Evaluación del potencial para inducir condrogénesis de soportes de colágeno II y cartílago hialino descelularizado, sembrados con condrocitos o células madre mesenquimales

dc.contributor.advisorFontanilla Duque, Martha Raquelspa
dc.contributor.authorFlórez Cabrera, Adriana Matildespa
dc.contributor.researchgroupGrupo de Trabajo en Ingeniería de Tejidosspa
dc.date.accessioned2024-11-05T13:13:38Z
dc.date.available2024-11-05T13:13:38Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl cartílago hialino de la tráquea bovina puede ser empleado en la elaboración de soportes para aplicaciones en ingeniería de tejidos articulares. Este trabajo desarrolló, caracterizó y comparó soportes de colágeno II y cartílago hialino descelularizado, ambos hechos de tráquea bovina, pero con diferentes procedimientos. Para ello, se aisló colágeno II y se utilizó para elaborar soportes porosos, se estableció un método de descelularización de tráquea bovina y se obtuvieron soportes de cartílago hialino descelularizados. Se evaluaron y compararon las propiedades microestructurales, fisicoquímicas, mecánicas y biológicas de ambos tipos de soportes. También se evaluó y comparó el tejido formado cuando se sembraron condrocitos o células madre mesenquimales humanas (MSCs) en estos soportes, así como el perfil de factores angiogénicos secretados por los cultivos 3D resultantes. Las diferencias en composición, microestructura y propiedades mecánicas de los soportes afectaron la formación de tejido nuevo. En presencia de medio de diferenciación condrogénico, se observó cartílago hialino principalmente en los soportes de cartílago hialino descelularizado. Este hallazgo se correlaciona con la baja concentración de factores angiogénicos que se encuentran en el medio de cultivo de los soportes de cartílago hialino descelularizados sembrados con MSCs. Los resultados indican que los soportes de cartílago hialino descelularizados promueven el crecimiento y diferenciación condrogénica de condrocitos y MSC mejor que los soportes de colágeno II, los cuales favorecen la formación de tejido fibroso y fibrocartílago. Sin embargo, se necesita una evaluación preclínica de los soportes de cartílago hialino descelularizados en un modelo de lesión de cartílago para concluir sobre su biocompatibilidad (Texto tomado de la fuente).spa
dc.description.abstractHyaline cartilage from bovine trachea can be used to prepare scaffolds for joint tissue engineering applications. This work developed, characterized, and compared scaffolds of collagen II and decellularized hyaline cartilage, both made from bovine trachea but with different procedures. For this, collagen II was isolated and used to manufacture porous scaffolds, a decellularization method of bovine trachea was established and decellularized hyaline cartilage scaffolds were obtained. Microstructural, physicochemical, mechanical, and biological properties of both scaffolds were assessed and compared. It also assessed and compared the tissue formed when chondrocytes or mesenchymal stem cells (MSCs) were seeded on these scaffolds, as well as the profile of angiogenic factors secreted by the resulting 3D-cultures. Differences in composition, microstructure, and mechanical properties of scaffolds impacted the formation of new tissue. In the presence of chondrogenic differentiation medium, hyaline cartilage was observed mainly in decellularized hyaline cartilage scaffolds. This finding correlates with the low concentration of angiogenic factors found in the culture medium of decellularized hyaline cartilage scaffolds seeded with MSCs. The results indicate that decellularized hyaline cartilage scaffolds promotes chondrocyte and MSC growth and chondral differentiation better than collagen II scaffolds, which favor the formation of fibrous tissue and fibrocartilage. None of the less, a preclinical evaluation of the decellularized scaffolds in a cartilage injury model is still needed to conclude on their biocompatibility.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsEn un trabajo previo, nuestro grupo de investigación estandarizó dos metodologías para el aislamiento de colágeno tipo II (doble digestión enzimática tripsina-pepsina y digestión enzimática solo con tripsina) a partir de tráquea bovina [20]. Los resultados del trabajo mencionado demostraron que las propiedades de los soportes son influenciadas por el método empleado para aislar el colágeno tipo II. Igualmente, que las características de los soportes producidos con el colágeno II aislado con tripsina lo pueden hacer útil como sustituto de cartílago articular al combinarse con técnicas de estimulación de la médula ósea.spa
dc.description.researchareaMateriales poliméricosspa
dc.format.extentxviii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87147
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesNewman AP. Articular Cartilage Repair. Am J Sports Med. 1998;26(2):309–24spa
dc.relation.referencesMatsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials. 2013;6(2):637–68spa
dc.relation.referencesPuppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. 2010;35:403–40spa
dc.relation.referencesChiang H, Jiang CC. Repair of Articular Cartilage Defects: Review and Perspectives. Journal of the Formosan Medical Association. 2009;108(2):87–101spa
dc.relation.referencesErggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. Journal of Orthopaedic Research. 2009;27(10):1353–60spa
dc.relation.referencesKang SW, Bada LP, Kang CS, Lee JS, Kim CH, Park JH, Kim BS. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett. 2008;30(3):435–9spa
dc.relation.referencesNehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas I v, Spector M. Canine Chondrocytes Seeded in Type I and Type II Collagen Implants Investigated In Vitro. 1997;38:95-104spa
dc.relation.referencesBosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93(6):1152–63spa
dc.relation.referencesDiekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. Chondrogenesis of Adult Stem Cells from Adipose Tissue and Bone Marrow: Induction by Growth Factors and Cartilage-Derived Matrix. Tissue Eng Part A. 2010;16(2):523–33spa
dc.relation.referencesGong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 201;32(9):2265–73spa
dc.relation.referencesRowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials. 2016;91:57–72spa
dc.relation.referencesBadylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: Factors that influence the host response. Ann Biomed Eng. 2014;42(7):1517–27spa
dc.relation.referencesSchneider C, Lehmann J, van Osch GJVM, Hildner F, Teuschl A, Monforte X, Miosga D, Heimel P, Priglinger E, Redl H, Wolbank S, Nürnberger S. Systematic comparison of protocols for the preparation of human articular cartilage for use as scaffold material in cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22(12):1095–107spa
dc.relation.referencesGhassemi T, Saghatolslami N, Matin MM, Gheshlaghi R, Moradi A. CNT- decellularized cartilage hybrids for tissue engineering applications. Biomed Mater. 2017;12(6):1-32spa
dc.relation.referencesCheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose- derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15(2):231–41spa
dc.relation.referencesSchwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, Ignatius A, Walther P, Breiter R, Rotter N. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A. 2012;18(21–22):2195–209spa
dc.relation.referencesHeinegård D. Extraction, fractionation and characterization of proteoglycans from bovine tracheal cartilage. Biochim Biophys Acta. 1972;285(1):181–92spa
dc.relation.referencesKo CS, Wu CH, Huang HH, Chu IM. Genipin Cross-linking of Type II Collagen- chondroitin Sulfate-hyaluronan Scaffold for Articular Cartilage Therapy. J Med Biol Eng. 2007;27(1):7–14spa
dc.relation.referencesPieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials. 2002;23:3183-3192spa
dc.relation.referencesMaría E Soto. Estandarización de un método de purificación de colágeno tipo II y elaboración de soportes para ingeniería de tejido cartilaginoso. 2014. Tesis de Maestría. Universidad Nacional de Colombia. Facultad de Ingenieríaspa
dc.relation.referencesSophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health. 2009;1(6):461–8spa
dc.relation.referencesBuckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86spa
dc.relation.referencesCarballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med. 2017;36:413–25spa
dc.relation.referencesWilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32spa
dc.relation.referencesLuo Y , Sinkeviciute D, He Y , Karsdal M, Henrotin Y , Mobasheri A, Önnerfjord P , Bay- Jensen A. The minor collagens in articular cartilage. Protein Cell. 2017;8(8):560–72spa
dc.relation.referencesHarpal T, Gahunia K, Gross AE, Pritzker KPH, Babyn PS, Murnaghan L. Articular Cartilage of the Knee, editors. New York, NY: Springer New York; 2020spa
dc.relation.referencesDecker RS. Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol. 2017;62:50–6spa
dc.relation.referencesChijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cel Mol Life Sci. 2019;76(20):3939–52spa
dc.relation.referencesDecker RS, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10spa
dc.relation.referencesHolder N. An experimental investigation into the early development of the chick elbow joint. J Embryol exp Morph. 1977;39:115-27spa
dc.relation.referencesDecker RS, Koyama E, Pacifici M. Articular Cartilage: Structural and Developmental Intricacies and Questions. Curr Osteoporos Rep. 2015;13(6): 407–14spa
dc.relation.referencesJenner F, Ijpma A, Cleary M, Heijsman D, Narcisi R, van der Spek PJ, Kremer A, van Weeren R, Brama P, van Osch GJVM. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev. 2014;23(16):1883–98spa
dc.relation.referencesHardmeier R, Redl H, Marlovits S. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J Tissue Eng Regen Med. 2010;4(1):1– 11spa
dc.relation.referencesBeris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD. Advances in articular cartilage repair. Injury. 2005;36:14-23spa
dc.relation.referencesFellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Front in Genet. 2016;7:213spa
dc.relation.referencesLiao J, Shi K, Ding Q, Qu Y, Luo F, Qian Z. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol. 2014;10(10):3085–104spa
dc.relation.referencesHaleem AM, Chu CR. Advances in tissue engineering techniques for articular cartilage repair. Oper Tech Orthop. 2010;20(2):76–89spa
dc.relation.referencesMadeira C, Santhagunam A, Salgueiro JB, Cabral JMS. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 2015;33(1):35–42spa
dc.relation.referencesCui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93spa
dc.relation.referencesUematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26(20):4273–9spa
dc.relation.referencesSkaalure SC, Dimson SO, Pennington AM, Bryant SJ. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Acta Biomater. 2014;10(8):3409–20spa
dc.relation.referencesLi X, Xu Q, Johnson M, Wang X, Lyu J, Li Y, McMahon S, Greiser U, Sigen A, Wang W. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci. 2021;9(11):4139–48spa
dc.relation.referencesEviana Putri NR, Wang X, Chen Y, Li X, Kawazoe N, Chen G. Preparation of PLGA- collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Progress in Natural Science: Materials International. 2020;30(5):642– 50spa
dc.relation.referencesToh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45spa
dc.relation.referencesBauer C, Berger M, Baumgartner RR, Höller S, Zwickl H, Niculescu-Morzsa E, Halbwirth F, Nehrer S. A Novel Cross-Linked Hyaluronic Acid Porous Scaffold for Cartilage Repair: An In Vitro Study With Osteoarthritic Chondrocytes. Cartilage. 2016;7(3):265–73spa
dc.relation.referencesAwad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211–22spa
dc.relation.referencesSelmi TAS, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P, Surgeon O, Bank C. Autologous chondrocyte implantation in a novel alginate- agarose hydrogel: outcome at two years. J Bone Joint Surg Br. 2008;90(5):597spa
dc.relation.referencesvan Susante JLC, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RPH. Resurfacing potential of heterologous chondrocytes suspended in "brin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials. 1999;20(13):1167-75spa
dc.relation.referencesLahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 2000;51(4):586-95spa
dc.relation.referencesZhao P, Deng C, Xu H, Tang X, He H, Lin C, Su J. Fabrication of photo-crosslinked Chitosan- Gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Biomed Mater Eng. 2014;24(1):633–41spa
dc.relation.referencesCorreia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 2011;17(7):717–30spa
dc.relation.referencesYu F, Cao X, Zeng L, Zhang Q, Chen X. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering. Carbohydr Polym. 2013;97(1):188–95spa
dc.relation.referencesSchneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S. A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2145–52spa
dc.relation.referencesGomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a Type I/III Bilayer Collagen Membrane Decreases Reoperation Rates for Symptomatic Hypertrophy after Autologous Chondrocyte Implantation. Am J Sports Med. 2009;37(1):20S-23Sspa
dc.relation.referencesLaPorta TF, Richter A, Sgaglione NA, Grande DA. Clinical Relevance of Scaffolds for Cartilage Engineering. Orthop Clin North Am. 2012;43(2):245–54spa
dc.relation.referencesCherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report. J Orthop Surg. 2003;11(1):10-5spa
dc.relation.referencesBenthien JP , Behrens P . Autologous matrix-induced chondrogenesis (AMIC): Combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1(1):65–8spa
dc.relation.referencesParenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863–87spa
dc.relation.referencesGigante A, Bevilacqua C, Cappella M, Manzotti S, Greco F. Engineered articular cartilage: influence of the scaffold on cell phenotype and proliferation. J Mater Sci Mater Med. 2003;14(8):713–6spa
dc.relation.referencesXue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012 Aug;33(24):5832–40spa
dc.relation.referencesYang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29(15):2378–87spa
dc.relation.referencesCrapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43spa
dc.relation.referencesMoradi A, Pramanik S, Ataollahi F, Abdul Khalil A, Kamarul T, Pingguan-Murphy B. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications. Sci Technol Adv Mater. 2014;15(6):065001spa
dc.relation.referencesYang Z, Shi Y, Wei X, He J, Yang S, Dickson G, Tang J, Xiang J, Song C, Li G. Fabrication and Repair of Cartilage Defects with a Novel Acellular Cartilage Matrix Scaffold. Tissue Eng Part C Methods. 2010;16(5):865–76spa
dc.relation.referencesUrlić I, Ivković A. Cell sources for cartilage repair—biological and clinical perspective. Cells. 2021;10(9):2496spa
dc.relation.referencesBrittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N Engl J Med. 1994;331(14):889–95spa
dc.relation.referencesMcCarthy HS, Roberts S. A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation. Osteoarthritis Cartilage. 2013;21(12):2048–57spa
dc.relation.referencesAndriolo L, Merli G, Filardo G, Marcacci M, Kon E. Failure of Autologous Chondrocyte Implantation. Sports Med Arthrosc Rev. 2017; 25(1):10-18spa
dc.relation.referencesKafienah E, Jakob M, Démarteau O, Frazer A, Barker MD, Martin I, Hollander AP. Three-Dimensional Tissue Engineering of Hyaline Cartilage: Comparison of Adult Nasal and Articular Chondrocytes. Tissue Eng. 2002;8(5):817-26spa
dc.relation.referencesMumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 2016;388(10055):1985–94spa
dc.relation.referencesJayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connec Tissue Res. 2015;56(4):265–71spa
dc.relation.referencesJayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell–based cartilage repair. Ann N Y Acad Sci. 2016;1383(1):21–33spa
dc.relation.referencesChimutengwende-Gordon M, Ahmad MA, Bentley G, Brammah J, Carrington R, Miles J, Donaldson J. Stem cell transplantation for the treatment of osteochondral defects of the knee: Operative technique for a single-stage transplantation procedure using bone marrow-derived mesenchymal stem cells. Knee. 2021;28:400–9spa
dc.relation.referencesKoh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy. 2015;23(5):1308– 16spa
dc.relation.referencesAkgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E, Kantarci F, Caliskan G, Akgun Y. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;135(2):251–63spa
dc.relation.referencesSong JS, Hong KT, Kim NM, Jung JY, Park HS, Lee SH, Cho YJ, Kim SJ. Implantation of allogenic umbilical cord blood-derived mesenchymal stem cells improves knee osteoarthritis outcomes: Two-year follow-up. Regen Ther. 2020;14:32–9spa
dc.relation.referencesMochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, Sekiya I. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006;54(3):843–53spa
dc.relation.referencesVinod E, Parameswaran R, Amirtham SM, Rebekah G, Kachroo U. Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration. Acta Histochem. 2021;123(4):151713spa
dc.relation.referencesVeronesi F, Maglio M, Tschon M, Aldini NN, Fini M. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: State-of-The-Art in in vivo studies. J Biomed Mater Res A. 2014;102(7):2448–66spa
dc.relation.referencesKoga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333(2):207–15spa
dc.relation.referencesKubosch EJ, Lang G, Furst D, Kubosch D, Izadpanah K, Rolauffs B, Sudkamp NP, Schmal H. The Potential for Synovium-derived Stem Cells in Cartilage Repair. Curr Stem Cell Res Ther. 2018;13(3):174–84spa
dc.relation.referencesFischer J, Dickhut A, Rickert M, Richter W. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 2010;62(9):2696–706spa
dc.relation.referencesWu L, Leijten JCH, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17(9–10):1425–36spa
dc.relation.referencesHettrich CM, Crawford D, Rodeo SA. Third-Generation Cell-based Technologies- Basic Science, Surgical Techniques, Clinical Outcomes. Sports Med Arthrosc Rev. 2008;16(4):230-5spa
dc.relation.referencesKerker JT, Leo AJ, Sgaglione NA. Cartilage Repair: Synthesis and Scaffolds: Basic Science, Surgical Techniques, and Clinical Outcomes. Sports Med Arthrosc Rev. 2008;16(4):208-16spa
dc.relation.referencesKon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M. Second Generation Issues in Cartilage Repair. Sports Med Arthrosc Rev. 2008;16(4):221-9spa
dc.relation.referencesCascio BM, Sharma B. The Future of Cartilage Repair. Oper Tech Sports Med. 2008;16(4):221–4.spa
dc.relation.referencesMccormick F, Yanke A, Provencher MT, Cole BJ. Minced Articular Cartilage-Basic Science, Surgical Technique, and Clinical Application. Sports Med Arthrosc Rev. 2008;16(4):217-20spa
dc.relation.referencesKessler MW, Ackerman G, Dines JS, Grande D. Emerging Technologies and Fourth Generation Issues in Cartilage Repair. Sports Med Arthrosc Rev. 2008;16(4):246- 54spa
dc.relation.referencesWangL,GuoX,ChenJ,ZhenZ,CaoB,WanW,DouY,PanH,XuF,ZhangZ, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2022;9:332–42spa
dc.relation.referencesSilva-Cote I, Cruz-Barrera M, Cañas-Arboleda M, Correa-Araujo L, Méndez L, Jagielska J, Camacho B, Salguero G. Strategy for the Generation of Engineered Bone Constructs Based on Umbilical Cord Mesenchymal Stromal Cells Expanded with Human Platelet Lysate. Stem Cells Int. 2019;2019:7198215spa
dc.relation.referencesVaca-González JJ, Clara-Trujillo S, Guillot-Ferriols M, Ródenas-Rochina J, Sanchis MJ, Ribelles JLG, Garzón-Alvarado DA, Ferrer GG. Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry. 2020;134:107536spa
dc.relation.referencesVaca-González JJ, Guevara JM, Vega JF, Garzón-Alvarado DA. An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cell Mol Bioeng. 2016;9(1):116–26spa
dc.relation.referencesCissell DD, Link JM, Hu JC, Athanasiou KA. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng Part C Methods. 2017;23(4):243–50spa
dc.relation.referencesFarndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883(2):173-7spa
dc.relation.referencesHo ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27(8):1362–76spa
dc.relation.referencesISO. The International Organization for Standardization 10993-5. Biological evaluation of medical devices part 5: test for in vitro cytotoxicity. 2009spa
dc.relation.referencesGosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008;3(8):1253–60spa
dc.relation.referencesAraña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. Methods Mol Biol. 2013;1036:47–61spa
dc.relation.referencesSalem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells. 2010;28(3):585–96spa
dc.relation.referencesDorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials. 2005;26(17):3617–29spa
dc.relation.referencesToh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45spa
dc.relation.referencesToole BP. Proteoglycans and Hyaluronan in Morphogenesis and Differentiation. In: Cell Biology of Extracellular Matrix. Boston, MA: Springer US; 1991:305–41spa
dc.relation.referencesCamacho NP, West P, Torzilli PA, Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers. 2001;62(1):1–8spa
dc.relation.referencesJeong CG, Hollister Scott J. SJ. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials. 2010;31(15):4304–12spa
dc.relation.referencesVinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009;27(5):307–14.spa
dc.relation.referencesZhao HL, Zhang CP, Zhu H, Jiang YF, Fu XB. Autofluorescence of collagen fibres in scar. Skin Research and Technology. 2017;23(4):588–92spa
dc.relation.referencesBurnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater. 2016;43:139– 49spa
dc.relation.referencesCheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv. 2014;32(2):462–84spa
dc.relation.referencesNehrer S, Breinan+ HA, Ramappa A, Young G, Shortkroff S, Louie+ LK, Sledge CB, Yannas+ I v, Spector M. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomoterials. 1997;18(11):769-76spa
dc.relation.referencesLien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5(2):670–9spa
dc.relation.referencesKemppainen JM, Hollister SJ. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials. 2010;31(2):279–87spa
dc.relation.referencesBautista CA, Park HJ, Mazur CM, Aaron RK, Bilgen B. Effects of chondroitinase ABC-Mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS One. 2016;11(7):e0158976spa
dc.relation.referencesSutherland AJ, Beck EC, Dennis SC, Converse GL, Hopkins RA, Berkland CJ, Detamore MS. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One. 2015;10(5):e0121966spa
dc.relation.referencesNasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biologicals. 2017;48:39–46spa
dc.relation.referencesHuang B, Caetano G, Vyas C, Blaker JJ, Diver C, Bártolo P. Polymer-ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate. Materials. 2018;11(1):129spa
dc.relation.referencesUppanan P, Thavornyutikarn B, Kosorn W, Kaewkong P, Janvikul W. Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments. J Biomed Mater Res A. 2015;103(7):2322–32spa
dc.relation.referencesMetwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C Mater Biol Appl. 2019;104:109883spa
dc.relation.referencesCámara-Torres M, Sinha R, Scopece P, Neubert T, Lachmann K, Patelli A, Mota C, Moroni L. Tuning cell behavior on 3d scaffolds fabricated by atmospheric plasma- assisted additive manufacturing. ACS Appl Mater Interfaces. 2021;13(3):3631–44spa
dc.relation.referencesDadsetan M, Pumberger M, Casper ME, Shogren K, Giuliani M, Ruesink T, Hefferan TE, Currier BL, Yaszemski MJ. The effects of fixed electrical charge on chondrocyte behavior. Acta Biomater. 2011;7(5):2080–90spa
dc.relation.referencesYang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, Zhang X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cellsin vitroandin vivo. J Mater Chem B. 2020;8(21):4680–93spa
dc.relation.referencesGholipourmalekabadi M, Mozafari M, Salehi M, Seifalian A, Bandehpour M, Ghanbarian H, Urbanska AM, Sameni M, Samadikuchaksaraei A, Seifalian AM. Development of a cost-effective and simple protocol for decellularization and preservation of human amniotic membrane as a soft tissue replacement and delivery system for bone marrow stromal cells. Adv Healthc Mater. 2015;4(6):918–26spa
dc.relation.referencesElder S, Pinheiro A, Young C, Smith P, Wright E. Evaluation of genipin for stabilization of decellularized porcine cartilage. Journal of Orthopaedic Research. 2017;35(9):1949–57spa
dc.relation.referencesLoh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502spa
dc.relation.referencesOh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28(9):1664–71spa
dc.relation.referencesVickers SM, Gotterbarm T, Spector M. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG Scaffolds seeded with bone marrow- derived mesenchymal stem cells. Journal of Orthopaedic Research. 2010;28(9):1184–92spa
dc.relation.referencesLee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen- glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145-54spa
dc.relation.referencesPevsner-Fischer M, Levin S, Zipori D. The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Rev Rep. 2011;7(3):560–8spa
dc.relation.referencesNehrer S, Breinan HA, Ramappa A, Hsu HP, Minas T, Shortkroff S, Sledge CB, Yannas I v, Spector M, Mit H/. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials. 1998;19(4):2313-28spa
dc.relation.referencesSchwarz S, Elsaesser AF, Koerber L, Goldberg-Bockhorn E, Seitz AM, Bermueller C, Dürselen L, Ignatius A, Breiter R, Rotter N. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: Effects on chondrocyte differentiation and function. J Tissue Eng Regen Med. 2015;9(12):E239–51spa
dc.relation.referencesFrancioli SE, Candrian C, Martin K, Heberer M, Martin I, Barbero A. Effect of three- dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. J Biomed Mater Res A. 2010;95(3 A):924–31spa
dc.relation.referencesBara JJ, McCarthy HE, Humphrey E, Johnson WEB, Roberts S. Bone Marrow- Derived Mesenchymal Stem Cells Become Antiangiogenic When Chondrogenically or Osteogenically Differentiated: Implications for Bone and Cartilage Tissue Engineering. Tissue Eng Part A. 2014;20(1–2):147–59spa
dc.relation.referencesLee CS, Burnsed OA, Raghuram V, Kalisvaart J, Boyan BD, Schwartz Z. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Rest Ther. 2012;3(4):35.spa
dc.relation.referencesHayami T, Shukunami C, Mitsui K, Endo N, Tokunaga K, Kondo J, Takahashi HE, Hiraki Y. Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo. FEBS Lett. 1999;458(3):436–40spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsCartílago Hialinospa
dc.subject.decsHyaline Cartilageeng
dc.subject.decsColágeno Tipo IIspa
dc.subject.decsCollagen Type IIeng
dc.subject.decsCondrocitosspa
dc.subject.decsChondrocyteseng
dc.subject.decsCélulas Madre Mesenquimatosasspa
dc.subject.decsMesenchymal Stem Cellseng
dc.subject.proposalTráquea bovinaspa
dc.subject.proposalSoportes de colágeno IIspa
dc.subject.proposalSoportes de cartílago hialino descelularizadospa
dc.subject.proposalFactores angiogénicosspa
dc.subject.proposalBovine tracheaeng
dc.subject.proposalCollagen II scaffoldseng
dc.subject.proposalDecellularized hyaline cartilage scaffoldseng
dc.subject.proposalAngiogenic factorseng
dc.titleEvaluación del potencial para inducir condrogénesis de soportes de colágeno II y cartílago hialino descelularizado, sembrados con condrocitos o células madre mesenquimalesspa
dc.title.translatedEvaluation of the potential to induce chondrogenesis of collagen II and decellularized hyaline cartilage scaffolds, seeded with chondrocytes or mesenchymal stem cellseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52845333.2022.pdf
Tamaño:
38.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: