Estudio de genómica comparativa para la identificación de biomarcadores con actividad probiótica en el género bacteriano Lactobacillus spp
dc.contributor.advisor | Isaza Agudelo, Juan Pablo | |
dc.contributor.advisor | Montoya Campuzano, Olga Ines | |
dc.contributor.author | Pazos López, Juliana | |
dc.contributor.orcid | Pazos, Juliana [0000000332991825] | spa |
dc.contributor.researchgroup | Probióticos, prospección funcional y metabolitos (Universidad Nacional de Colombia) | spa |
dc.contributor.researchgroup | Biología de sistemas (Universidad Pontificia Bolivariana) | spa |
dc.date.accessioned | 2025-01-22T14:25:32Z | |
dc.date.available | 2025-01-22T14:25:32Z | |
dc.date.issued | 2024-01-21 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | La genómica comparativa permite identificar elementos genéticos comunes y específicos de cepas de microorganismos. En el caso del género Lactobacillus spp, posibilita la identificación de rasgos asociados a actividad probiótica, a través de marcadores que brinden información de seguridad para el hospedero, respuesta al estrés, capacidad de adhesión y actividad antimicrobiana e inmunomodulatoria. Con el objetivo de identificar biomarcadores de actividad probiótica, se descargaron genomas completos de Lactobacillus spp de la base de datos Centro Nacional de Información Biotecnológica (NCBI, por sus siglas en inglés). Se realizó una predicción génica y anotación funcional para posteriormente agrupar proteínas ortólogas. Teniendo en cuenta el core-genoma, se seleccionaron 20 biomarcadores y se diseñaron sus respectivos primers. Para las amplificaciones de los biomarcadores, se extrajo ADN de cepas probióticas y patógenas, se realizaron PCRs individuales para cada gen y los amplicones obtenidos se confirmaron por medio de electroforesis y secuenciación. Como resultado, se descargaron 180 genomas de Lactobacillus spp pertenecientes a 29 especies diferentes, encontrando 34 cepas descritas como probióticas basados en la revisión bibliográfica. El promedio de CDS fue 2001, donde el 37,3% codifican para proteínas hipotéticas. En la anotación funcional, se obtuvo en promedio 913 COGs y 618 códigos de EC por genoma. Entre las cepas probióticas se obtuvo un pan-genoma y un core-genoma conformado por 4823 y 671 clústers de proteínas, respectivamente. Se lograron amplificar 8 biomarcadores asociados a metabolismo de carbohidratos, resistencia al estrés, interacción con células hospedero, metabolismo de aminoácidos. (Texto tomado de la fuente) | |
dc.description.abstract | Comparative genomics makes possible to identify common and specific genetic elements of strains of microorganisms. In the case of the genus Lactobacillus spp, it enables the identification of traits associated with probiotic activity, through markers that provide safety information for the host, response to stress, adhesion capacity and antimicrobial and immunomodulatory activity. In order to identify biomarkers of probiotic activity, complete genomes of Lactobacillus spp were downloaded from the NCBI database. Gene prediction and functional annotation were performed to subsequently group orthologous proteins. Taking into account the core-genome, 20 biomarkers were selected and their respective primers were designed. For the amplifications of the biomarkers, DNA was extracted from probiotic and pathogenic strains, individual PCRs were performed for each gene and the amplicons obtained were confirmed by electrophoresis and sequencing. As a result, 180 Lactobacillus spp genomes belonging to 29 different species were downloaded and 34 strains were described as probiotic based on the literature review. The average CDS was 2001, where 37.3% encoded hypothetical proteins. In the functional annotation, an average of 913 COGs and 618 EC codes were obtained per genome. Among the probiotic strains, a pan-genome and a core-genome were obtained consisting of 4823 and 671 protein clusters, respectively. It was possible to amplify 8 biomarkers associated with carbohydrate metabolism, stress resistance, interaction with host cells, and amino acid metabolism. | |
dc.description.curriculararea | Área curricular Biotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biotecnología | spa |
dc.description.methods | 3. Metodología 3.1 Selección y descarga de genomas de Lactobacillus Los genomas en formato FASTA fueron descargados de la base de datos GenBank del NCBI (20 de enero de 2023). Como criterio de inclusión, se consideró el nivel de ensamblaje, seleccionando únicamente aquellos genomas reportados como completos y ensamblados a nivel de cromosoma, según la base de datos. Los genomas se agruparon de acuerdo con su potencial probiótico en aislados con actividad probiótica demostrada y aislados sin actividad probiótica, basado en la revisión bibliográfica. 3.2 Predicción génica y anotación funcional Como los genomas provinieron de diferentes estudios genómicos desarrollados por diferentes instituciones a nivel del mundo entre ellos Rusia, Corea, Emiratos Árabes Unidos, entre otros. Se realizó una homologación en la anotación de los genes; para esto se llevó a cabo una predicción de los marcos de lectura codificantes para proteínas y su respectiva anotación por medio del programa PROKKA v1.14.5 (Seemann, 2014) siguiendo los parámetros por defecto para genomas bacterianos Gram positivos. La anotación funcional se basó en el número EC y los COGs. Para la identificación de proteínas involucradas en virulencia o resistencia a antibióticos, se realizó una comparación por homología mediante el programa BLASTP (Altschul et al., 1990) teniendo en cuenta un valor de E < 1e-6, un porcentaje de identidad del 90% (percentage of identical matches) en el 90% de la proteína (query coverage) y las bases de datos VFDB (B. Liu et al., 2022) CARD (B. Jia et al., 2017) para factores de virulencia y resistencia a antibióticos, respectivamente. También, se realizó la detección de bacteriocinas por medio del servidor web BAGEL4 y el algoritmo BLASTX (Van Heel et al., 2018) usando los parámetros por defecto. 3.3 Identificación de proteínas comunes y específicas de aislados probióticos y aislados sin actividad probiótica demostrada Se calculó el pan-genoma y el core- genoma de los aislados probióticos (determinados por revisión bibliográfica), y se identificaron por medio de la estrategia de mejor hit recíproco de BLASTP implementada en el programa ORTHOMCL v2.0.9. (L. Li et al., 2003). Para determinar si las proteínas del core se compartían con los demás aislados de los cuales no se identificó potencial probiótico, se realizó un BLASTP teniendo en cuenta un porcentaje de identidad de 60 o 90% y un valor de E < 1e-6. 3.4 Selección de los marcadores y diseño de primers Para la selección de los marcadores primero se realizó una revisión bibliográfica de genes previamente descritos y relacionados con alguna actividad probiótica. Luego, se contrasto frente a los genes codificantes del core-genoma. Adicionalmente, se seleccionaron genes del core-genoma que estuvieran ausentes o presentes en algunos, no en todos, de los aislados sin información de actividad probiótica y que estuvieran relacionados a alguna funcionalidad relacionada a resistencia a estrés, metabolismo de carbohidratos, metabolismo de aminoácidos e interacción con células del hospedero. Finalmente, para el diseño de los cebadores se incluyeron marcadores para la identificación taxonómica a nivel de género; marcadores involucrados en funciones como interacción con células del hospedero, tolerancia al estrés, actividad antagónica (bacteriocinas) frente a patógenos, metabolismo de carbohidratos, metabolismo de aminoácidos y obtención de energía; marcadores de seguridad para el hospedero como genes de resistencia para la tetraciclina y la lincosamida. Todos los marcadores fueron alineados a nivel de nucleótidos usando el programa MUSCLE v5 (Edgar, 2022), para lo cual se incluyó la secuencia completa del gen de cada uno de los aislados probióticos. En el caso de los genes de resistencia a antibióticos y las bacteriocinas, se alinearon solo las secuencias de los aislados que contenían este tipo de genes. El diseño de los primers se realizó manualmente sobre las regiones más conservadas del gen siguiendo las recomendaciones para el diseño de primers (Dieffenbach et al., 1993). En la Tabla 3-1 Se observan los diferentes primers diseñados con su respectiva secuencia, funcionalidad, temperatura de alineamiento, concentración de primers usada en las pruebas moleculares y código del primer. 3.5 Cepas bacterianas de estudio Se emplearon 5 cepas probióticas y 2 cepas patógenas para el estudio. Las 5 cepas probióticas (BAL) fueron proporcionadas por la Universidad Nacional de Colombia, sede Medellín, del Laboratorio de Microbiología de Aguas y Alimentos. Estas se encontraban liofilizadas, fueron enriquecidas en caldo (MRS, Merck), se incubaron a 37°C durante 48 horas bajo condiciones de CO2. Luego, se cultivaron en un medio selectivo en Agar (MRS, Merck) y se incubaron a 37°C durante 72 horas bajo condiciones de CO2. Las 2 cepas patógenas empleadas fueron proporcionadas por la Universidad Pontificia Bolivariana que fueron Escherichia coli ATCC 25922 y Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028. Estas fueron enriquecidas en caldo Brain Heart Infusion (BHI, BD) a 35,4°C por 24 horas, luego se cultivaron en Agar Plate Count (PCA, BD) a 35,4°C por 24 horas. Posteriormente se conservaron en crioviales de preservación con 30 % v/v de glicerol y almacenadas a -20°C en el Laboratorio Bioambiental de la Universidad Pontificia Bolivariana. En la Tabla 3-2 se observan las 7 cepas bacterianas de estudio. También, se realizó la confirmación morfológica y bioquímica bacteriana de las BAL por medio de microscopia óptica con tinción de Gram, y la morfología de la colonia fue evaluada en el estereoscopio. Además, se determinó la presencia o ausencia de la enzima catalasa. Posteriormente fueron conservadas en caldo BHI con 30% v/v de glicerol y almacenadas a -20°C en el Laboratorio de Microbiología de Aguas y Alimentos de la Universidad Nacional de Colombia. o Tinción de Gram: Las cepas bacterianas BAL se clasificaron como bacilos Grampositivos individuales o en cadena (Smith & Hussey, 2016). o Actividad de la catalasa: Se tomó una colonia pura directamente del agar MRS, se colocó en un portaobjetos limpio y se le adicionó una gota de H2O2 al 10% v/v. Se observó formación de burbujas, resultado positivo (Reiner, 2013). Se centrifugaron a 10000 rpm por 5 min cada una de las 7 cepas. Posteriormente, se le adicionaron 300 μL de buffer de elución EB y 120 μL del buffer MG para lisar el pellet, se continuo con el proceso de extracción de ADN siguiendo las indicaciones del fabricante NucleoSpin® Microbial DNA, Bioanalysis (Macherey-Nagel, Alemania). 3.6 Extracción ADN a partir de cepas probióticas y patógenas El ADN bacteriano se extrajo mediante el protocolo del kit NucleoSpin® Microbial DNA, Bioanalysis (Macherey-Nagel, Alemania) siguiendo las recomendaciones del fabricante. 3.6.1 Evaluación de la calidad del ADN La calidad del ADN extraído se evaluó mediante la lectura de absorbancia a 260 y 280 nm utilizando un espectrofotómetro Nanodrop 2000 (Thermo Scientific™), con 7 muestras de ADN a partir del protocolo de extracción. La pureza de cada muestra de ADN se determinó calculando la relación de densidad óptica (DO) a 260/280 nm. 3.7 Estandarización de la amplificación por PCR de los genes candidatos Se utilizó un volumen final de la reacción de 50 μL para la estandarización de la amplificación por PCR. Para ello, se mezclaron a una concentración final: Buffer Taq 1X, 0,2 mM de dNTPs, 0,5 μM de primers, 1,25 U/μL de ExcelTaq ™Taq DNA polymerase SMOBIO y se adicionaron 2 μl de un pool de ADN que contenía 20 ng de ADN de cada una de las 5 cepas probióticas. Se corrió la PCR en un termociclador Bio-Rad Termal cycler C1000 Touch®, con el siguiente perfil térmico: un ciclo inicial de desnaturalización 95°C por 2 min, 35 ciclos de 94 ºC por 30 seg, se variaron las temperaturas de hibridación para identificar la temperatura acorde a cada pareja de primers (50-55-60 °C) respectivamente y se hizo una extensión a 72 ºC durante 30 seg. En esta estandarización de PCRs se utilizaron los perfiles de amplificación de los 22 primers que fueron seleccionados como biomarcadores con actividad probiótica, las 2 cepas patógenas de Escherichia coli ATCC 25922 y Salmonella enterica Subsp. enterica Serovar Typhimurium ATCC 14028 y el pool de cepas probióticas de estudio las cuales presentaron mayor concentración de ADN, estas fueron: (Lactobacillus paracasei 0068396), (Lactobacillus paracasei LPC- 37400 B), (Lactobacillus plantarum Lp- 115400 B) nombradas en la Tabla 3-2. Tabla 4-1. 3.7.1 Amplificación de los genes candidatos por PCRs Cada uno de los genes que durante la estandarización se obtuvo un amplicon, se amplificaron nuevamente, pero de forma individual cada cepa, teniendo en cuenta las siguientes condiciones: se utilizó un volumen final de la reacción de 50 μL, donde se mezclaron a una concentración final: Buffer Taq 1X, 0,2 mM de dNTPs, 1,25 U/μL de ExcelTaq ™Taq DNA polymerase SMOBIO y se adicionaron 2 μL de ADN que estaban en un rango de concentración entre 3,3 y 49,7 ng/μL. La concentración de primers utilizada de cada gen específico se puede ver descrita en la Tabla 3-1. Se corrió la PCR utilizando el siguiente perfil térmico: temperatura de desnaturalización de 95°C por 2 min, 35 ciclos de 94°C por 30 seg, se utilizó una temperatura de hibridación de 50°C o 65 °C dependiendo de la pareja de primers (ver tabla 3-4) y se hizo una extensión a 72°C durante 30 seg. 3.7.2 Electroforesis Los productos de amplificación de la PCR se separaron por electroforesis en geles de agarosa al 2% p/v y buffer TBE 1X a un voltaje de 5V/cm durante 60 min. Se visualizaron usando 2 μL del fluorocromo EZ-Vision 6X (VWR AMRESCO)., y 2 μL de marcador de peso molecular HypperLadder™ 50bp (Bioline). Se analizaron los geles en presencia de luz ultravioleta en un equipo de transiluminación (Benchtop 3UV™). 3.7.3 Secuenciación Se seleccionaron amplicones para confirmar median la secuenciación de ADN empleando el método de Sanger unidireccionalmente. Se utilizaron los primers descritos en la Tabla 3-1 para el secuenciamiento y fue llevado a cabo en Psomagen: Multiomics Services and Data Analysis EE. UU. Se analizaron manualmente los datos obtenidos del secuenciamiento, se realizó la limpieza de las secuencias teniendo en cuenta la calidad. Luego, se analizaron las secuencias usando el algoritmo BLASTX y base de datos de proteínas no redundantes del NCBI (National Center for Biotechnology Information). | spa |
dc.description.researcharea | Biotecnología microbiana | spa |
dc.description.sponsorship | Universidad Nacional de Colombia | spa |
dc.description.sponsorship | Universidad Pontificia Bolivariana | spa |
dc.description.sponsorship | Fundación Juan Pablo Gutiérrez Cáceres | spa |
dc.format.extent | 178 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87346 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.references | Adam, S., & Anne, M. (2008). The Bacillus cereus GerN and GerT Protein Homologs Have Distinct Roles in Spore Germination and Outgrowth, Respectively. Journal of Bacteriology, 190(18), 6148–6152. https://doi.org/10.1128/jb.00789-08 | spa |
dc.relation.references | Adu, K. T., Wilson, R., Nichols, D. S., Baker, A. L., Bowman, J. P., & Britz, M. L. (2018). Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress. PloS One, 13(10), e0206317. https://doi.org/10.1371/journal.pone.0206317 | spa |
dc.relation.references | Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842 | spa |
dc.relation.references | Alexandraki, V., Kazou, M., Blom, J., Pot, B., Papadimitriou, K., & Tsakalidou, E. (2019). Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Frontiers in Microbiology, 10(December), 1–24. https://doi.org/10.3389/fmicb.2019.02916 | spa |
dc.relation.references | Alkan, C., Sajjadian, S., & Eichler, E. E. (2011). Limitations of next-generation genome sequence assembly. Nature Methods, 8(1), 61–65. https://doi.org/10.1038/nmeth.1527 | spa |
dc.relation.references | Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R., & Klaenhammer, T. R. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 3906–3912. https://doi.org/10.1073/pnas.0409188102 | spa |
dc.relation.references | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 | spa |
dc.relation.references | Arango, S. (2012). Biomarcadores para la evaluación de riesgo en la salud humana Biomarkers for the evaluation of human health risks. Facultad Nacional de Salud Pública, Antiquía, Colombia., 30, 75–82 | spa |
dc.relation.references | Asarina, S., Sariasih, S., & Kulsum, Y. (2022). In silico Prediction of Bacteriocin Gene within the Genus of Lactobacillus. Jurnal Biologi Indonesia, 18(1), 103–110. https://doi.org/10.47349/jbi/18012022/103 | spa |
dc.relation.references | Aziz, T., Naveed, M., Shabbir, M. A., Sarwar, A., Ali Khan, A., Zhennai, Y., Alharbi, M., Alsahammari, A., & Alasmari, A. F. (2023). Comparative genomics of food-derived probiotic Lactiplantibacillus plantarum K25 reveals its hidden potential, compactness, and efficiency. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1214478 | spa |
dc.relation.references | Baek, M. gyung, Kim, K. W., & Yi, H. (2023). Subspecies-level genome comparison of Lactobacillus delbrueckii. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-29404-3 | spa |
dc.relation.references | Baquero, F., Coque, T. M., Galán, J. C., & Martinez, J. L. (2021). The Origin of Niches and Species in the Bacterial World. Frontiers in Microbiology, 12, 657986. https://doi.org/10.3389/fmicb.2021.657986 | spa |
dc.relation.references | Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310 | spa |
dc.relation.references | Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., Boisvert, S., Chapman, J. A., Chapuis, G., Chikhi, R., Chitsaz, H., Gnerre, S., Godzaridis, É., Goldstein, S., Haimel, M., Hall, G., Haussler, D., Liu, Y., Luo, R., … Melnikov, S. (2013). <Assemblathon 2组装评估.pdf>. 1–31 | spa |
dc.relation.references | Breshears, L. M., Edwards, V. L., Ravel, J., & Peterson, M. L. (2015). Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiology, 15(1), 1–12. https://doi.org/10.1186/s12866-015-0608-0 | spa |
dc.relation.references | Bukhari, S. A. R., Irfan, M., Ahmad, I., & Chen, L. (2022). Comparative Genomics and Pan-Genome Driven Prediction of a Reduced Genome of Akkermansia muciniphila. Microorganisms, 10(7), 1–23. https://doi.org/10.3390/microorganisms10071350 | spa |
dc.relation.references | Bustin, S. A., Mueller, R., & Nolan, T. (2020). Parameters for Successful PCR Primer Design BT - Quantitative Real-Time PCR: Methods and Protocols (R. Biassoni & A. Raso (eds.); pp. 5–22). Springer New York. https://doi.org/10.1007/978-1-4939-9833-3_2 | spa |
dc.relation.references | Cañaveral, I. et al. (2020). bacteriocinas en el genoma de Lactobacillus plantarum . Bioinformatic analysis of the presence of bacteriocins in the Lactobacillus plantarum genome. 9 | spa |
dc.relation.references | Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology, 28(4), 281–370. https://doi.org/10.1080/1040-840291046759 | spa |
dc.relation.references | Castañeda Guillot, C. (2021). Nueva bioterapéutica: probióticos de próxima generación TT - New biotherapeutics: next-generation probiotics. Rev. Cuba. Pediatr, 93(1), e1384–e1384. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312021000100013%0Ahttp://www.revpediatria.sld.cu/index.php/ped/article/view/1384 | spa |
dc.relation.references | Castillo-Escandón, V., Fernández-Michel, S. G., Cueto- Wong, M. C., & Ramos-Clamont Montfort, G. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada En Ciencias Químico-Biológicas, 22, 1–17. https://doi.org/10.22201/fesz.23958723e.2019.0.173 | spa |
dc.relation.references | Chang, C. J., Lin, T. L., Tsai, Y. L., Wu, T. R., Lai, W. F., Lu, C. C., & Lai, H. C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615–622. https://doi.org/10.1016/j.jfda.2018.12.011 | spa |
dc.relation.references | Chen, Y. F., Zhao, W. J., Wu, R. N., Sun, Z. H., Zhang, W. Y., Wang, J. C., Bilige, M., & Zhang, H. P. (2014). Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk. Journal of Dairy Science, 97(12), 7413–7425. https://doi.org/10.3168/jds.2014-8520 | spa |
dc.relation.references | Cheng, F. S., Pan, D., Chang, B., Jiang, M., & Sang, L. X. (2020). Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases. World Journal of Clinical Cases, 8(8), 1361–1384. https://doi.org/10.12998/WJCC.V8.I8.1361 | spa |
dc.relation.references | Cho, Y. A., & Kim, J. (2015). Effect of probiotics on blood lipid concentrations: A meta-analysis of randomized controlled trials. Medicine (United States), 94(43), 1–10. https://doi.org/10.1097/MD.0000000000001714 | spa |
dc.relation.references | Claesson, M. J., van Sinderen, D., & O’Toole, P. W. (2008). Lactobacillus phylogenomics - Towards a reclassification of the genus. International Journal of Systematic and Evolutionary Microbiology, 58(12), 2945–2954. https://doi.org/10.1099/ijs.0.65848-0 | spa |
dc.relation.references | Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 1–19. https://doi.org/10.1186/s13059-016-0881-8 | spa |
dc.relation.references | Cortés-Martín, A., Selma, M. V., Tomás-Barberán, F. A., González-Sarrías, A., & Espín, J. C. (2020). Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Molecular Nutrition and Food Research, 64(9), 1–17. https://doi.org/10.1002/mnfr.201900952 | spa |
dc.relation.references | Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937 | spa |
dc.relation.references | Cui, Y., Hu, T., Qu, X., Zhang, L., Ding, Z., & Dong, A. (2015). Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. International Journal of Molecular Sciences, 16(6), 13172–13202. https://doi.org/10.3390/ijms160613172 | spa |
dc.relation.references | Cunha, M. C. da, & Paula, B. M. D. (2023). Aditivos Alimentares E O Impacto Sobre a Microbiota Intestinal Humana E Seus Efeitos Sobre a Saúde. Revista Interfaces: Saúde, Humanas e Tecnologia, 11(4), 3079–3091. https://doi.org/10.16891/2317-434x.v11.e3.a2023.pp3079-3091 | spa |
dc.relation.references | Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2019). Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas, 119(August 2018), 25–38. https://doi.org/10.1016/j.maturitas.2018.11.002 | spa |
dc.relation.references | De Filippis, F., Esposito, A., & Ercolini, D. (2022). Outlook on next-generation probiotics from the human gut. Cellular and Molecular Life Sciences, 79(2), 76. https://doi.org/10.1007/s00018-021-04080-6 | spa |
dc.relation.references | Dec, M., Urban-Chmiel, R., Stępień-Pyśniak, D., & Wernicki, A. (2017). Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathogens, 9(1), 54. https://doi.org/10.1186/s13099-017-0203-z | spa |
dc.relation.references | Dekham, K., Jones, S. M., Jitrakorn, S., Charoonnart, P., Thadtapong, N., Intuy, R., Dubbs, P., Siripattanapipong, S., Saksmerprome, V., & Chaturongakul, S. (2023). Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-47897-w | spa |
dc.relation.references | Dieffenbach, C. W., Lowe, T. M. J., & Dveksler, G. S. (1993). General concepts for PCR primer design. Genome Research, 3(3). https://doi.org/10.1101/gr.3.3.S30 | spa |
dc.relation.references | Dimonaco, N. J., Aubrey, W., Kenobi, K., Clare, A., & Creevey, C. J. (2021). No one tool to rule them all: prokaryotic gene prediction tool annotations are highly dependent on the organism of study. Bioinformatics, 38(5), 1198–1207. https://doi.org/10.1093/bioinformatics/btab82 | spa |
dc.relation.references | Doifode, T., Giridharan, V. V., Generoso, J. S., Bhatti, G., Collodel, A., Schulz, P. E., Forlenza, O. V., & Barichello, T. (2021). The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacological Research, 164, 105314. https://doi.org/10.1016/j.phrs.2020.105314 | spa |
dc.relation.references | Duary, R. K., Bhausaheb, M. A., Batish, V. K., & Grover, S. (2012). Anti-inflammatory and immunomodulatory efficacy of indig enous probiotic Lactobacillus plantarum Lp91 in colitis mouse model. Molecular Biology Reports, 39(4), 4765–4775. https://doi.org/10.1007/s11033-011-1269-1 | spa |
dc.relation.references | Edgar, R. C. (2022). Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-34630-w | spa |
dc.relation.references | FAO, E., & OMS, E. (2006). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estudios FAO Alimentación y Nutrición, 85, 52. file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdf | spa |
dc.relation.references | Farid, W., Masud, T., Sohail, A., Ahmad, N., Naqvi, S. M. S., Khan, S., Ali, A., Khalifa, S. A., Hussain, A., Ali, S., Saghir, M., Siddeeg, A., & Manzoor, M. F. (2021). Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from Indigenous Dahi. Food Science and Nutrition, 9(9), 5092–5102. https://doi.org/10.1002/fsn3.2468 | spa |
dc.relation.references | Fei, Y., Huang, L., Wang, H., Liang, J., Liu, G., & Bai, W. (2022). Adaptive mechanism of Lactobacillus amylolyticus L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles. Food Science and Nutrition, 10(5), 1548–1563. https://doi.org/10.1002/fsn3.2779 | spa |
dc.relation.references | Food, E., & Authority, S. (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6), 1–10. https://doi.org/10.2903/j.efsa.2012.2740 | spa |
dc.relation.references | Francisco, B., & Rocha, G. (2020). Sistema automatizado de anotación de genes asociados a características probióticas desde secuenciación de nueva generación. [Universidad de concepción,Chile]. http://repositorio.udec.cl/bitstream/11594/6395/1/Tesis Sistema automatizado de anotación de genes.Image.Marked.pdf | spa |
dc.relation.references | Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49 | spa |
dc.relation.references | Green, S. J., Venkatramanan, R., & Naqib, A. (2015). Deconstructing the Polymerase Chain Reaction: Understanding and Correcting Bias Associated with Primer Degeneracies and Primer-Template Mismatches. PLOS ONE, 10(5), e0128122. https://doi.org/10.1371/journal.pone.0128122 | spa |
dc.relation.references | Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: A database and tool platform for bacteriocin characterization. BMC Microbiology, 10. https://doi.org/10.1186/1471-2180-10-22 | spa |
dc.relation.references | Han, M. V, Thomas, G. W. C., Lugo-Martinez, J., & Hahn, M. W. (2013). Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3. Molecular Biology and Evolution, 30(8), 1987–1997. https://doi.org/10.1093/molbev/mst100 | spa |
dc.relation.references | Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1–8. https://doi.org/10.1016/j.ygeno.2015.11.003 | spa |
dc.relation.references | Huang, D., Yang, B., Chen, Y., Stanton, C., Ross, R. P., Zhao, J., Zhang, H., & Chen, W. (2020). Comparative genomic analyses of Lactobacillus rhamnosus isolated from Chinese subjects. Food Bioscience, 36, 100659. https://doi.org/10.1016/j.fbio.2020.100659 | spa |
dc.relation.references | Huang, R., Wu, F., Zhou, Q., Wei, W., Yue, J., Xiao, B., & Luo, Z. (2022). Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications. Microbiological Research, 260(January), 127019. https://doi.org/10.1016/j.micres.2022.127019 | spa |
dc.relation.references | Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017 | spa |
dc.relation.references | Huang, Z., Zhou, X., Stanton, C., Ross, R. P., Zhao, J., Zhang, H., Yang, B., & Chen, W. (2021). Comparative genomics and specific functional characteristics analysis of Lactobacillus acidophilus. Microorganisms, 9(9), 1–23. https://doi.org/10.3390/microorganisms9091992 | spa |
dc.relation.references | Ibrahim, M., & Raman, K. (2021). Two-species community design of lactic acid bacteria for optimal production of lactate. Computational and Structural Biotechnology Journal, 19, 6039–6049. https://doi.org/10.1016/j.csbj.2021.11.009 | spa |
dc.relation.references | Isazadeh, A., Hajazimian, S., Shadman, B., Safaei, S., Bedoustani, A. B., Chavoshi, R., Shanehbandi, D., Mashayekhi, M., Nahaei, M., & Baradaran, B. (2021). Anti-Cancer Effects of Probiotic Lactobacillus acidophilus for Colorectal Cancer Cell Line Caco-2 through Apoptosis Induction. Pharmaceutical Sciences, 27(2), 262–267. https://doi.org/10.34172/PS.2020.52 | spa |
dc.relation.references | Isozaki, S., Konishi, H., Fujiya, M., Tanaka, H., Murakami, Y., Kashima, S., Ando, K., Ueno, N., Moriichi, K., & Okumura, T. (2021). Probiotic-derived polyphosphate accelerates intestinal epithelia wound healing through inducing platelet-derived mediators. Mediators of Inflammation, 2021. https://doi.org/10.1155/2021/5582943 | spa |
dc.relation.references | Je, S. (2013). Microbiota autóctona , probióticos y prebióticos (Vol. 28, pp. 38–41) | spa |
dc.relation.references | Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L. E., Frye, J. G., Elsayegh, T., Sardar, D., Westman, E. L., Pawlowski, A. C., … McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45(D1), D566–D573. https://doi.org/10.1093/nar/gkw1004 | spa |
dc.relation.references | Jia, Y., Yang, B., Ross, P., Stanton, C., Zhang, H., Zhao, J., & Chen, W. (2020). Comparative genomics analysis of Lactobacillus mucosae from different niches. Genes, 11(1). https://doi.org/10.3390/genes11010095 | spa |
dc.relation.references | Jiménez-Pranteda, M. L., Pérez-Davó, A., Monteoliva-Sánchez, M., Ramos-Cormenzana, A., & Aguilera, M. (2015). Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. Food Analytical Methods, 8(2), 272–289. https://doi.org/10.1007/s12161-014-9923-6 | spa |
dc.relation.references | Jing, Y., Mu, C., Wang, H., Shen, J., Zoetendal, E. G., & Zhu, W. (2022). Amino acid utilization allows intestinal dominance of Lactobacillus amylovorus. ISME Journal, 16(11), 2491–2502. https://doi.org/10.1038/s41396-022-01287-8 | spa |
dc.relation.references | Joerger, M. C., & Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology, 167(2), 439–446. https://doi.org/10.1128/jb.167.2.439-446.1986 | spa |
dc.relation.references | Johnson, B. R., & Klaenhammer, T. R. (2016). AcmB is an S-layer-associated β-Nacetylglucosaminidase and functional autolysin in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 82(18), 5687–5697. https://doi.org/10.1128/AEM.02025-16 | spa |
dc.relation.references | Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S. Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031 | spa |
dc.relation.references | Kanmani, P., Albarracin, L., Kobayashi, H., Hebert, E. M., Saavedra, L., Komatsu, R., Gatica, B., Miyazaki, A., Ikeda-Ohtsubo, W., Suda, Y., Aso, H., Egusa, S., Mishima, T., Salas-Burgos, A., Takahashi, H., Villena, J., & Kitazawa, H. (2018a). Genomic Characterization of Lactobacillus delbrueckii TUA4408L and Evaluation of the Antiviral Activities of its Extracellular Polysaccharides in Porcine Intestinal Epithelial Cells. Frontiers in Immunology, 9, 2178. https://doi.org/10.3389/fimmu.2018.02178 | spa |
dc.relation.references | Kanmani, P., Albarracin, L., Kobayashi, H., Hebert, E. M., Saavedra, L., Komatsu, R., Gatica, B., Miyazaki, A., Ikeda-Ohtsubo, W., Suda, Y., Aso, H., Egusa, S., Mishima, T., Salas-Burgos, A., Takahashi, H., Villena, J., & Kitazawa, H. (2018b). Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells. Frontiers in Immunology, 9(SEP), 1–16. https://doi.org/10.3389/fimmu.2018.02178 | spa |
dc.relation.references | Kant, R., Blom, J., Palva, A., Siezen, R. J., & de Vos, W. M. (2011). Comparative genomics of Lactobacillus. Microbial Biotechnology, 4(3), 323–332. https://doi.org/10.1111/j.1751-7915.2010.00215.x | spa |
dc.relation.references | Kant, R., Blom, J., Palva, A., Siezen, R. J., & Vos, W. M. De. (2010). Comparative genomics of Lactobacillus. 4(May), 323–332. https://doi.org/10.1111/j.1751-7915.2010.00215.x | spa |
dc.relation.references | Kirmiz, N., Galindo, K., Cross, K. L., Luna, E., Rhoades, N., & Podar, M. (2020). crossm Comparative Genomics Guides Elucidation of Vitamin B 12. Applied and Environmental Microbiology, 86(3), e02117-19. | spa |
dc.relation.references | Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1990–1995. https://doi.org/10.1073/pnas.0337704100 | spa |
dc.relation.references | Kumar, R., Bansal, P., Singh, J., & Dhanda, S. (2020). Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochemistry, 99(May), 79–86. https://doi.org/10.1016/j.procbio.2020.08.028 | spa |
dc.relation.references | Kumari, R., Singh, A., Yadav, A. N., Mishra, S., Sachan, A., & Sachan, S. G. (2020). Probiotics, prebiotics, and synbiotics: Current status and future uses for human health. In New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health. Elsevier Inc. https://doi.org/10.1016/B978-0-12-820528-0.00012-0 | spa |
dc.relation.references | Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. J. (2008). Genes and molecules of Lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews : MMBR, 72(4), 728–764, Table of Contents. https://doi.org/10.1128/MMBR.00017-08 | spa |
dc.relation.references | Lehri, B., Seddon, A. M., & Karlyshev, A. V. (2017). Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. In Standards in genomic sciences (Vol. 12, p. 19). https://doi.org/10.1186/s40793-017-0228-4 | spa |
dc.relation.references | Leis, R., de Castro, M. J., de Lamas, C., Picáns, R., & Couce, M. L. (2020). Effects of prebiotic and probiotic supplementation on lactase deficiency and lactose intolerance: A systematic review of controlled trials. Nutrients, 12(5), 1–13. https://doi.org/10.3390/nu12051487 | spa |
dc.relation.references | Lerner, A., Neidhöfer, S., & Matthias, T. (2017). The gut microbiome feelings of the brain: A perspective for non-microbiologists. Microorganisms, 5(4), 1–24. https://doi.org/10.3390/microorganisms5040066 | spa |
dc.relation.references | Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178–2189. https://doi.org/10.1101/gr.1224503 | spa |
dc.relation.references | Li, M., Liu, Q., Teng, Y., Ou, L., Xi, Y., Chen, S., & Duan, G. (2019). The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. Infection and Drug Resistance, 12, 2853–2863. https://doi.org/10.2147/IDR.S221212 | spa |
dc.relation.references | Lim, E. M., Ehrlich, S. D., Maguin, E., Hou, J., Liu, F., Ren, D., Han, W., Du, Y., Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T., Oda, M., Kafsi, H. El, Binesse, J., Loux, V., … Mangenot, S. (2015). Open Access bulgaricus : a chronicle of evolution in action. Journal of Dairy Science, 3(12), 7300–7305. http://dx.doi.org/10.3168/jds.2012-6514%0Ahttp://dx.doi.org/10.3168/jds.S0022-0302(06)72560-7 | spa |
dc.relation.references | Lim, E. Y., Lee, S. Y., Shin, H. S., Lee, J., Nam, Y. Do, Lee, D. O., Lee, J. Y., Yeon, S. H., Son, R. H., Park, C. L., Heo, Y. H., & Kim, Y. T. (2020). The effect of Lactobacillus acidophilus YT1 (MENOLACTO) on improving menopausal symptoms: A randomized, double-blinded, placebo-controlled clinical trial. Journal of Clinical Medicine, 9(7), 1–16. https://doi.org/10.3390/jcm9072173 | spa |
dc.relation.references | Linn, Y. H., Thu, K. K., & Win, N. H. H. (2019). Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea Among Cervical Cancer Patients: a Randomized Double-Blind Placebo-Controlled Study. Probiotics and Antimicrobial Proteins, 11(2), 638–647. https://doi.org/10.1007/s12602-018-9408-9 | spa |
dc.relation.references | Liu, B., Zheng, D., Zhou, S., Chen, L., & Yang, J. (2022). VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Research, 50(D1), D912–D917. https://doi.org/10.1093/nar/gkab1107 | spa |
dc.relation.references | Liu, Z., Ma, Y., Yang, J., Zhang, P., Moyer, M. P., & Qin, H. (2022). Retraction: Expression of the Lactobacillus Plantarum Surface Layer MIMP Protein Protected NCM460 Epithelial Cells from Enteroinvasive Escherichia Coli Infection (Cellular Physiology and Biochemistry (2011) 27 (99–108) DOI: 10.1159/000325210). Cellular Physiology and Biochemistry, 56(3), 314. https://doi.org/10.33594/000000538 | spa |
dc.relation.references | López-Mendoza, J., Adriano-Anaya, L., Gálvez-López, D., & Vázquez-Ovando, A. (2023). Bioactive compounds in cheeses: biosynthesis, biological activity, and contribution of lactic acid bacteria. Agronomia Mesoamericana, 34(2). https://doi.org/10.15517/am.v34i2.51432 | spa |
dc.relation.references | Lukjancenko, O., Ussery, D. W., & Wassenaar, T. M. (2012). Comparative Genomics of Bifidobacterium, Lactobacillus and Related Probiotic Genera. Microbial Ecology, 63(3), 651–673. https://doi.org/10.1007/s00248-011-9948-y | spa |
dc.relation.references | Ma, T., Shen, X., Shi, X., Sakandar, H. A., Quan, K., Li, Y., Jin, H., Kwok, L. Y., Zhang, H., & Sun, Z. (2023). Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. Trends in Food Science and Technology, 138(June), 178–198. https://doi.org/10.1016/j.tifs.2023.06.013 | spa |
dc.relation.references | Magoch, M., Nogly, P., Grudnik, P., Ma, P., Boczkus, B., Neves, A. R., Archer, M., & Dubin, G. (2020). Crystal structure of mannose specific IIA subunit of phosphotransferase system from Streptococcus pneumoniae. Molecules, 25(20), 1–13. https://doi.org/10.3390/molecules25204633 | spa |
dc.relation.references | Makarova, K. S., & Koonin, E. V. (2007). Evolutionary genomics of lactic acid bacteria. Journal of Bacteriology, 189(4), 1199–1208. https://doi.org/10.1128/JB.01351-06 | spa |
dc.relation.references | Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., Dosti, B., … Mills, D. (2006). Comparative genomics of the lactic acid bacteria. Pnas, 103(42), 15611–15616. https://doi.org/10.1073/pnas.0607117103 | spa |
dc.relation.references | Mao, Y., Zhang, X., & Xu, Z. (2020). Identification of antibacterial substances of Lactobacillus plantarum DY-6 for bacteriostatic action. Food Science and Nutrition, 8(6), 2854–2863. https://doi.org/10.1002/fsn3.1585 | spa |
dc.relation.references | Martín, R., Heilig, H. G. H. J., Zoetendal, E. G., Jiménez, E., Fernández, L., Smidt, H., & Rodríguez, J. M. (2007). Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Research in Microbiology, 158(1), 31–37. https://doi.org/10.1016/j.resmic.2006.11.004 | spa |
dc.relation.references | Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: Streamlining the definitions. Frontiers in Microbiology, 10(MAY). https://doi.org/10.3389/fmicb.2019.01047 | spa |
dc.relation.references | McAuliffe, O., Cano, R. J., & Klaenhammer, T. R. (2005). Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 71(8), 4925–4929. https://doi.org/10.1128/AEM.71.8.4925-4929.2005 | spa |
dc.relation.references | McFarland, L. V., Evans, C. T., & Goldstein, E. J. C. (2018). Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Frontiers in Medicine, 5(MAY). https://doi.org/10.3389/fmed.2018.00124 | spa |
dc.relation.references | McOrist, A. L., Jackson, M., & Bird, A. R. (2002). A comparison of five methods for extraction of bacterial DNA from human faecal samples. Journal of Microbiological Methods, 50(2), 131–139. https://doi.org/https://doi.org/10.1016/S0167-7012(02)00018-0 | spa |
dc.relation.references | Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics & Development, 15(6), 589–594. https://doi.org/https://doi.org/10.1016/j.gde.2005.09.006 | spa |
dc.relation.references | Meng, F., Zhu, X., Zhao, H., Nie, T., Lu, F., Lu, Z., & Lu, Y. (2021). A class Ⅲ bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control, 121(July 2020), 107597. https://doi.org/10.1016/j.foodcont.2020.107597 | spa |
dc.relation.references | Michels, M., Jesus, G.F.A., Voytena, A. P. L. et al. (2022). Immunomodulatory Effect of Bifidobacterium, Lactobacillus, and Streptococcus Strains of Paraprobiotics in Lipopolysaccharide-Stimulated Inflammatory Responses in RAW-264.7 Macrophages. Curr Microbiol, 79,9. doi.org/10.1007/s00284-021-02708-1 | spa |
dc.relation.references | Milani, C., Turroni, F., Duranti, S., Lugli, G. A., Mancabelli, L., Ferrario, C., Van Sinderen, D., & Ventura, M. (2016). Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Applied and Environmental Microbiology, 82(4), 980–991. https://doi.org/10.1128/AEM.03500-15 | spa |
dc.relation.references | Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315–327. https://doi.org/10.1016/j.ygeno.2010.03.001 | spa |
dc.relation.references | Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 | spa |
dc.relation.references | Molina, A. (2019). Probiotics and their mechanism of action in animal feed. Agronomia Mesoamericana, 30(2), 601–611. https://doi.org/10.15517/am.v30i2.34432 | spa |
dc.relation.references | Moon, A., Sun, Y., Wang, Y., Huang, J., Zafar Khan, M. U., & Qiu, H.-J. (2022). Lactic Acid Bacteria as Mucosal Immunity Enhancers and Antivirals through Oral Delivery. Applied Microbiology, 2(4), 837–854. https://doi.org/10.3390/applmicrobiol2040064 | spa |
dc.relation.references | Moravkova, M., Kostovova, I., Kavanova, K., Pechar, R., Stanek, S., Brychta, A., Zeman, M., & Kubasova, T. (2022). Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Microorganisms, 11(1). https://doi.org/10.3390/microorganisms11010103 | spa |
dc.relation.references | Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 1–22. https://doi.org/10.1186/s12934-020-01426-w | spa |
dc.relation.references | O’Sullivan, O., O’Callaghan, J., Sangrador-Vegas, A., McAuliffe, O., Slattery, L., Kaleta, P., Callanan, M., Fitzgerald, G. F., Ross, R. P., & Beresford, T. (2009). Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiology, 9(1), 50. https://doi.org/10.1186/1471-2180-9-50 | spa |
dc.relation.references | Opel, K. L., Chung, D., & McCord, B. R. (2010). A study of PCR inhibition mechanisms using real time PCR. Journal of Forensic Sciences, 55(1), 25–33. https://doi.org/10.1111/j.1556-4029.2009.01245.x | spa |
dc.relation.references | Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Annals of Medicine, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232 | spa |
dc.relation.references | Pacheco-Martínez, C. K., Saucedo-Castañeda, G., Rodríguez-Durán, L. V., & Pérez-Chabela, L. (2023). Características de microorganismos utilizados como probióticos tradicionales y nuevos probióticos. Actualidades Biológicas, 45(119), 1–12. https://doi.org/10.17533/udea.acbi/v45n119a05 | spa |
dc.relation.references | Pan, M., Hidalgo-Cantabrana, C., Goh, Y. J., Sanozky-Dawes, R., & Barrangou, R. (2019). Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Frontiers in Microbiology, 10, 3146. https://doi.org/10.3389/fmicb.2019.03146 | spa |
dc.relation.references | Papadimitriou, K., Zoumpopoulou, G., Foligné, B., Alexandraki, V., Kazou, M., Pot, B., & Tsakalidou, E. (2015). Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology, 6(FEB), 1–29. https://doi.org/10.3389/fmicb.2015.00058 | spa |
dc.relation.references | Park, S., Kim, J. A., Jang, H. J., Kim, D. H., & Kim, Y. (2023). Complete genome sequence of functional probiotic candidate Lactobacillus amylovorus CACC736. Journal of Animal Science and Technology, 65(2), 473–477. https://doi.org/10.5187/jast.2022.e85 | spa |
dc.relation.references | Pieniz, S., Andreazza, R., Anghinoni, T., Camargo, F., & Brandelli, A. (2014). Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control, 37(1), 251–256. https://doi.org/10.1016/j.foodcont.2013.09.055 | spa |
dc.relation.references | Pridmore, R. D., Pittet, A. C., Praplan, F., & Cavadini, C. (2008). Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiology Letters, 283(2), 210–215. https://doi.org/10.1111/j.1574-6968.2008.01176.x | spa |
dc.relation.references | Purity, T. (2015). Troubleshooting Sanger Sequencing Results. 1–12. | spa |
dc.relation.references | Quero, S., Párraga-Niño, N., García-Núñez, M., & Sabrià, M. (2016). Proteomics in infectious diseases. Enfermedades Infecciosas y Microbiologia Clinica, 34(4), 253–260. https://doi.org/10.1016/j.eimc.2014.07.015 | spa |
dc.relation.references | Rajput, A., Chauhan, S. M., Mohite, O. S., Hyun, J. C., Ardalani, O., Jahn, L. J., Sommer, M. O., & Palsson, B. O. (2023). Pangenome analysis reveals the genetic basis for taxonomic classification of the Lactobacillaceae family. Food Microbiology, 115(June), 104334. https://doi.org/10.1016/j.fm.2023.104334 | spa |
dc.relation.references | Ramírez, J. L. R. (2022). CARACTERIZACIÓN Y ACTIVIDAD ANTIBACTERIANA DE UNA BACTERIOCINA AISLADA DE Limosilactobacillus reuteri, EN MICROORGANISMOS ASOCIADOS A CARIES Y SALUD (Vol. 1, Issue 2) [UNIVERSIDAD DE CHILE FACULTAD DE ODONTOLOGÍA INSTITUTO DE INVESTIGACIÓN EN CIENCIAS ODONTOLÓGICAS ÁREA DE BIOQUÍMICA LABORATORIO DE BIOQUÍMICA Y BIOLOGÍA ORAL]. https://repositorio.uchile.cl/bitstream/handle/2250/188188/Caracterizacion-y-actividad-antibacteriana.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1–7. https://doi.org/10.1016/j.foodres.2009.09.009 | spa |
dc.relation.references | Reiner, K. (2013). Catalase Test Protocol. November 2010, 1–9. http://www.microbelibrary.org/library/laboratory-test/3226-catalase-test-protocol | spa |
dc.relation.references | Rhoads, A., & Au, K. F. (2015). PacBio Sequencing and Its Applications. Genomics, Proteomics and Bioinformatics, 13(5), 278–289. https://doi.org/10.1016/j.gpb.2015.08.002 | spa |
dc.relation.references | Richard, M. L., & Sokol, H. (2019). The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nature Reviews Gastroenterology and Hepatology, 16(6), 331–345. https://doi.org/10.1038/s41575-019-0121-2 | spa |
dc.relation.references | Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. https://doi.org/10.1016/j.fm.2008.06.008 | spa |
dc.relation.references | Rohani, M., Noohi, N., Talebi, M., Katouli, M., & Pourshafie, M. R. (2015). Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities. PloS One, 10(12), e0144467. https://doi.org/10.1371/journal.pone.0144467 | spa |
dc.relation.references | Sainz-pardo, L. G., Borrero, J., José, J., Martínez, J., & Arbulu, S. (2011). Producción controlada de enterolisina A en Lactococcus lactis como estrategia para la obtención de hidrolizados lácteos con actividad inhibidora de la enzima conversora de la angiotensina ( ECA ) Coautores. 3(8), 5003. | spa |
dc.relation.references | Sánchez, B., Fernández-García, M., Margolles, A., de los Reyes-Gavilán, C. G., & Ruas-Madiedo, P. (2010). Technological and probiotic selection criteria of a bile-adapted Bifidobacterium animalis subsp. lactis strain. International Dairy Journal, 20(11), 800–805. https://doi.org/10.1016/j.idairyj.2010.06.004 | spa |
dc.relation.references | Savijoki, K., & Palva, A. (1997). Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme. Applied and Environmental Microbiology, 63(7), 2850–2856. https://doi.org/10.1128/aem.63.7.2850-2856.1997 | spa |
dc.relation.references | Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 | spa |
dc.relation.references | Simonová, M. P., Chrastinová, L., & Lauková, A. (2020). Autochtonous strain Enterococcus faecium ef2019(Ccm7420), its bacteriocin and their beneficial effects in broiler rabbits—a review. Animals, 10(7), 1–17. https://doi.org/10.3390/ani10071188 | spa |
dc.relation.references | Singh, P., Chung, H. J., Lee, I. A., D’Souza, R., Kim, H. J., & Hong, S. T. (2018). Elucidation of the anti-hyperammonemic mechanism of Lactobacillus amylovorus JBD401 by comparative genomic analysis. BMC Genomics, 19(1), 292. https://doi.org/10.1186/s12864-018-4672-3 | spa |
dc.relation.references | Smith, A., & Hussey, M. (2016). Gram Stain Protocols. American Society for Microbiology, September 2020, 1–9. www.asmscience.org | spa |
dc.relation.references | Soderholm, A. T., & Pedicord, V. A. (2019). Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology, 158(4), 267–280. https://doi.org/10.1111/imm.13117 | spa |
dc.relation.references | Son, S., Lee, R., Park, S. M., Lee, S. H., Lee, H. K., Kim, Y., & Shin, D. (2021). Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics. Journal of Animal Science and Technology, 63(6), 1411–1422. https://doi.org/10.5187/jast.2021.e126 | spa |
dc.relation.references | Sornplang, P., & Piyadeatsoontorn, S. (2016). Probiotic isolates from unconventional sources: a review. Journal of Animal Science and Technology, 58, 26. https://doi.org/10.1186/s40781-016-0108-2 | spa |
dc.relation.references | Sun, Z., Harris, H. M. B., McCann, A., Guo, C., Argimón, S., Zhang, W., Yang, X., Jeffery, I. B., Cooney, J. C., Kagawa, T. F., Liu, W., Song, Y., Salvetti, E., Wrobel, A., Rasinkangas, P., Parkhill, J., Rea, M. C., O’Sullivan, O., Ritari, J., … O’Toole, P. W. (2015). Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 6, 8322. https://doi.org/10.1038/ncomms9322 | spa |
dc.relation.references | Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & Von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003 | spa |
dc.relation.references | Tekaia, F. (2016). Inferring orthologs: Open questions and perspectives. Genomics Insights, 9, 17–28. https://doi.org/10.4137/GEI.S37925 | spa |
dc.relation.references | Tormo Carnicé, R. (2006). Probióticos. Concepto y mecanismos de acción. Anales de Pediatria Monografias, 4(1), 30–41. | spa |
dc.relation.references | Toumi, R., Abdelouhab, K., Rafa, H., Soufli, I., Raissi-Kerboua, D., Djeraba, Z., & Touil-Boukoffa, C. (2013). Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis. Immunopharmacology and Immunotoxicology, 35(3), 403–409. https://doi.org/10.3109/08923973.2013.790413 | spa |
dc.relation.references | Treangen, T. J., & Salzberg, S. L. (2012). Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nature Reviews Genetics, 13(1), 36–46. https://doi.org/10.1038/nrg3117 | spa |
dc.relation.references | Van Heel, A. J., De Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research, 46(W1), W278–W281. https://doi.org/10.1093/nar/gky383 | spa |
dc.relation.references | Vargas, L. A., Olson, D. W., & Aryana, K. J. (2015). Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp: Bulgaricus LB-12. Journal of Dairy Science, 98(4), 2215–2221. https://doi.org/10.3168/jds.2014-8869 | spa |
dc.relation.references | Wang, X., & Liotta, L. (2011). Clinical bioinformatics: A new emerging science. Journal of Clinical Bioinformatics, 1(1), 2–4. https://doi.org/10.1186/2043-9113-1-1 | spa |
dc.relation.references | Wehmeier, U. F., Nobelmann, B., & Lengeler, J. W. (1992). Cloning of the Escherichia coli sor genes for L-sorbose transport and metabolism and physical mapping of the genes near metH and iclR. Journal of Bacteriology, 174(23), 7784–7790. https://doi.org/10.1128/jb.174.23.7784-7790.1992 | spa |
dc.relation.references | Wittouck, S., Wuyts, S., Meehan, C. J., van Noort, V., & Lebeer, S. (2019). A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex . MSystems, 4(5). https://doi.org/10.1128/msystems.00264-19 | spa |
dc.relation.references | Xu, H., Jeong, H. S., Lee, H. Y., & Ahn, J. (2009). Assessment of cell surface properties and adhesion potential of selected probiotic strains. Letters in Applied Microbiology, 49(4), 434–442. https://doi.org/10.1111/j.1472-765X.2009.02684.x | spa |
dc.relation.references | Yandell, M., & Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5), 329–342. https://doi.org/10.1038/nrg3174 | spa |
dc.relation.references | Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., & Huang, H. (2021). Oscillospira - a candidate for the next-generation probiotics. Gut Microbes, 13(1). https://doi.org/10.1080/19490976.2021.1987783 | spa |
dc.relation.references | Yebra, M. J., Veyrat, A., Santos, M. A., & Pérez-Martínez, G. (2000). Genetics of L-sorbose transport and metabolism in Lactobacillus casei. Journal of Bacteriology, 182(1), 155–163. https://doi.org/10.1128/JB.182.1.155-163.2000 | spa |
dc.relation.references | Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/https://doi.org/10.1016/j.apcbee.2012.06.010 | spa |
dc.relation.references | Zendeboodi, F., Khorshidian, N., Mortazavian, A. M., & da Cruz, A. G. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103–123. https://doi.org/10.1016/j.cofs.2020.03.009 | spa |
dc.relation.references | Zhang, C. xing, Wang, H. yu, & Chen, T. xin. (2019). Interactions between Intestinal Microflora/Probiotics and the Immune System. BioMed Research International, 2019. https://doi.org/10.1155/2019/6764919 | spa |
dc.relation.references | Zhang, L., Zhang, Y., Zhong, W., Di, C., Lin, X., & Xia, Z. (2014). Heme oxygenase-1 ameliorates dextran sulfate sodiuminduced acute murine colitis by regulating Th17/Treg cell balance. Journal of Biological Chemistry, 289(39), 26847–26858. https://doi.org/10.1074/jbc.M114.590554 | spa |
dc.relation.references | Zhang, T., Pan, Y., Li, B., Ou, J., Zhang, J., Chen, Y., Peng, X., & Chen, L. (2013). Molecular cloning and antimicrobial activity of enterolysin A and helveticin J of bacteriolysins from metagenome of Chinese traditional fermented foods. Food Control, 31(2), 499–507. https://doi.org/https://doi.org/10.1016/j.foodcont.2012.11.015 | spa |
dc.relation.references | Zhao, T., & Schranz, M. E. (2017). Network approaches for plant phylogenomic synteny analysis. Current Opinion in Plant Biology, 36, 129–134. https://doi.org/10.1016/j.pbi.2017.03.001 | spa |
dc.relation.references | Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107 | spa |
dc.relation.references | Zhou, X., Yang, B., Stanton, C., Ross, R. P., Zhao, J., Zhang, H., & Chen, W. (2020). Comparative analysis of Lactobacillus gasseri from Chinese subjects reveals a new species-level taxa. BMC Genomics, 21(1), 1–16. https://doi.org/10.1186/s12864-020-6527-y | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología | spa |
dc.subject.proposal | Genómica comparativa | |
dc.subject.proposal | Lactobacillus | |
dc.subject.proposal | Probióticos | |
dc.subject.proposal | Biomarcador | |
dc.subject.proposal | Genoma | |
dc.subject.proposal | Comparative genomics | eng |
dc.subject.proposal | Lactobacillus | eng |
dc.subject.proposal | Probiotic activity | eng |
dc.subject.proposal | Biomarker | eng |
dc.subject.proposal | Genome | eng |
dc.subject.wikidata | Probióticos | |
dc.subject.wikidata | Genómica comparativa | |
dc.subject.wikidata | Biomarcadores | |
dc.title | Estudio de genómica comparativa para la identificación de biomarcadores con actividad probiótica en el género bacteriano Lactobacillus spp | |
dc.title.translated | Comparative genomics study for the identification of biomarkers with probiotic activity in Lactobacillus spp. | |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estudio de genómica comparativa para la identificación de biomarcadores con actividad probiótica en Lactobacillus spp | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1214724357.2024 (1).pdf
- Tamaño:
- 1.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: