Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi

dc.contributor.advisorArdila Barrantes, Harold Duban
dc.contributor.authorCastiblanco Quiroga, Nelly Fernanda
dc.contributor.researchgroupEstudio de Actividades Metabólicas Vegetalesspa
dc.date.accessioned2023-06-14T23:13:05Z
dc.date.available2023-06-14T23:13:05Z
dc.date.issued2023-06-15
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractLa tiamina se ha postulado como un potencial inductor de resistencia al marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod), dado que su aspersión foliar en plantas de clavel reduce significativamente la severidad de la enfermedad. No obstante, hasta el momento se desconocen los fenómenos bioquímicos involucrados en la inducción de resistencia en este modelo, por ejemplo, no se conoce el efecto que puede tener este tipo de sustancias directamente sobre el patógeno. En este estudio se investigó el efecto que tiene la tiamina sobre el crecimiento micelial y los niveles transcripcionales de los genes sod1, sed4, six7 y six10 los cuales codifican para posibles factores de virulencia de este patógeno del clavel. Para ello, primero se realizó el cultivo in vitro del patógeno y se determinó el efecto de la presencia de tiamina sobre el crecimiento y los niveles de transcripción de sod1 y sed4. Posteriormente, se inocularon con Fod plantas de clavel previamente tratadas con tiamina y se confirmó el efecto de ésta en la disminución de la severidad a la enfermedad; en este punto se evaluaron los niveles de transcripción in planta de los genes sed4, sod1, six7 y six10 en dos variedades de clavel con niveles de resistencia contrastante al marchitamiento vascular. En la primera etapa, se evidenció que, durante la fase exponencial, la presencia de tiamina genera una disminución de hasta un 68% en el crecimiento micelial, al comparar con el control; así mismo se observó que la presencia de este compuesto genera una modulación de los niveles transcripcionales de sod1 y sed4 en función de la fase de crecimiento del patógeno. A nivel in planta, se confirmó que la aspersión foliar de tiamina disminuye la severidad de la enfermedad causada por Fod y que, durante este proceso, hay una disminución de los niveles de expresión de sod1, six7, six10 y un aumento de la expresión de sed4. Además, se observó que los niveles transcripcionales de estos genes se encuentran modulados diferencialmente en función del nivel de resistencia de la planta. Estos hallazgos sugieren que la tiamina actúa como potencial inhibidor del crecimiento micelial in vitro y como un regulador de la transcripción de diversos genes relacionados con virulencia en Fusarium oxysporum f. sp. dianthi. (Texto tomado de la fuente)spa
dc.description.abstractThiamine has been proposed as a potential inducer of resistance to vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod), since its foliar spraying on carnation plants results in a significant reduction in the severity of the disease. However, the biochemical phenomena involved in the induction of resistance in this model are still unknown: for example, the effect that this type of substance can have directly on the pathogen is also unknown. In this study, we investigate the effect of thiamine on mycelial growth and transcriptional levels of the sod1, sed4, six7 and six10 genes, which are encoding potential virulence factors of this carnation pathogen. For that purpose, the pathogen was first cultured in vitro and the effect of the presence of thiamine on the growth and transcriptional levels of sod1 and sed4 was evaluated. Subsequently, carnation plants previously treated with thiamine were inoculated with Fod and the effect of thiamine on the reduction of disease severity was confirmed; at this point, the in planta transcription levels of the sed4, sod1, six7 and six10 genes were analyzed in two carnation varieties with contrasting levels of resistance to vascular wilt. In the first stage, it was found that, during the exponential phase, the presence of thiamine generated a decrease of up to 68% in mycelial growth, when compared to the control; it was also observed that the presence of this compound generated a modulation of the transcriptional levels of sod1 and sed4 depending on the growth phase of the pathogen. At the in planta level, it was confirmed that the foliar spray of thiamine reduces the severity of the disease caused by Fod and that during this process, there is a decrease in the expression levels of sod1, six7, six10 and an increase in the expression of sed4. Furthermore, the transcriptional levels of these genes were found to be differentially modulated depending on the level of plant resistance. These findings suggested that thiamine acts as a potential inhibitor of mycelial growth in vitro and as a transcriptional regulator of several virulence-related genes in Fusarium oxysporum f. sp. dianthi.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaInteracción Hospedero - Patógenospa
dc.format.extentxxiii,110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84021
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbdel-Monaim, M. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10, 10842–10855. https://doi.org/10.5897/AJB11.253spa
dc.relation.referencesAbd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/AJB.V2I4.14830spa
dc.relation.referencesAdrees, H., Haider, M. S., Anjum, T., & Akram, W. (2019). Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protection, 115, 75– 83. https://doi.org/10.1016/J.CROPRO.2018.09.011spa
dc.relation.referencesAhmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 23–34.spa
dc.relation.referencesAhn, I.-P., Kim, S., Lee, Y.-H., & Suh, S.-C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology, 143(2), 838–848. https://doi.org/10.1104/pp.106.092627spa
dc.relation.referencesAli, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/J.BCAB.2020.101884spa
dc.relation.referencesAl-Wakeel, Shahnaz A. M., Moubasher Hani, Mahmoud M. Gabr, M. M. Y. M. (2013). Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS Journal of Biology, 72(1), 9–21.spa
dc.relation.referencesArdila Barrantes, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. http://bdigital.unal.edu.co/57986/spa
dc.relation.referencesBailey, B. A. (1995). Purification of a Protein from Culture Filtrates of Fusarium oxysporum that Induces Ethylene and Necrosis in Leaves of Erythroxylum coca. Phytopathology, 85(10), 1250. https://doi.org/10.1094/Phyto-85-1250spa
dc.relation.referencesBailey, B. A., Apel-Birkhold, P. C., & Luster, D. G. (2002). Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation. Phytopathology, 92(8), 833–841. https://doi.org/10.1094/PHYTO.2002.92.8.833spa
dc.relation.referencesBailey, B. A., Jennings, J. C., & Anderson, J. D. (1997). The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Canadian Journal of Microbiology, 43(1), 45–55spa
dc.relation.referencesBalmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime- ome’: towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002spa
dc.relation.referencesBani, M., Pérez-de-Luque, A., Rubiales, D., & Rispail, N. (2018). Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f. Sp. pisi in Pea. Frontiers in Plant Science, 9, 199. https://doi.org/10.3389/FPLS.2018.00199/BIBTEXspa
dc.relation.referencesBeckman, C. H., & Roberts, E. M. (1995). On the Nature and Genetic Basis for Resistance and Tolerance to Fungal Wilt Diseases of Plants. Advances in Botanical Research, 21, 35–77. https://doi.org/10.1016/S0065-2296(08)60008-7spa
dc.relation.referencesBiernasiuk, A., Berecka-Rycerz, A., Gumieniczek, A., Malm, M., Łączkowski, K. Z., Szymańska, J., & Malm, A. (2021). The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Applied Microbiology and Biotechnology, 105(16–17), 6355. https://doi.org/10.1007/S00253-021-11477-7spa
dc.relation.referencesBorges, A. A., Borges-Pérez, A., & Fernández-Falcón, M. (2004). Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection, 23(12), 1245–1247. https://doi.org/10.1016/J.CROPRO.2004.05.010spa
dc.relation.referencesBoubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0spa
dc.relation.referencesBray Speth, E., Lee, Y. N., & He, S. Y. (2007). Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology, 10(6), 580–586. https://doi.org/10.1016/J.PBI.2007.08.003spa
dc.relation.referencesBurketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004spa
dc.relation.referencesCao, L., Blekemolen, M. C., Tintor, N., Cornelissen, B. J. C., & Takken, F. L. W. (2018). The Fusarium oxysporum Avr2-Six5 Effector Pair Alters Plasmodesmatal Exclusion Selectivity to Facilitate Cell-to-Cell Movement of Avr2. Molecular Plant, 11(5), 691–705. https://doi.org/10.1016/j.molp.2018.02.011spa
dc.relation.referencesCaracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García- Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765–779. https://doi.org/10.1046/j.1365-2958.2003.03465.xspa
dc.relation.referencesCarrillo-Perdomo, E., Jiménez-Arias, D., Aller, Á., & Borges, A. A. (2016). Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. Pest Management Science, 72(5), 950–960. https://doi.org/10.1002/ps.4074spa
dc.relation.referencesCastiblanco Quiroga, N. F. (2017). Condiciones de crecimiento del hongo Fusarium oxysporum f. sp. dianthi para la preparación de un potencial inductor de resistencia al marchitamiento vascular del clavel Dianthus caryophyllus L. Universidad Nacional de Colombia.spa
dc.relation.referencesCatanzariti, A.-M., Do, H. T. T., Bru, P., de Sain, M., Thatcher, L. F., Rep, M., & Jones, D. A. (2017). The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. The Plant Journal, 89(6), 1195– 1209. https://doi.org/10.1111/tpj.13458spa
dc.relation.referencesChen, C., Zhang, M.-K., Hu, K.-D., Sun, K.-K., Li, Y.-H., Hu, L.-Y., Chen, X.-Y., Yang, Y., Yang, F., Tang, J., Liu, H.-P., & Zhang, H. (2017). Deletion of Cu/Zn Superoxide Dismutase Gene sodC Reduces Aspergillus niger Virulence on Chinese White Pear. Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci., 142(5), 385–392. https://doi.org/10.21273/JASHS04169-17spa
dc.relation.referencesChiocchetti, A., Bernardo, I., Daboussi, M.-J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169spa
dc.relation.referencesCho, J. S., Seo, Y. C., Yim, T. Bin, & Lee, H. Y. (2013). Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani. International Journal of Molecular Sciences, 14(2), 4283–4297. https://doi.org/10.3390/ijms14024283spa
dc.relation.referencesConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/J.TPLANTS.2011.06.004spa
dc.relation.referencesConrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6spa
dc.relation.referencesCosta, J. H., Bazioli, J. M., de Moraes Pontes, J. G., & Fill, T. P. (2019). Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biology, 123(8), 584–593. https://doi.org/10.1016/J.FUNBIO.2019.05.004spa
dc.relation.referencesCuervo Plata, D. C. (2017). Estudio bioquímico y molécular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombiaspa
dc.relation.referencesDana, M. A., Kordbacheh, P., Ghazvini, R. D., Moazeni, M., Nazemi, L., & Rezaie, S. (2018). Inhibitory effect of vitamin C on Aspergillus parasiticus growth and aflatoxin gene expression. Current Medical Mycology, 4(3), 10. https://doi.org/10.18502/CMM.4.3.170spa
dc.relation.referencesde Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International Journal of Molecular Sciences, 16(10), 23970–23993. https://doi.org/10.3390/ijms161023970spa
dc.relation.referencesDi Pietro, A., P Madrid, M., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. (2003). Fusarium oxysporum: Exploring the Molecular Arsenal of a Vascular Wilt Fungus. Molecular Plant Pathology, 4, 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDjamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A. R., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y.- D., Schwarz, H., Macek, B., Mann, M., & Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395–398. https://doi.org/10.1038/nature10454spa
dc.relation.referencesDu, Q., Wang, H., & Xie, J. (2011). Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? International Journal of Biological Sciences, 7(1), 41. https://doi.org/10.7150/IJBS.7.41spa
dc.relation.referencesEshel, D., Miyara, I., Ailing, T., Dinoor, A., & Prusky, D. (2002). pH Regulates Endoglucanase Expression and Virulence of Alternaria alternata in Persimmon Fruit. Molecular Plant-Microbe Interactions®, 15(8), 774–779. https://doi.org/10.1094/MPMI.2002.15.8.774spa
dc.relation.referencesEshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E. StJ., & O’Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086–1095. https://doi.org/10.1111/j.1365-3059.2011.02471.xspa
dc.relation.referencesEstrada Rudas, C. (2022, August 17). Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000- empleos-y-son-exportadas-a-mas-de-100-paises-3425195spa
dc.relation.referencesEvans, R. C., & Garraway, M. O. (1976). Effect of Thiamine on Ethanol and Pyruvate Production in Helminthosporium maydis 1 2. Plant Physiology, 57(5), 812–816. https://doi.org/10.1104/pp.57.5.812spa
dc.relation.referencesF. Paul Silverman, *, Peter D. Petracek, Daniel F. Heiman, Zhiguo Ju, †, Christina M. Fledderman, and, & Warrior, P. (2005). Salicylate Activity. 2. Potentiation of Atrazine. https://doi.org/10.1021/JF0513821spa
dc.relation.referencesFerro, K., Ferro, D., Corrà, F., Bakiu, R., Santovito, G., & Kurtz, J. (2017). Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming. Frontiers in Immunology, 8. https://www.frontiersin.org/articles/10.3389/fimmu.2017.01811spa
dc.relation.referencesFrança, K. R. S., Silva, T. L., Cardoso, T. A. L., Ugulino, A. L. N., Rodrigues, A. P. M., & de Mendonça Júnior, A. F. (2018). In vitro effect of essential oil of peppermint (Mentha x piperita L.) on the mycelial growth of Alternaria alternata. Journal of Experimental Agriculture International, 26(5), 1–7spa
dc.relation.referencesFraser-Smith, S., Czislowski, E., Meldrum, R. A., Zander, M., O’Neill, W., Balali, G. R., & Aitken, E. A. B. (2014). Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathology, 63(5), 1044–1052. https://doi.org/10.1111/ppa.12184spa
dc.relation.referencesGawehns, F., Houterman, P. M., Ichou, F. A., Michielse, C. B., Hijdra, M., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2014). The Fusarium oxysporum Effector Six6 Contributes to Virulence and Suppresses I-2-Mediated Cell Death. Molecular Plant-Microbe Interactions, 27(4), 336–348. https://doi.org/10.1094/MPMI-11-13-0330-Rspa
dc.relation.referencesGawehns, F. K. K. (2014). Function and targets of Fusarium oxysporum effectors. Swammerdam Institute for Life Sciences (SILS).spa
dc.relation.referencesGawehns, F., Ma, L., Bruning, O., Houterman, P. M., Boeren, S., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2015). The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Frontiers in Plant Science, 6, 967. https://doi.org/10.3389/fpls.2015.00967spa
dc.relation.referencesGentile, I. A., & Matta, A. (1975). Production of and some effects of ethylene in relation to Fusarium wilt of tomato. Physiological Plant Pathology, 5(1), 27–35. https://doi.org/10.1016/0048-4059(75)90067-3spa
dc.relation.referencesGessler, N. N., Aver’yanov, A. A., & Belozerskaya, T. A. (2007). Reactive oxygen species in regulation of fungal development. Biochemistry. Biokhimiia, 72(10), 1091–1109. https://doi.org/10.1134/S0006297907100070spa
dc.relation.referencesGoellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233–242. https://doi.org/10.1007/s10658-007-9251-4spa
dc.relation.referencesGómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34. http://www.redalyc.org/articulo.oa?id=309026662003spa
dc.relation.referencesGoodwin, P. H., Trueman, C., Loewen, S. A., & Tazhoor, R. (2018). Variation in the responsiveness of induced resistance against Pseudomonas syringae pv. tomato by Solanum lycopersicum treated with para-aminobenzoic acid. Physiological and Molecular Plant Pathology, 104, 31–39. https://doi.org/10.1016/J.PMPP .2018.08.007spa
dc.relation.referencesGullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50–59. https://doi.org/https://doi.org/10.1016/j.cropro.2015.01.003spa
dc.relation.referencesHallen-Adams, H. E., Wenner, N., Kuldau, G. A., & Trail, F. (2011). Deoxynivalenol Biosynthesis-Related Gene Expression During Wheat Kernel Colonization by Fusarium graminearum. Phytopathology®, 101(9), 1091–1096. https://doi.org/10.1094/PHYTO-01-11-0023spa
dc.relation.referencesHarbaugh, D. T., Nepokroeff, M., Rabeler, R. K., McNeill, J., Zimmer, E. A., & Wagner, W. L. (2010). A New Lineage-Based Tribal Classification of the Family Caryophyllaceae. International Journal of Plant Sciences, 171(2), 185–198. https://doi.org/10.1086/648993spa
dc.relation.referencesHarris, L. J., Balcerzak, M., Johnston, A., Schneiderman, D., & Ouellet, T. (2016). Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biology, 120(1), 111–123. https://doi.org/10.1016/J.FUNBIO.2015.10.010spa
dc.relation.referencesHegde, K. T., Narayanaswamy, H., VEERAGHANTI, K., & Manu, T. G. (2017). Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. International Journal of Chemical Studies, 5(56), 139–142.spa
dc.relation.referencesHong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J., & Chang, S. W. (2016). Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants. The Plant Pathology Journal, 32(5), 469–480. https://doi.org/10.5423/PPJ.OA.03.2016.0076spa
dc.relation.referencesHuang, W.-K., Ji, H.-L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316spa
dc.relation.referencesIchikawa, K., Shiba, Y., Yamazaki, M., & Serizawa, N. (1997). Thiamine increases expression of yeast gene. Bioscience, Biotechnology, and Biochemistry, 61(7), 1221–1224. https://doi.org/10.1271/bbb.61.1221spa
dc.relation.referencesJangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. Frontiers in Plant Science, 12, 462. https://doi.org/10.3389/FPLS.2021.628611/BIBTEXspa
dc.relation.referencesJarai, G., & Buxton, F. (1994). Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Current Genetics, 26(3), 238–244. https://doi.org/10.1007/BF00309554spa
dc.relation.referencesJenkins, S., Taylor, A., Jackson, A. C., Armitage, A. D., Bates, H. J., Mead, A., Harrison, R. J., & Clarkson, J. P. (2021). Identification and Expression of Secreted In Xylem Pathogenicity Genes in Fusarium oxysporum f. sp. pisi. Frontiers in Microbiology, 12, 788. https://doi.org/10.3389/FMICB.2021.593140/BIBTEXspa
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286spa
dc.relation.referencesKachroo, P., & Kachroo, A. (2018). Plants Pack a Quiver Full of Arrows. Cell Host & Microbe, 23(5), 573–575. https://doi.org/10.1016/J.CHOM.2018.04.014spa
dc.relation.referencesKamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. 457–470. https://doi.org/10.1007/978-3-030-41870-0_20spa
dc.relation.referencesKashiwa, T., Suzuki, T., Sato, A., Akai, K., Teraoka, T., Komatsu, K., & Arie, T. (2016). A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiology Letters, 363(14), fnw132. https://doi.org/10.1093/femsle/fnw132spa
dc.relation.referencesKatz, M. E., Flynn, P. K., vanKuyk, P. A., & Cheetham, B. F. (1996). Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Molecular & General Genetics : MGG, 250(6), 715–724. https://doi.org/10.1007/BF02172983spa
dc.relation.referencesKayali, H. A., & Tarhan, L. (2006). The impact of Vitamins C, B1 and B6 supplementation on antioxidant enzyme activities, membrane total sialic acid and lipid peroxidation levels in Fusarium species. Process Biochemistry, 41(7), 1608–1613. https://doi.org/https://doi.org/10.1016/j.procbio.2006.03.012spa
dc.relation.referencesLangner, T., & Göhre, V. (2015). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current Genetics 2015 62:2, 62(2), 243–254. https://doi.org/10.1007/S00294-015-0530-Xspa
dc.relation.referencesLeitão, J. H. (2020). Microbial Virulence Factors. International Journal of Molecular Sciences, 21(15). https://doi.org/10.3390/ijms21155320spa
dc.relation.referencesLi, E., Wang, G., Xiao, J., Ling, J., Yang, Y., & Xie, B. (2016). A SIX1 Homolog in Fusarium oxysporum f. sp. conglutinans Is Required for Full Virulence on Cabbage. PloS One, 11(3), e0152273. https://doi.org/10.1371/journal.pone.0152273spa
dc.relation.referencesLi, T., Jian, Q., Wang, Y., Chen, F., Yang, C., Gong, L., Duan, X., Yang, B., & Jiang, Y. (2016). Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 148, 1–11. https://doi.org/10.1016/J.JPROT.2016.04.051spa
dc.relation.referencesLievens, B., Houterman, P. M., & Rep, M. (2009). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300(2), 201–215. https://doi.org/10.1111/j.1574-6968.2009.01783.xspa
dc.relation.referencesLiu, X., Xie, J., Fu, Y., Jiang, D., Chen, T., & Cheng, J. (2020). The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. International Journal of Molecular Sciences 2020, Vol. 21, Page 603, 21(2), 603. https://doi.org/10.3390/IJMS21020603spa
dc.relation.referencesLo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., & Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623spa
dc.relation.referencesLouise Glass, N., Schmoll, M., Cate, J. H. D., & Coradetti, S. (2013). Plant cell wall deconstruction by ascomycete fungi. Annual Review of Microbiology, 67, 477– 498. https://doi.org/10.1146/ANNUREV-MICRO-092611-150044spa
dc.relation.referencesLukienko, P. I., Mel’nichenko, N. G., Zverinskii, I. V, & Zabrodskaya, S. V. (2000). Antioxidant properties of thiamine. Bulletin of Experimental Biology and Medicine, 130(9), 874–876.spa
dc.relation.referencesMa, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology, 67, 399–416. https://doi.org/10.1146/ANNUREV-MICRO-092412-155650spa
dc.relation.referencesMalik, N. A. A., Kumar, I. S., & Nadarajah, K. (2020). Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. International Journal of Molecular Sciences 2020, Vol. 21, Page 963, 21(3), 963. https://doi.org/10.3390/IJMS21030963spa
dc.relation.referencesMartínez González, A. P. (2012). Evaluación de los niveles de expresión “in vitro” de enzimas pectinolíticas del hongo Colletotrichum acutatum en presencia de inductores naturales provenientes del fruto de lulo (Solanum quitoense Lam). Avances para determinar sus niveles de transcripción. https://repositorio.unal.edu.co/handle/unal/11480spa
dc.relation.referencesMartinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi [Universidad Nacional de Colombia - Sede Bogotá]. http://bdigital.unal.edu.co/74221/spa
dc.relation.referencesMerhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K. E., Richard-Forget, F., & Barreau, C. (2012). The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Molecular Plant Pathology, 13(4), 363–374. https://doi.org/10.1111/J.1364-3703.2011.00755.Xspa
dc.relation.referencesMishra, A. K., Sharma, K., & Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 7(2), 95–120. https://doi.org/10.1080/17429145.2011.597517spa
dc.relation.referencesMoldovan, E., & Moldovan, V. (2020). Controls in Real-Time Polymerase Chain Reaction Based Techniques. Acta Marisiensis - Seria Medica, 66(3), 79–82. https://doi.org/doi:10.2478/amma-2020-0025spa
dc.relation.referencesMonod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5), 405–419. https://doi.org/https://doi.org/10.1078/1438-4221-00223spa
dc.relation.referencesMonroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesMonroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus Caryophyllus L.) - Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Química, 48, 5–14.spa
dc.relation.referencesMozafar, A., & Oertli, J. J. (1992). Uptake and Transport of Thiamin (Vitamin B 1) by Barley and Soybean. Journal of Plant Physiology, 139(4), 436–442. https://doi.org/https://doi.org/10.1016/S0176-1617(11)80491-8spa
dc.relation.referencesMueller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., & de Vries, R. P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 45, S63–S70. https://doi.org/https://doi.org/10.1016/j.fgb.2008.03.012spa
dc.relation.referencesMuszewska, A., Stepniewska-Dziubinska, M. M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A., & Ginalski, K. (2017). Fungal lifestyle reflected in serine protease repertoire. Scientific Reports 2017 7:1, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09644-wspa
dc.relation.referencesMuthukrishnan, S., Murugan, I., & Selvaraj, M. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.02.037spa
dc.relation.referencesNazemi, L., Kordbacheh, P., Daei Ghazvini, R., Moazeni, M., Akbari Dana, M., & Rezaie, S. (2015). Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus. Current Medical Mycology, 1(1), 26. https://doi.org/10.18869/ACADPUB.CMM.1.1.26spa
dc.relation.referencesNiño-Sánchez, J., Casado-Del Castillo, V., Tello, V., de Vega-Bartol, J. J., Ramos, B., Sukno, S. A., & Díaz Mínguez, J. M. (2016). The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Molecular Plant Pathology, 17(7), 1124–1139. https://doi.org/10.1111/mpp.12373spa
dc.relation.referencesNordzieke, D. E., Fernandes, T. R., el Ghalid, M., Turrà, D., & di Pietro, A. (2019). NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytologist, 224(4), 1600–1612. https://doi.org/10.1111/NPH.16085spa
dc.relation.referencesOjha, S., & Chatterjee, N. (2012). Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum (Vol. 52, Issue No 2, pp. 220–225). Institute of Plant Protection – National Research Institute.spa
dc.relation.referencesParaschivu, M., & Cotuna, O. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science, 45, 193–201.spa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Https://Doi.Org/10.1080/03235408.2020.1868734, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734spa
dc.relation.referencesPizano, M. (1987). El cultivo del Clavel en Colombia. Horticultura, 35, 114–127.spa
dc.relation.referencesPoli, A., Bertetti, D., Garibaldi, A., & Gullino, M. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. The Plant Pathology Journal, 95, 255–263.spa
dc.relation.referencesPontes, J. G. D. M., Fernandes, L. S., dos Santos, R. vander, Tasic, L., & Fill, T. P. (2020). Virulence Factors in the Phytopathogen-Host Interactions: An Overview. Journal of Agricultural and Food Chemistry, 68(29), 7555–7570. https://doi.org/10.1021/ACS.JAFC.0C02389/ASSET/IMAGES/MEDIUM/JF0C02 389_0005.GIFspa
dc.relation.referencesPonukumati, S. v., Elliott, M. L., & des Jardin, E. A. (2019). Comparison of Secreted in Xylem (SIX) genes in two fusarium wilt pathogens of ornamental palms. Plant Pathology, 68(9), 1663–1681. https://doi.org/10.1111/PPA.13090spa
dc.relation.referencesRajeswari, P. (2020). Assessment of Combination of Biocontrol Strains on the Fusaric Acid and other Toxins Secreted from Fusarium oxysporum by HPLC- MS/MS Method and Differential Expression Profiling in Arachis hypogaea L. Toxicology International, 26, 89–97.spa
dc.relation.referencesRamírez Vargas, E. (2014). Evaluación de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interacción con el clavel (Dianthus caryophyllus L) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/46176/spa
dc.relation.referencesRamoni, J., Seidl-Seiboth, V., Bischof, R. H., & Seiboth, B. (2016). Gene Expression Systems in Industrial Ascomycetes: Advancements and Applications. In M. Schmoll & C. Dattenböck (Eds.), Gene Expression Systems in Fungi: Advancements and Applications (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-27951-0_1spa
dc.relation.referencesRanf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/J.PBI.2017.04.011spa
dc.relation.referencesRapala-Kozik, M., Wolak, N., Kujda, M., & Banas, A. K. (2012). The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biology, 12. https://doi.org/10.1186/1471-2229- 12-2spa
dc.relation.referencesRecorbet, G., Steinberg, C., Olivain, C., Edel, V., Trouvelot, S., Dumas-Gaudot, E., Gianinazzi, S., & Alabouvette, C. (2003). Wanted: Pathogenesis-Related Marker Molecules for Fusarium oxysporum. The New Phytologist, 159(1), 73– 92.spa
dc.relation.referencesReichard, U., Léchenne, B., Asif, A. R., Streit, F., Grouzmann, E., Jousson, O., & Monod, M. (2006). Sedolisins, a New Class of Secreted Proteases from Aspergillus fumigatus with Endoprotease or Tripeptidyl-Peptidase Activity at Acidic pHs. Applied and Environmental Microbiology, 72(3), 1739 LP – 1748. https://doi.org/10.1128/AEM.72.3.1739-1748.2006spa
dc.relation.referencesRep, M., van der Does, H. C., Meijer, M., van Wijk, R., Houterman, P. M., Dekker, H. L., de Koster, C. G., & Cornelissen, B. J. C. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53(5), 1373–1383. https://doi.org/10.1111/j.1365-2958.2004.04177.xspa
dc.relation.referencesRocha, L. O., Laurence, M. H., Ludowici, V. A., Puno, V. I., Lim, C. C., Tesoriero, L. A., Summerell, B. A., & Liew, E. C. Y. (2016). Putative effector genes detected in Fusarium oxysporum from natural ecosystems of Australia. Plant Pathology, 65(6), 914–929. https://doi.org/10.1111/PPA.12472spa
dc.relation.referencesRodríguez-Herva, J. J., González-Melendi, P., Cuartas-Lanza, R., Antúnez-Lamas, M., Río-Alvarez, I., Li, Z., López-Torrejón, G., Díaz, I., del Pozo, J. C., Chakravarthy, S., Collmer, A., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 14(5), 669–681. https://doi.org/10.1111/J.1462- 5822.2012.01749.Xspa
dc.relation.referencesRomero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesRoncero, M. I. G., Hera, C., Ruiz-Rubio, M., García Maceira, F. I., Madrid, M. P., Caracuel, Z., Calero, F., Delgado-Jarana, J., Roldán-Rodríguez, R., Martínez- Rocha, A. L., Velasco, C., Roa, J., Martín-Urdiroz, M., Córdoba, D., & di Pietro, A. (2003). Fusarium as a model for studying virulence in soilborne plant pathogens. Physiological and Molecular Plant Pathology, 62(2), 87–98. https://doi.org/10.1016/S0885-5765(03)00043-2spa
dc.relation.referencesRouf, A., & Tanyeli, C. (2015). Bioactive thiazole and benzothiazole derivatives. European Journal of Medicinal Chemistry, 97, 911–927. https://doi.org/10.1016/j.ejmech.2014.10.058spa
dc.relation.referencesRyals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 8(10), 1809– 1819. https://doi.org/10.1105/tpc.8.10.1809spa
dc.relation.referencesSánchez-Rangel, D., Hernández-Domínguez, E. E., Pérez-Torres, C. A., Ortiz- Castro, R., Villafán, E., Rodríguez-Haas, B., Alonso-Sánchez, A., López- Buenfil, A., Carrillo-Ortiz, N., Hernández-Ramos, L., & Ibarra-Laclette, E. (2018). Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018 19:1, 19(1), 1–21. https://doi.org/10.1186/S12864-018-5083-1spa
dc.relation.referencesSathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/J.IJBIOMAC.2021.12.105spa
dc.relation.referencesScalschi, L., Camañes, G., Llorens, E., Fernández-Crespo, E., López, M. M., García- Agustín, P., & Vicedo, B. (2014). Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants. PLOS ONE, 9(9), e106429. https://doi.org/10.1371/JOURNAL.PONE.0106429spa
dc.relation.referencesSchmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14- 119spa
dc.relation.referencesSharafaddin, A. H., Hamad, Y. K., El_Komy, M. H., Ibrahim, Y. E., Widyawan, A., Molan, Y. Y., & Saleh, A. A. (2019). Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity. European Journal of Plant Pathology, 155(3), 871–880. https://doi.org/10.1007/S10658-019-01818- 8/TABLES/4spa
dc.relation.referencesShooshtari, A. H., Mohammadi, S., Shahsavandi, S., Pourbakhsh, S. A., Hashemi, S. J., Erami, M., & Jahanshiri, Z. (2007). Application of PCR on detection of aflatoxinogenic fungi. Archives of Razi Institute, 62(2), 95–100. https://doi.org/10.22092/ari.2007.103774spa
dc.relation.referencesSimbaqueba, J. (2017). Analysis of Fusarium oxysporum effectors shared between strains that infect cape gooseberry and tomato. Australian National University.spa
dc.relation.referencesSingh, A., Lim, G.-H., & Kachroo, P. (2017). Transport of chemical signals in systemic acquired resistance. Journal of Integrative Plant Biology, 59(5), 336– 344. https://doi.org/10.1111/jipb.12537spa
dc.relation.referencesSoyer, J. L., el Ghalid, M., Glaser, N., Ollivier, B., Linglin, J., Grandaubert, J., Balesdent, M. H., Connolly, L. R., Freitag, M., Rouxel, T., & Fudal, I. (2014). Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLOS Genetics, 10(3), e1004227. https://doi.org/10.1371/JOURNAL.PGEN.1004227spa
dc.relation.referencesSpoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141spa
dc.relation.referencesSriranganadane, D., Waridel, P., Salamin, K., Reichard, U., Grouzmann, E., Neuhaus, J.-M., Quadroni, M., & Monod, M. (2010). Aspergillus Protein Degradation Pathways with Different Secreted Protease Sets at Neutral and Acidic pH. Journal of Proteome Research, 9(7), 3511–3519. https://doi.org/10.1021/pr901202zspa
dc.relation.referencesStergiopoulos, I., Collemare, J., Mehrabi, R., & De Wit, P. J. G. M. (2013). Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiology Reviews, 37(1), 67–93. https://doi.org/10.1111/j.1574-6976.2012.00349.xspa
dc.relation.referencesTakken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 11(2), 309–314. https://doi.org/10.1111/J.1364-3703.2009.00605.Xspa
dc.relation.referencesTakle, G. W., Toth, I. K., & Brurberg, M. B. (2007). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biology, 7(1), 1–9. https://doi.org/10.1186/1471-2229- 7-50/TABLES/4spa
dc.relation.referencesTaylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., & Clarkson, J. P. (2016). Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Molecular Plant Pathology, 17(7), 1032–1047. https://doi.org/10.1111/mpp.12346spa
dc.relation.referencesThatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 25(2), 180–190. https://doi.org/10.1094/MPMI-08-11-0212spa
dc.relation.referencesThe Biology of Dianthus caryophyllus L. (Carnation). (2015). http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/5DCF28AD2F3779C 4CA257D4E001819B9/$File/biology-carnation2015.pdfspa
dc.relation.referencesTian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. P. G., Inderbitzin, P., Subbarao, K. v., Chen, J., & Dai, X. (2021). Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. Molecular Plant Pathology, 22(9), 1092–1108. https://doi.org/10.1111/MPP.13099spa
dc.relation.referencesTorres, G. A. (1993). Las enfermedades vasculares del clavel en colombia y en el mundo. Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 2357-3732 0120-9965. http://bdigital.unal.edu.co/24110/spa
dc.relation.referencesToruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204spa
dc.relation.referencesTunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis. Plant Physiology, 151(1), 421 LP – 432. https://doi.org/10.1104/pp.109.140046spa
dc.relation.referencesTurabelidze, A., Guo, S., & Dipietro, L. A. (2010). Importance of Housekeeping gene selection for accurate RT-qPCR in a wound healing model. Wound Repair and Regeneration : Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 18(5), 460. https://doi.org/10.1111/J.1524- 475X.2010.00611.Xspa
dc.relation.referencesvan Dam, P., Fokkens, L., Schmidt, S. M., Linmans, J. H. J., Kistler, H. C., Ma, L.-J., & Rep, M. (2016). Effector profiles distinguish formae speciales of Fusarium oxysporum. Environmental Microbiology, 18(11), 4087–4102. https://doi.org/10.1111/1462-2920.13445spa
dc.relation.referencesvan Dam, P., & Rep, M. (2017). The Distribution of Miniature Impala Elements and SIX Genes in the Fusarium Genus is Suggestive of Horizontal Gene Transfer. Journal of Molecular Evolution, 85(1–2), 14–25. https://doi.org/10.1007/s00239- 017-9801-0spa
dc.relation.referencesvan der Does, H. C., Duyvesteijn, R. G. E., Goltstein, P. M., van Schie, C. C. N., Manders, E. M. M., Cornelissen, B. J. C., & Rep, M. (2008). Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology, 45(9), 1257–1264. https://doi.org/10.1016/J.FGB.2008.06.002spa
dc.relation.referencesVelho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to Apple bitter rot and Glomerella leaf spot. Mycology, 9(2), 145. https://doi.org/10.1080/21501203.2018.1464525spa
dc.relation.referencesVlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., & Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytologist, 229(3), 1234–1250. https://doi.org/10.1111/NPH.16953spa
dc.relation.referencesWalters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026spa
dc.relation.referencesWang, M., Weiberg, A., & Jin, H. (2015). Pathogen small RNAs: a new class of effectors for pathogen attacks. Molecular Plant Pathology, 16(3), 219–223. https://doi.org/10.1111/mpp.12233spa
dc.relation.referencesWang, Q., Pokhrel, A., & Coleman, J. J. (2021). The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. Frontiers in Plant Science, 12, 294. https://doi.org/10.3389/FPLS.2021.608861/BIBTEXspa
dc.relation.referencesWendehenne, D., Gao, Q., Kachroo, A., & Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 20, 127–134. https://doi.org/10.1016/J.PBI.2014.05.012spa
dc.relation.referencesWestman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B., & Albrectsen, B. R. (2019). Defence priming in Arabidopsis - a Meta-Analysis. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-49811-9spa
dc.relation.referencesWlodawer, A., Li, M., Gustchina, A., Oyama, H., Dunn, B., & Oda, K. (2003). Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidase. Acta Biochimica Polonica, 50, 81–102. https://doi.org/10.18388/abp.2003_3716spa
dc.relation.referencesWolak, N., Kowalska, E., Kozik, A., & Rapala-Kozik, M. (2014). Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Research, 14(8), 1249– 1262. https://doi.org/10.1111/1567-1364.12218spa
dc.relation.referencesWolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. J. McGovern & W. H. Elmer (Eds.), Handbook of Florists’ Crops Diseases (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319- 39670-5_14spa
dc.relation.referencesYao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L., & Tang, W.-H. (2016). A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genetics and Biology, 91, 32– 42. https://doi.org/https://doi.org/10.1016/j.fgb.2016.03.006spa
dc.relation.referencesYike, I. (2011). Fungal Proteases and Their Pathophysiological Effects. Mycopathologia, 171(5), 299–323. https://doi.org/10.1007/s11046-010-9386-2spa
dc.relation.referencesYoshida, H., & Tanaka, C. (2019). Monitoring of in planta gene expression for xylan degradation and assimilation in the maize pathogen Bipolaris maydis. Mycoscience, 60(2), 116–124. https://doi.org/10.1016/J.MYC.2018.10.002spa
dc.relation.referencesZhao, L., Hu, Z., Li, S., Zhou, X., Li, J., Su, X., Zhang, L., Zhang, Z., & Dong, J. (2019). Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Scientific Reports, 9(1), 2763. https://doi.org/10.1038/s41598-019-39247-6spa
dc.relation.referencesZheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z., & Liu, J. (2020). A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environmental Microbiology, 22(12), 5309–5326. https://doi.org/10.1111/1462-2920.15236spa
dc.relation.referencesZuriegat, Q., Zheng, Y., Liu, H., Wang, Z., & Yun, Y. (2021). Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Molecular Plant Pathology, 22(7), 882–895. https://doi.org/https://doi.org/10.1111/mpp.13068spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y floresspa
dc.subject.lembClavelesspa
dc.subject.lembCarnationseng
dc.subject.lembVirus fitopatógenosspa
dc.subject.lembPlant viruseseng
dc.subject.lembVirosis (plantas)spa
dc.subject.lembVirus diseases of plantseng
dc.subject.proposalFusarium oxysporum f. sp. dianthispa
dc.subject.proposalDianthus caryophyllus L.spa
dc.subject.proposalTiaminaspa
dc.subject.proposalSuperóxido dismutasaspa
dc.subject.proposalTripeptidil peptidasaspa
dc.subject.proposalProteínas SIXspa
dc.subject.proposalFactor de virulenciaspa
dc.subject.proposalFusarium oxysporum f. sp. dianthieng
dc.subject.proposalDianthus caryophyllus L.eng
dc.subject.proposalThiamineeng
dc.subject.proposalSuperoxide dismutaseeng
dc.subject.proposalTripeptidyl peptidaseeng
dc.subject.proposalSIX proteinseng
dc.subject.proposalVirulence factoreng
dc.titleEfecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthispa
dc.title.translatedEffect of the application of resistance inducers on the in vivo expression of candidate virulence factor genes of the pathogen Fusarium oxysporum f. sp. dianthi in carnation (Dianthus caryophyllus L)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012406246.2023.pdf
Tamaño:
4.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: