. El objetivo de ésta investigación fue evaluar el potencial de técnicas de descomposicion polarimetrica de datos de radar de apertura sintética (SAR) de banda L en la extraccion de informacion tematica en el humedal Ciénaga Grande de Santa Marta. Para completarlo primero se obtuvieron des- criptores polarimétricos mediante las técnicas de descomposición Cloude-Pottier (CP), Touzi (TZ), Van Zyl (VZ) y Freeman-Durden (FD), que se usaron en un esquema de clasificación supervisada con el algoritmo Bosques Aleatorios (BA). Luego se analizaron los resultados de la evaluación de exactitud temática de las clasificaciones para estimar la contribución de los descriptores polarimétricos. Los resultados mostraron que, evaluadas individualmente, las descomposiciones basadas en el análisis de valores y vectores caracterı́sticos CP, TZ y VZ aventajaron a la descomposición basada en modelos de dispersión, FD. Finalmente, el escenario de clasificación polarimétrica alcanzó una exactitud global de 92.82 %, frente al 89.19 % del escenario no polarimétrico donde solo se usaron datos ópticos y intensidades lineales HH, HV y VV, sugiriendo que los descriptores polarimétricos aportan información adicional relevante para la discriminación de las coberturas del humedal. (Texto tomado de la fuente)spa
dc.description.abstractWetlands are some of the most important ecosystems on earth and have been identified as natural solutions to the global water crisis. For this reason their monitoring is necessary, and for this task remote sensing data have been widely used. However, these ecosystems are difficult to map and classify due to their high degree of spatial and temporal variability, and uncertainties persist. The objective of this research was to evaluate the potential of polarimetric decomposition techniques of L-band synthetic aperture radar (SAR) data in the extraction of thematic information in the Ciénaga Grande de Santa Marta wetland. To complete it, polarimetric descriptors were first obtained using Cloude-Pottier (CP), Touzi (TZ), Van Zyl (VZ) and Freeman-Durden (FD) decomposition techniques, which were used in a supervised classification scheme with the Random Forests (BA) algorithm. The results of the thematic accuracy assessment of the classifications were then analyzed to estimate the contribution of the polarimetric descriptors. The results showed that, evaluated individually, the decompositions based on CP, TZ and VZ characteristic values and vectors analysis outperformed the decomposition based on dispersion models, FD. Finally, the polarimetric classification scenario achieved an overall accuracy of 92.82 %, compared to 89.19 % for the non-polarimetric scenario where only optical data and linear intensities HH, HV and VV were used, suggesting that polarimetric descriptors provide additional relevant information for wetland cover discrimination.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxvi, 106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81319
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAbdel-Hamid, A., Dubovyk, O., Abou El-Magd, I., and Menz, G. (2018). Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data. Sustainability, 10(3):646.spa
dc.relation.referencesAl-Kahachi, N. (2013). Polarimetric SAR Modelling of a Two-Layer Structure.spa
dc.relation.referencesBelgiu, M. and Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31.spa
dc.relation.referencesBhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., López-Martı́nez, C., and Rao, Y. (2021). Dual-polarimetric descriptors from Sentinel- 1 GRD SAR data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178:20–35. Publisher: Elsevier.spa
dc.relation.referencesBiau, G. and Scornet, E. (2016). A random forest guided tour. TEST, 25(2):197–227.spa
dc.relation.referencesBigas, H. (2013). Water security and the global water agenda: a UN-water analytical brief. United Nations University - Institute for Water, Environment and Health, Hamilton, Ont.spa
dc.relation.referencesBoulesteix, A.-L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics: Random forests in bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):493–507.spa
dc.relation.referencesBourgeau-Chavez (2009). Improving wetland characterization with multi-sensor, multitemporal SAR and optical/infrared data fusion. Advances in Geoscience and Remote Sensing.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45(1):5–32.spa
dc.relation.referencesBrisco, B., Kapfer, M., Hirose, T., Tedford, B., and Liu, J. (2011). Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, page 12.spa
dc.relation.referencesBrisco, B., Li, K., Tedford, B., Charbonneau, F., Yun, S., and Murnaghan, K. (2013a). Compact polarimetry assessment for rice and wetland mapping. International Journal of Remote Sensing, 34(6):1949–1964.spa
dc.relation.referencesBrisco, B., Schmitt, A., Murnaghan, K., Kaya, S., and Roth, A. (2013b). SAR polarimetric change detection for flooded vegetation. International Journal of Digital Earth, 6(2):103–114.spa
dc.relation.referencesBunting, P., Clewley, D., Lucas, R. M., and Gillingham, S. (2014). The Remote Sensing and GIS Software Library (RSGISLib). Computers & Geosciences, 62:216–226.spa
dc.relation.referencesCarlos, F., Lina M., E.-S., Sergio, R., César, A., Marcela, Q., Óscar, A., Sandra, V., and Úrsula, J. (2016). Identificación espacial de los sistemas de humedales continentales de Colombia. Biota Colombiana, 16(3):44–62.spa
dc.relation.referencesChandrasekhar, S. (1960). Radiative transfer. New York.spa
dc.relation.referencesChen, S.-W., Li, Y.-Z., Wang, X.-S., Xiao, S.-P., and Sato, M. (2014a). Modeling and Inter- pretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and perspectives. IEEE Signal Processing Magazine, 31(4):79–89.spa
dc.relation.referencesChen, S.-W., Wang, X.-S., Xiao, S.-P., and Sato, M. (2018). Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar. Springer Singapore, Singapore.spa
dc.relation.referencesChen, Y., He, X., Wang, J., and Xiao, R. (2014b). The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sensing, 6(12):12575–12592.spa
dc.relation.referencesChen, Y., He, X., Xu, J., Zhang, R., and Lu, Y. (2020). Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sensing, 12(3):407.spa
dc.relation.referencesClewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., and Moghaddam, M. (2014). A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sensing, 6(7):6111–6135.spa
dc.relation.referencesClint Slatton, K., Crawford, M. M., and Chang, L.-D. (2008). Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5):559–577.spa
dc.relation.referencesCloude, S. (1996). THE DUAL POLARISATION ENTROPY/ALPHA DECOMPOSITION: A PALSAR CASE STUDY. page 6.spa
dc.relation.referencesCloude, S. and Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1):68–78.spa
dc.relation.referencesCloude, S. R. (1986). Polarimetry: The Characterisation of Polarimetric Effects in EM Scattering. PhD Thesis, University of Birmingham, Faculty of Engineering, UK.spa
dc.relation.referencesCloude, S. R. (1992). Uniqueness of Target Decomposition Theorems in Radar Polarimetry. In Boerner, W.-M., Brand, H., Cram, L. A., Holm, W. A., Stein, D. E., Wiesbeck, W., Keydel, W., Giuli, D., Gjessing, D. T., and Molinet, F. A., editors, Direct and Inverse Methods in Radar Polarimetry, pages 267–296. Springer Netherlands, Dordrecht.spa
dc.relation.referencesCloude, S. R. and Pottier, E. (1996). A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2):498–518.spa
dc.relation.referencesCongalton, R. and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition.spa
dc.relation.referencesCorcoran, J., Knight, J., Brisco, B., Kaya, S., Cull, A., and Murnaghan, K. (2012). The integration of optical, topographic, and radar data for wetland mapping in northern Min- nesota. Canadian Journal of Remote Sensing, page 20.spa
dc.relation.referencesCorcoran, J., Knight, J., and Gallant, A. (2013). Influence of Multi-Source and Multi- Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Clas- sification of Wetlands in Northern Minnesota. Remote Sensing, 5(7):3212–3238.spa
dc.relation.referencesCutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11):2783–2792.spa
dc.relation.referencesDavidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10):934–941.spa
dc.relation.referencesDavidson, N. C. and Finlayson, C. M. (2018). Extent, regional distribution and changes in area of different classes of wetland. Marine and Freshwater Research, 69(10):1525–1533. 1.1spa
dc.relation.referencesDavidson, N. C., Fluet-Chouinard, E., and Finlayson, C. M. (2018). Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research, 69(4):620– 627.spa
dc.relation.referencesDronova, I. (2015). Object-Based Image Analysis in Wetland Research: A Review. Remote Sensing, 7(5):6380–6413.spa
dc.relation.referencesDu, P., Samat, A., Waske, B., Liu, S., and Li, Z. (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105:38–53.spa
dc.relation.referencesDurden, S., Haddad, Z., Morrissey, L., and Livingston, G. (1996). Classification of radar imagery over boreal regions for methane exchange studies. International Journal of Remote Sensing, 17(6):1267–1273.spa
dc.relation.referencesDymond, J. R., Shepherd, J. D., Newsome, P. F., Gapare, N., Burgess, D. W., and Watt, P. (2012). Remote sensing of land-use change for Kyoto Protocol reporting: the New Zealand case. Environmental Science & Policy, 16:1–8. Publisher: Elsevier.spa
dc.relation.referencesEl Hajj, M., Baghdadi, N., Bazzi, H., and Zribi, M. (2018). Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sensing, 11(1):31.spa
dc.relation.referencesESA (2007). Information on ALOS PALSAR products for ADEN users, ALOS-GSEG- EOPG-TN-07-0001. Technical report.spa
dc.relation.referencesFAO (2015). Global Forest Resources Assessments.spa
dc.relation.referencesFinlayson, C. M., Milton, R., Prentice, C., and Davidson, N. C., editors (2018). The Wetland Book: II: Distribution, Description, and Conservation. Springer Netherlands.spa
dc.relation.referencesFlorez-Yepes, G. Y., Betancur-Pérez, J. F., Monterroso-Tobar, M. F., and Londoño-Bonilla, J. M. (2018). Temporary wetland evolution in the upper Chinchiná river basin and its relationship with ecosystem dynamics. DYNA, 85(207):351–359.spa
dc.relation.referencesFreeman, A. and Durden, S. L. (1998). A three-component scattering model for polarime- tric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3):963–973. Publisher: IEEE.spa
dc.relation.referencesFurtado, L. F. d. A., Silva, T. S. F., and Novo, E. M. L. d. M. (2016). Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sensing of Environment, 174:212–222.spa
dc.relation.referencesGalatowitsch, S. M. (2018). Natural and Anthropogenic Drivers of Wetland Change. In Fin- layson, C. M., Milton, G. R., Prentice, R. C., and Davidson, N. C., editors, The Wetland Book: II: Distribution, Description, and Conservation, pages 359–367. Springer Nether- lands, Dordrecht.spa
dc.relation.referencesGallant, A. L. (2015). The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8):10938–10950.spa
dc.relation.referencesGardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C. M., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D., Rosenqvist, A., and Walpole, M. (2015). State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electronic Journal.spa
dc.relation.referencesGens, R., Atwood, D. K., and Pottier, E. (2013). Geocoding of polarimetric processing results: Alternative processing strategies. Remote Sensing Letters, 4(1):38–44.spa
dc.relation.referencesGokce, D. (2019). Wetlands Management: Assessing Risk and Sustainable Solutions. BoD–Books on Demand.spa
dc.relation.referencesGosselin, G., Touzi, R., and Cavayas, F. (2014). Polarimetric Radarsat-2 wetland classifica- tion using the Touzi decomposition: case of the Lac Saint-Pierre Ramsar wetland. 36(6):17.spa
dc.relation.referencesGrenier, M., Demers, A.-M., Labrecque, S., Benoit, M., Fournier, R. A., and Drolet, B. (2007). An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada. Canadian Journal of Remote Sensing, 33(sup1):S28–S45.spa
dc.relation.referencesGuo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors, 17(4):777.spa
dc.relation.referencesHeine, I., Jagdhuber, T., and Itzerott, S. (2016). Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sensing, 8(7):552.spa
dc.relation.referencesHenderson, F. M. and Lewis, A. J. (2008). Radar detection of wetland ecosystems: a review. International Journal of Remote Sensing, 29(20):5809–5835.spa
dc.relation.referencesHess, L., Melack, J., Filoso, S., and Yong Wang (1995). Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33(4):896–904.spa
dc.relation.referencesHess, L. L., Melack, J. M., and Simonett, D. S. (1990). Radar detection of flooding beneath the forest canopy: a review. International Journal of Remote Sensing, 11(7):1313–1325.spa
dc.relation.referencesHong, S.-H., Kim, H.-O., Wdowinski, S., and Feliciano, E. (2015). Evaluation of Polari- metric SAR Decomposition for Classifying Wetland Vegetation Types. Remote Sensing, 7(7):8563–8585.spa
dc.relation.referencesHuynen, J. R. (1970). Phenomenological theory of radar targets. Technical report, University of Technology, Delft, The Netherlands.spa
dc.relation.referencesINVEMAR (2009). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilita- ción de la Ciénaga Grande de Santa Marta : informe técnico final. Invemar, Santa Marta.spa
dc.relation.referencesIshwaran, H. (2015). The effect of splitting on random forests. Machine Learning, 99(1):75– 118.spa
dc.relation.referencesJaramillo, U., Cortes-Duque, J., and Florez, C. (2015). Colombia Anfibia. Un paı́s de humeda- les, volume 1. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C., Colombia.spa
dc.relation.referencesKasischke, E. S., Bourgeau-Chavez, L. L., Rober, A. R., Wyatt, K. H., Waddington, J. M., and Turetsky, M. R. (2009). Effects of soil moisture and water depth on ERS SAR backs- catter measurements from an Alaskan wetland complex. Remote Sensing of Environment, 113(9):1868–1873.spa
dc.relation.referencesKasischke, E. S., Smith, K. B., Bourgeau-Chavez, L. L., Romanowicz, E. A., Brunzell, S., and Richardson, C. J. (2003). Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, 88(4):423–441.spa
dc.relation.referencesKnight, J. and Lunetta, R. (2003). An experimental assessment of minimum mapping unit size. IEEE Transactions on Geoscience and Remote Sensing, 41(9):2132–2134.spa
dc.relation.referencesKoch, M., Schmid, T., Reyes, M., and Gumuzzio, J. (2012). Evaluating Full Polarimetric C- and L-Band Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3):1033–1044.spa
dc.relation.referencesKulkarni, V. Y. and Sinha, P. K. (2012). Pruning of Random Forest classifiers: A survey and future directions. In 2012 International Conference on Data Science & Engineering (ICDSE), pages 64–68, Cochin, Kerala, India. IEEE.spa
dc.relation.referencesKumar, D. N. and Reshmidevi, T. V. (2013). Remote Sensing Applications in Water Re- sources. Journal of the Indian Institute of Science, 93(2):163–188–188.spa
dc.relation.referencesLang, M. W. and Kasischke, E. S. (2008). Using C-Band Synthetic Aperture Radar Da- ta to Monitor Forested Wetland Hydrology in Maryland’s Coastal Plain, USA. IEEE Transactions on Geoscience and Remote Sensing, 46(2):535–546.spa
dc.relation.referencesLee, J., Ainsworth, T., Schuler, D., Kasilingam, D., and Boerner, W. (2001). Interpreting off- diagonal terms in polarimetric coherency matrix. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remo- te Sensing Symposium (Cat. No.01CH37217), volume 2, pages 913–915, Sydney, NSW, Australia. IEEE.spa
dc.relation.referencesLee, J.-S. and Pottier, E. (2009). Polarimetric Radar Imaging : From Basics to Applications. CRC Press.spa
dc.relation.referencesLi, J. and Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22):5051– 5069.spa
dc.relation.referencesLi, J., Chen, W., and Touzi, R. (2007). Optimum RADARSAT-1 configurations for wetlands discrimination: a case study of the Mer Bleue peat bog. Canadian Journal of Remote Sensing, 33:10.spa
dc.relation.referencesLiaw, A., Wiener, M., and others (2002). Classification and regression by randomForest. R news, 2(3):18–22.spa
dc.relation.referencesLucas, R. M., Clewley, D., Accad, A., Butler, D., Armston, J., Bowen, M., Bunting, P., Carreiras, J., Dwyer, J., Eyre, T., and others (2014). Mapping forest growth and degra- dation stage in the Brigalow Belt Bioregion of Australia through integration of ALOS PALSAR and Landsat-derived foliage projective cover data. Remote Sensing of Environ- ment, 155:42–57. Publisher: Elsevier.spa
dc.relation.referencesLusch, D. (1999). Introduction to Microwave Remote Sensing. Center For Remote Sensing and Geographic Information Science Michigan State University.spa
dc.relation.referencesMahdavi, S., Maghsoudi, Y., and Amani, M. (2017a). Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area. Journal of Applied Remote Sensing, 11(3):036015.spa
dc.relation.referencesMahdavi, S., Maghsoudi, Y., and Dehnavi, S. (2014). A Method for Soil Moisture Retrieval in Vegetated Areas Using Multi-Frequency Data Considering Different kinds of Interaction in Different Frequencies. Publisher: Unpublished.spa
dc.relation.referencesMahdavi, S., Salehi, B., Amani, M., Granger, J. E., Student, M., Brisco, B., and Huang, W. (2017b). A COMPARISON BETWEEN DIFFERENT SYNTHETIC APERTURE RADAR (SAR) SENSORS FOR WETLAND CLASSIFICATION. page 8.spa
dc.relation.referencesMahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., and Huang, W. (2018). Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing, 55(5):623–658.spa
dc.relation.referencesMahdavi, S., Salehi, B., Moloney, C., Huang, W., and Brisco, B. (2016). A new method for speckle reduction in Synthetic Aperture Radar (SAR) images using optimal window size. In IOP Conference Series: Earth and Environmental Science, volume 34, page 012021. IOP Publishing.spa
dc.relation.referencesMahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., and Granger, J. E. (2018). Fisher Linear Discriminant Analysis of coherency matrix for wetlspa
dc.relation.referencesMarechal, C., Pottier, E., Hubert-Moy, L., and Rapinel, S. (2012). One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images. Canadian Journal of Remote Sensing, 38(3):13.spa
dc.relation.referencesMartinez, J. and Letoan, T. (2007). Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, 108(3):209–223.spa
dc.relation.referencesMassonnet, D. and Souyris, J.-C. (2008). Imaging with synthetic aperture radar. CRC Press.spa
dc.relation.referencesMcNairn, H., Champagne, C., Shang, J., Holmstrom, D., and Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5):434–449.spa
dc.relation.referencesMedasani, S. and Reddy, G. U. (2017). Analysis and Evaluation of Speckle Filters for Polarimetric Synthetic Aperture Radar (PolSAR) Data. 12(15):12.spa
dc.relation.referencesMedasani, S. and Reddy, G. U. (2018). Speckle Filtering and its Influence on the Decom- position and Classification of Hybrid Polarimetric Data of RISAT-1. Remote Sensing Applications: Society and Environment, 10:1–6.spa
dc.relation.referencesMelack, J. M. and Hess, L. L. (2010). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In Amazonian floodplain forests, pages 43–59. Springer.spa
dc.relation.referencesMerchant, M. A., Adams, J. R., Berg, A. A., Baltzer, J. L., Quinton, W. L., and Chasmer, L. E. (2017). Contributions of C-Band SAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4):1467–1482.spa
dc.relation.referencesMillard, K., Richardson, M., and Building, N. (2013). Wetland mapping with LiDAR deri- vatives, SAR polarimetric decompositions, and LiDAR-SAR fusion using a random forest classifier. Canadian Journal of Remote Sensing, page 19.spa
dc.relation.referencesMitsch, W. J. and Gosselink, J. G. (2015). Wetlands.spa
dc.relation.referencesMoreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1):6–43.spa
dc.relation.referencesMoser, L., Schmitt, A., Wendleder, A., and Roth, A. (2016). Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sensing, 8(4):302.spa
dc.relation.referencesMott, H. (2007). Remote Sensing with Polarimetric Radar. John Wiley & Sons.spa
dc.relation.referencesMousavi, M., Amini, J., and Maghsoudi, Y. (2015). PolSAR Speckle Filtering Techniques and Their Effects On classification. page 9.spa
dc.relation.referencesNagabhatla, N. and Metcalfe, C. D., editors (2018). Multifunctional Wetlands: Pollution Aba- tement and Other Ecological Services from Natural and Constructed Wetlands. Environ- mental Contamination Remediation and Management. Springer International Publishing.spa
dc.relation.referencesNembrini, S., König, I. R., and Wright, M. N. (2018). The revival of the Gini importance? Bioinformatics, 34(21):3711–3718.spa
dc.relation.referencesOlofsson, P. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, page 10.spa
dc.relation.referencesOlofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148:42–57.spa
dc.relation.referencesOzesmi, S. L. and Bauer, M. E. (2002). Satellite remote sensing of wetlands. page 22.spa
dc.relation.referencesPelletier, C., Valero, S., Inglada, J., Champion, N., and Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187:156–168.spa
dc.relation.referencesPritchard, D. (2010). Manuales Ramsar para el uso racional de los humedales, 4a edición: Manual 1 Uso racional de los humedales: Conceptos y enfoques para el uso racional de los humedales. Publisher: Gland, Suiza: Secretarı́a de la Convención de Ramsar.spa
dc.relation.referencesPulvirenti, L., Chini, M., Pierdicca, N., and Boni, G. (2016). Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1532–1544.spa
dc.relation.referencesRamsar (2018). Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical report, Gland, Switzerland: Ramsar Convention Secretariat.spa
dc.relation.referencesRamsey, E., Zhong Lu, Suzuoki, Y., Rangoonwala, A., and Werle, D. (2011). Monitoring Duration and Extent of Storm-Surge and Flooding in Western Coastal Louisiana Marshes With Envisat ASAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):387–399.spa
dc.relation.referencesRichards, J. A. (2009). Remote Sensing with Imaging Radar. Signals and Communication Technology. Springer-Verlag, Berlin Heidelberg.spa
dc.relation.referencesRichards, J. A., Woodgate, P. W., and Skidmore, A. K. (1987). An explanation of enhan- ced radar backscattering from flooded forests. International Journal of Remote Sensing, 8(7):1093–1100.spa
dc.relation.referencesRussi, D., ten Brink, P., Farmer, A., and Badura, T. (2013). The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands.spa
dc.relation.referencesRutchey, K. and Godin, J. (2009). Determining an appropriate minimum mapping unit in vegetation mapping for ecosystem restoration: a case study from the Everglades, USA. Landscape Ecology, 24(10):1351–1362.spa
dc.relation.referencesSaura, S. (2002). Effects of minimum mapping unit on land cover data spatial configuration and composition. International Journal of Remote Sensing, 23(22):4853–4880.spa
dc.relation.referencesSchmitt, A. and Brisco, B. (2013). Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery. Water, 5(3):1036–1051.spa
dc.relation.referencesSchmitt, A., Wendleder, A., and Hinz, S. (2015). The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS Journal of Photogrammetry and Remote Sensing, 102:122–139.spa
dc.relation.referencesSchumann, G. J.-P. and Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, Parts A/B/C, 83-84:84–95.spa
dc.relation.referencesShepherd, J., Bunting, P., and Dymond, J. (2019). Operational Large-Scale Segmentation of Imagery Based on Iterative Elimination. Remote Sensing, 11(6):658.spa
dc.relation.referencesSierszen, M. E., Morrice, J. A., Trebitz, A. S., and Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 15(1):92–106.spa
dc.relation.referencesSokol, J., Pultz, T. J., and Bulzgis, V. (2001). Monitoring wetland hydrology in Atlantic Canada using multi-temporal and multi-beam Radarsat data. IAHS PUBLICATION, pages 526–530.spa
dc.relation.referencesSouza-Filho, P. W. M., Paradella, W. R., Rodrigues, S. W., Costa, F. R., Mura, J. C., and Gonçalves, F. D. (2011). Discrimination of coastal wetland environments in the Ama- zon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery. Estuarine, Coastal and Shelf Science, 95(1):88–98.spa
dc.relation.referencesTiner, R. W., Lang, M. W., and Klemas, V. V. (2015). Remote Sensing of Wetlands: Appli- cations and Advances.spa
dc.relation.referencesTinoco, J. (2004). Los manglares de la ecorregión Ciénaga Grande de Santa Marı́a: pasado, presente y futuro. Serie Publicaciones especiales. Instituto de Investigaciones Marinas y Costeras ”José Benito Vives de Andréis”vinculado al Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesTopouzelis, K. and Psyllos, A. (2012). Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68:135–143.spa
dc.relation.referencesTouzi, R. (2007). Target Scattering Decomposition in Terms of Roll-Invariant Target Para- meters. IEEE Transactions on Geoscience and Remote Sensing, 45(1):73–84.spa
dc.relation.referencesTouzi, R., Boerner, W. M., Lee, J. S., and Lueneburg, E. (2004). A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Canadian Journal of Remote Sensing, 30(3):28.spa
dc.relation.referencesTouzi, R., Deschamps, A., and Rother, G. (2007). Wetland characterization using polarime- tric RADARSAT-2 capability. Canadian Journal of Remote Sensing, 33:12.spa
dc.relation.referencesTouzi, R., Deschamps, A., and Rother, G. (2009). Phase of target scattering for wetland characterization using polarimetric C-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(9):3241–3261.spa
dc.relation.referencesTsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R. (2018). SAR-based detection of flooded vegetation – a review of characteristics and approaches. International Journal of Remote Sensing, 39(8):2255–2293.spa
dc.relation.referencesTurkar, V. (2011). Applying Coherent and Incoherent Target Decomposition Techniques to Polarimetric SAR Data. page 7.spa
dc.relation.referencesTöyrä, J., Pietroniro, A., and Martz, L. W. (2001). Multisensor Hydrologic Assessment of a Freshwater Wetland. Remote Sensing of Environment, 75(2):162–173.spa
dc.relation.referencesUllmann, T., Schmitt, A., Roth, A., Banks, S., Baumhauer, R., and Dech, S. (2013). CLAS- SIFICATION OF COASTAL ARCTIC LAND COVER BY MEANS OF TERRASAR-X DUAL CO-POLARIZED DATA. page 4.spa
dc.relation.referencesvan Beijma, S., Comber, A., and Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149:118–129.spa
dc.relation.referencesvan Zyl, J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27(1):36–45.spa
dc.relation.referencesvan Zyl, J. J. (1993). Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar polarimetry, volume 1748, pages 184–191. International Society for Optics and Photonics.spa
dc.relation.referencesVilardy, S., Jaramillo, U., Flórez, C., Cortés-Duque, J., Estupiñán, L., and Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales: una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.spa
dc.relation.referencesWang, J., Shang, J., Brisco, B., and Brown, R. J. (1998). Evaluation of Multidate ERS-1 and Multispectral Landsat Imagery for Wetland Detection in Southern Ontario. Canadian Journal of Remote Sensing, 24(1):60–68.spa
dc.relation.referencesWen, H. (2006). An Improved Cloude-Pottier Decomposition. page 4.spa
dc.relation.referencesWhitcomb, J., Moghaddam, M., McDonald, K., Podest, E., and Kellndorfer, J. (2007). Wetlands map of Alaska using L-Band radar satellite imagery. In 2007 IEEE Interna- tional Geoscience and Remote Sensing Symposium, pages 2487–2490, Barcelona, Spain. IEEE.spa
dc.relation.referencesWhite, L., Brisco, B., Dabboor, M., Schmitt, A., and Pratt, A. (2015). A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sensing, 7(6):7615–7645.spa
dc.relation.referencesWhite, L., Brisco, B., Pregitzer, M., Tedford, B., and Boychuk, L. (2014). RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping. Canadian Journal of Remote Sensing, 40(2):135–151.spa
dc.relation.referencesWoodhouse, I. H. (2017). Introduction to Microwave Remote Sensing. CRC Press.spa
dc.relation.referencesWoźniak, E., Kofman, W., Wajer, P., Lewiński, S., and Nowakowski, A. (2016). The influence of filtration and decomposition window size on the threshold value and accuracy of land- cover classification of polarimetric SAR images. International Journal of Remote Sensing, 37(1):212–228.spa
dc.relation.referencesXiao, X., Gertner, G., Wang, G., and Anderson, A. B. (2005). Optimal Sampling Scheme for Estimation Landscape Mapping of Vegetation Cover. Landscape Ecology, 20(4):375–387.spa
dc.relation.referencesYommy, A. S., Liu, R., and Wu, A. S. (2015). SAR Image Despeckling Using Refined Lee Filter. In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, pages 260–265, Hangzhou, China. IEEE.spa
dc.relation.referencesZafari, A., Zurita-Milla, R., and Izquierdo-Verdiguier, E. (2019). Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote Sensing, 11(5):575.spa
dc.relation.referencesZedler, J. B. and Kercher, S. (2005). WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30(1):39–74.spa
dc.relation.referencesZhen, J., Liao, J., and Shen, G. (2018). Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors, 18(11):4012.spa
dc.relation.referencesZhu, S. (2012). A Bayesian Approach for Inverse Problems in SyntheticAperture Radar Imaging. PhD Thesis, Université Paris Sud - Paris XI,.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivosspa
dc.subject.proposalRadar de Apertura Sintéticaspa
dc.subject.proposalMecanismos de dispersiónspa
dc.subject.proposalDescomposición Polarimétricaspa
dc.subject.proposalBosques aleatoriosspa
dc.subject.proposalSynthetic Aperture Radareng
dc.subject.proposalScattering Mechanismseng
dc.subject.proposalPolarimetric Decompositioneng
dc.subject.proposalRandom Forestseng
dc.subject.unescoInstrumento de medida
dc.subject.unescoMeasuring instruments
dc.titleMapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricosspa
dc.title.translatedLand cover mapping in the Ciénaga Grande de Santa Marta wetland using polarimetric synthetic aperture radar dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMaestria.pdf
Tamaño:
33.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: