Evaluación del potencial para inducir condrogénesis de soportes de colágeno II y cartílago hialino descelularizado, sembrados con condrocitos o células madre mesenquimales
dc.contributor.advisor | Fontanilla Duque, Martha Raquel | spa |
dc.contributor.author | Flórez Cabrera, Adriana Matilde | spa |
dc.contributor.researchgroup | Grupo de Trabajo en Ingeniería de Tejidos | spa |
dc.date.accessioned | 2024-11-05T13:13:38Z | |
dc.date.available | 2024-11-05T13:13:38Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El cartílago hialino de la tráquea bovina puede ser empleado en la elaboración de soportes para aplicaciones en ingeniería de tejidos articulares. Este trabajo desarrolló, caracterizó y comparó soportes de colágeno II y cartílago hialino descelularizado, ambos hechos de tráquea bovina, pero con diferentes procedimientos. Para ello, se aisló colágeno II y se utilizó para elaborar soportes porosos, se estableció un método de descelularización de tráquea bovina y se obtuvieron soportes de cartílago hialino descelularizados. Se evaluaron y compararon las propiedades microestructurales, fisicoquímicas, mecánicas y biológicas de ambos tipos de soportes. También se evaluó y comparó el tejido formado cuando se sembraron condrocitos o células madre mesenquimales humanas (MSCs) en estos soportes, así como el perfil de factores angiogénicos secretados por los cultivos 3D resultantes. Las diferencias en composición, microestructura y propiedades mecánicas de los soportes afectaron la formación de tejido nuevo. En presencia de medio de diferenciación condrogénico, se observó cartílago hialino principalmente en los soportes de cartílago hialino descelularizado. Este hallazgo se correlaciona con la baja concentración de factores angiogénicos que se encuentran en el medio de cultivo de los soportes de cartílago hialino descelularizados sembrados con MSCs. Los resultados indican que los soportes de cartílago hialino descelularizados promueven el crecimiento y diferenciación condrogénica de condrocitos y MSC mejor que los soportes de colágeno II, los cuales favorecen la formación de tejido fibroso y fibrocartílago. Sin embargo, se necesita una evaluación preclínica de los soportes de cartílago hialino descelularizados en un modelo de lesión de cartílago para concluir sobre su biocompatibilidad (Texto tomado de la fuente). | spa |
dc.description.abstract | Hyaline cartilage from bovine trachea can be used to prepare scaffolds for joint tissue engineering applications. This work developed, characterized, and compared scaffolds of collagen II and decellularized hyaline cartilage, both made from bovine trachea but with different procedures. For this, collagen II was isolated and used to manufacture porous scaffolds, a decellularization method of bovine trachea was established and decellularized hyaline cartilage scaffolds were obtained. Microstructural, physicochemical, mechanical, and biological properties of both scaffolds were assessed and compared. It also assessed and compared the tissue formed when chondrocytes or mesenchymal stem cells (MSCs) were seeded on these scaffolds, as well as the profile of angiogenic factors secreted by the resulting 3D-cultures. Differences in composition, microstructure, and mechanical properties of scaffolds impacted the formation of new tissue. In the presence of chondrogenic differentiation medium, hyaline cartilage was observed mainly in decellularized hyaline cartilage scaffolds. This finding correlates with the low concentration of angiogenic factors found in the culture medium of decellularized hyaline cartilage scaffolds seeded with MSCs. The results indicate that decellularized hyaline cartilage scaffolds promotes chondrocyte and MSC growth and chondral differentiation better than collagen II scaffolds, which favor the formation of fibrous tissue and fibrocartilage. None of the less, a preclinical evaluation of the decellularized scaffolds in a cartilage injury model is still needed to conclude on their biocompatibility. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.methods | En un trabajo previo, nuestro grupo de investigación estandarizó dos metodologías para el aislamiento de colágeno tipo II (doble digestión enzimática tripsina-pepsina y digestión enzimática solo con tripsina) a partir de tráquea bovina [20]. Los resultados del trabajo mencionado demostraron que las propiedades de los soportes son influenciadas por el método empleado para aislar el colágeno tipo II. Igualmente, que las características de los soportes producidos con el colágeno II aislado con tripsina lo pueden hacer útil como sustituto de cartílago articular al combinarse con técnicas de estimulación de la médula ósea. | spa |
dc.description.researcharea | Materiales poliméricos | spa |
dc.format.extent | xviii, 90 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87147 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | Newman AP. Articular Cartilage Repair. Am J Sports Med. 1998;26(2):309–24 | spa |
dc.relation.references | Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials. 2013;6(2):637–68 | spa |
dc.relation.references | Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. 2010;35:403–40 | spa |
dc.relation.references | Chiang H, Jiang CC. Repair of Articular Cartilage Defects: Review and Perspectives. Journal of the Formosan Medical Association. 2009;108(2):87–101 | spa |
dc.relation.references | Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. Journal of Orthopaedic Research. 2009;27(10):1353–60 | spa |
dc.relation.references | Kang SW, Bada LP, Kang CS, Lee JS, Kim CH, Park JH, Kim BS. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett. 2008;30(3):435–9 | spa |
dc.relation.references | Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas I v, Spector M. Canine Chondrocytes Seeded in Type I and Type II Collagen Implants Investigated In Vitro. 1997;38:95-104 | spa |
dc.relation.references | Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93(6):1152–63 | spa |
dc.relation.references | Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. Chondrogenesis of Adult Stem Cells from Adipose Tissue and Bone Marrow: Induction by Growth Factors and Cartilage-Derived Matrix. Tissue Eng Part A. 2010;16(2):523–33 | spa |
dc.relation.references | Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 201;32(9):2265–73 | spa |
dc.relation.references | Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials. 2016;91:57–72 | spa |
dc.relation.references | Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: Factors that influence the host response. Ann Biomed Eng. 2014;42(7):1517–27 | spa |
dc.relation.references | Schneider C, Lehmann J, van Osch GJVM, Hildner F, Teuschl A, Monforte X, Miosga D, Heimel P, Priglinger E, Redl H, Wolbank S, Nürnberger S. Systematic comparison of protocols for the preparation of human articular cartilage for use as scaffold material in cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22(12):1095–107 | spa |
dc.relation.references | Ghassemi T, Saghatolslami N, Matin MM, Gheshlaghi R, Moradi A. CNT- decellularized cartilage hybrids for tissue engineering applications. Biomed Mater. 2017;12(6):1-32 | spa |
dc.relation.references | Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose- derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15(2):231–41 | spa |
dc.relation.references | Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, Ignatius A, Walther P, Breiter R, Rotter N. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A. 2012;18(21–22):2195–209 | spa |
dc.relation.references | Heinegård D. Extraction, fractionation and characterization of proteoglycans from bovine tracheal cartilage. Biochim Biophys Acta. 1972;285(1):181–92 | spa |
dc.relation.references | Ko CS, Wu CH, Huang HH, Chu IM. Genipin Cross-linking of Type II Collagen- chondroitin Sulfate-hyaluronan Scaffold for Articular Cartilage Therapy. J Med Biol Eng. 2007;27(1):7–14 | spa |
dc.relation.references | Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials. 2002;23:3183-3192 | spa |
dc.relation.references | María E Soto. Estandarización de un método de purificación de colágeno tipo II y elaboración de soportes para ingeniería de tejido cartilaginoso. 2014. Tesis de Maestría. Universidad Nacional de Colombia. Facultad de Ingeniería | spa |
dc.relation.references | Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health. 2009;1(6):461–8 | spa |
dc.relation.references | Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86 | spa |
dc.relation.references | Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med. 2017;36:413–25 | spa |
dc.relation.references | Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32 | spa |
dc.relation.references | Luo Y , Sinkeviciute D, He Y , Karsdal M, Henrotin Y , Mobasheri A, Önnerfjord P , Bay- Jensen A. The minor collagens in articular cartilage. Protein Cell. 2017;8(8):560–72 | spa |
dc.relation.references | Harpal T, Gahunia K, Gross AE, Pritzker KPH, Babyn PS, Murnaghan L. Articular Cartilage of the Knee, editors. New York, NY: Springer New York; 2020 | spa |
dc.relation.references | Decker RS. Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol. 2017;62:50–6 | spa |
dc.relation.references | Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cel Mol Life Sci. 2019;76(20):3939–52 | spa |
dc.relation.references | Decker RS, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10 | spa |
dc.relation.references | Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol exp Morph. 1977;39:115-27 | spa |
dc.relation.references | Decker RS, Koyama E, Pacifici M. Articular Cartilage: Structural and Developmental Intricacies and Questions. Curr Osteoporos Rep. 2015;13(6): 407–14 | spa |
dc.relation.references | Jenner F, Ijpma A, Cleary M, Heijsman D, Narcisi R, van der Spek PJ, Kremer A, van Weeren R, Brama P, van Osch GJVM. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev. 2014;23(16):1883–98 | spa |
dc.relation.references | Hardmeier R, Redl H, Marlovits S. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J Tissue Eng Regen Med. 2010;4(1):1– 11 | spa |
dc.relation.references | Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD. Advances in articular cartilage repair. Injury. 2005;36:14-23 | spa |
dc.relation.references | Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Front in Genet. 2016;7:213 | spa |
dc.relation.references | Liao J, Shi K, Ding Q, Qu Y, Luo F, Qian Z. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol. 2014;10(10):3085–104 | spa |
dc.relation.references | Haleem AM, Chu CR. Advances in tissue engineering techniques for articular cartilage repair. Oper Tech Orthop. 2010;20(2):76–89 | spa |
dc.relation.references | Madeira C, Santhagunam A, Salgueiro JB, Cabral JMS. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 2015;33(1):35–42 | spa |
dc.relation.references | Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93 | spa |
dc.relation.references | Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26(20):4273–9 | spa |
dc.relation.references | Skaalure SC, Dimson SO, Pennington AM, Bryant SJ. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Acta Biomater. 2014;10(8):3409–20 | spa |
dc.relation.references | Li X, Xu Q, Johnson M, Wang X, Lyu J, Li Y, McMahon S, Greiser U, Sigen A, Wang W. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci. 2021;9(11):4139–48 | spa |
dc.relation.references | Eviana Putri NR, Wang X, Chen Y, Li X, Kawazoe N, Chen G. Preparation of PLGA- collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Progress in Natural Science: Materials International. 2020;30(5):642– 50 | spa |
dc.relation.references | Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45 | spa |
dc.relation.references | Bauer C, Berger M, Baumgartner RR, Höller S, Zwickl H, Niculescu-Morzsa E, Halbwirth F, Nehrer S. A Novel Cross-Linked Hyaluronic Acid Porous Scaffold for Cartilage Repair: An In Vitro Study With Osteoarthritic Chondrocytes. Cartilage. 2016;7(3):265–73 | spa |
dc.relation.references | Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211–22 | spa |
dc.relation.references | Selmi TAS, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P, Surgeon O, Bank C. Autologous chondrocyte implantation in a novel alginate- agarose hydrogel: outcome at two years. J Bone Joint Surg Br. 2008;90(5):597 | spa |
dc.relation.references | van Susante JLC, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RPH. Resurfacing potential of heterologous chondrocytes suspended in "brin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials. 1999;20(13):1167-75 | spa |
dc.relation.references | Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 2000;51(4):586-95 | spa |
dc.relation.references | Zhao P, Deng C, Xu H, Tang X, He H, Lin C, Su J. Fabrication of photo-crosslinked Chitosan- Gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Biomed Mater Eng. 2014;24(1):633–41 | spa |
dc.relation.references | Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 2011;17(7):717–30 | spa |
dc.relation.references | Yu F, Cao X, Zeng L, Zhang Q, Chen X. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering. Carbohydr Polym. 2013;97(1):188–95 | spa |
dc.relation.references | Schneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S. A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2145–52 | spa |
dc.relation.references | Gomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a Type I/III Bilayer Collagen Membrane Decreases Reoperation Rates for Symptomatic Hypertrophy after Autologous Chondrocyte Implantation. Am J Sports Med. 2009;37(1):20S-23S | spa |
dc.relation.references | LaPorta TF, Richter A, Sgaglione NA, Grande DA. Clinical Relevance of Scaffolds for Cartilage Engineering. Orthop Clin North Am. 2012;43(2):245–54 | spa |
dc.relation.references | Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report. J Orthop Surg. 2003;11(1):10-5 | spa |
dc.relation.references | Benthien JP , Behrens P . Autologous matrix-induced chondrogenesis (AMIC): Combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1(1):65–8 | spa |
dc.relation.references | Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863–87 | spa |
dc.relation.references | Gigante A, Bevilacqua C, Cappella M, Manzotti S, Greco F. Engineered articular cartilage: influence of the scaffold on cell phenotype and proliferation. J Mater Sci Mater Med. 2003;14(8):713–6 | spa |
dc.relation.references | Xue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012 Aug;33(24):5832–40 | spa |
dc.relation.references | Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29(15):2378–87 | spa |
dc.relation.references | Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43 | spa |
dc.relation.references | Moradi A, Pramanik S, Ataollahi F, Abdul Khalil A, Kamarul T, Pingguan-Murphy B. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications. Sci Technol Adv Mater. 2014;15(6):065001 | spa |
dc.relation.references | Yang Z, Shi Y, Wei X, He J, Yang S, Dickson G, Tang J, Xiang J, Song C, Li G. Fabrication and Repair of Cartilage Defects with a Novel Acellular Cartilage Matrix Scaffold. Tissue Eng Part C Methods. 2010;16(5):865–76 | spa |
dc.relation.references | Urlić I, Ivković A. Cell sources for cartilage repair—biological and clinical perspective. Cells. 2021;10(9):2496 | spa |
dc.relation.references | Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N Engl J Med. 1994;331(14):889–95 | spa |
dc.relation.references | McCarthy HS, Roberts S. A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation. Osteoarthritis Cartilage. 2013;21(12):2048–57 | spa |
dc.relation.references | Andriolo L, Merli G, Filardo G, Marcacci M, Kon E. Failure of Autologous Chondrocyte Implantation. Sports Med Arthrosc Rev. 2017; 25(1):10-18 | spa |
dc.relation.references | Kafienah E, Jakob M, Démarteau O, Frazer A, Barker MD, Martin I, Hollander AP. Three-Dimensional Tissue Engineering of Hyaline Cartilage: Comparison of Adult Nasal and Articular Chondrocytes. Tissue Eng. 2002;8(5):817-26 | spa |
dc.relation.references | Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 2016;388(10055):1985–94 | spa |
dc.relation.references | Jayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connec Tissue Res. 2015;56(4):265–71 | spa |
dc.relation.references | Jayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell–based cartilage repair. Ann N Y Acad Sci. 2016;1383(1):21–33 | spa |
dc.relation.references | Chimutengwende-Gordon M, Ahmad MA, Bentley G, Brammah J, Carrington R, Miles J, Donaldson J. Stem cell transplantation for the treatment of osteochondral defects of the knee: Operative technique for a single-stage transplantation procedure using bone marrow-derived mesenchymal stem cells. Knee. 2021;28:400–9 | spa |
dc.relation.references | Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy. 2015;23(5):1308– 16 | spa |
dc.relation.references | Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E, Kantarci F, Caliskan G, Akgun Y. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;135(2):251–63 | spa |
dc.relation.references | Song JS, Hong KT, Kim NM, Jung JY, Park HS, Lee SH, Cho YJ, Kim SJ. Implantation of allogenic umbilical cord blood-derived mesenchymal stem cells improves knee osteoarthritis outcomes: Two-year follow-up. Regen Ther. 2020;14:32–9 | spa |
dc.relation.references | Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, Sekiya I. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006;54(3):843–53 | spa |
dc.relation.references | Vinod E, Parameswaran R, Amirtham SM, Rebekah G, Kachroo U. Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration. Acta Histochem. 2021;123(4):151713 | spa |
dc.relation.references | Veronesi F, Maglio M, Tschon M, Aldini NN, Fini M. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: State-of-The-Art in in vivo studies. J Biomed Mater Res A. 2014;102(7):2448–66 | spa |
dc.relation.references | Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333(2):207–15 | spa |
dc.relation.references | Kubosch EJ, Lang G, Furst D, Kubosch D, Izadpanah K, Rolauffs B, Sudkamp NP, Schmal H. The Potential for Synovium-derived Stem Cells in Cartilage Repair. Curr Stem Cell Res Ther. 2018;13(3):174–84 | spa |
dc.relation.references | Fischer J, Dickhut A, Rickert M, Richter W. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 2010;62(9):2696–706 | spa |
dc.relation.references | Wu L, Leijten JCH, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17(9–10):1425–36 | spa |
dc.relation.references | Hettrich CM, Crawford D, Rodeo SA. Third-Generation Cell-based Technologies- Basic Science, Surgical Techniques, Clinical Outcomes. Sports Med Arthrosc Rev. 2008;16(4):230-5 | spa |
dc.relation.references | Kerker JT, Leo AJ, Sgaglione NA. Cartilage Repair: Synthesis and Scaffolds: Basic Science, Surgical Techniques, and Clinical Outcomes. Sports Med Arthrosc Rev. 2008;16(4):208-16 | spa |
dc.relation.references | Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M. Second Generation Issues in Cartilage Repair. Sports Med Arthrosc Rev. 2008;16(4):221-9 | spa |
dc.relation.references | Cascio BM, Sharma B. The Future of Cartilage Repair. Oper Tech Sports Med. 2008;16(4):221–4. | spa |
dc.relation.references | Mccormick F, Yanke A, Provencher MT, Cole BJ. Minced Articular Cartilage-Basic Science, Surgical Technique, and Clinical Application. Sports Med Arthrosc Rev. 2008;16(4):217-20 | spa |
dc.relation.references | Kessler MW, Ackerman G, Dines JS, Grande D. Emerging Technologies and Fourth Generation Issues in Cartilage Repair. Sports Med Arthrosc Rev. 2008;16(4):246- 54 | spa |
dc.relation.references | WangL,GuoX,ChenJ,ZhenZ,CaoB,WanW,DouY,PanH,XuF,ZhangZ, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater. 2022;9:332–42 | spa |
dc.relation.references | Silva-Cote I, Cruz-Barrera M, Cañas-Arboleda M, Correa-Araujo L, Méndez L, Jagielska J, Camacho B, Salguero G. Strategy for the Generation of Engineered Bone Constructs Based on Umbilical Cord Mesenchymal Stromal Cells Expanded with Human Platelet Lysate. Stem Cells Int. 2019;2019:7198215 | spa |
dc.relation.references | Vaca-González JJ, Clara-Trujillo S, Guillot-Ferriols M, Ródenas-Rochina J, Sanchis MJ, Ribelles JLG, Garzón-Alvarado DA, Ferrer GG. Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry. 2020;134:107536 | spa |
dc.relation.references | Vaca-González JJ, Guevara JM, Vega JF, Garzón-Alvarado DA. An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cell Mol Bioeng. 2016;9(1):116–26 | spa |
dc.relation.references | Cissell DD, Link JM, Hu JC, Athanasiou KA. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng Part C Methods. 2017;23(4):243–50 | spa |
dc.relation.references | Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883(2):173-7 | spa |
dc.relation.references | Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27(8):1362–76 | spa |
dc.relation.references | ISO. The International Organization for Standardization 10993-5. Biological evaluation of medical devices part 5: test for in vitro cytotoxicity. 2009 | spa |
dc.relation.references | Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008;3(8):1253–60 | spa |
dc.relation.references | Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. Methods Mol Biol. 2013;1036:47–61 | spa |
dc.relation.references | Salem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells. 2010;28(3):585–96 | spa |
dc.relation.references | Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials. 2005;26(17):3617–29 | spa |
dc.relation.references | Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45 | spa |
dc.relation.references | Toole BP. Proteoglycans and Hyaluronan in Morphogenesis and Differentiation. In: Cell Biology of Extracellular Matrix. Boston, MA: Springer US; 1991:305–41 | spa |
dc.relation.references | Camacho NP, West P, Torzilli PA, Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers. 2001;62(1):1–8 | spa |
dc.relation.references | Jeong CG, Hollister Scott J. SJ. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials. 2010;31(15):4304–12 | spa |
dc.relation.references | Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009;27(5):307–14. | spa |
dc.relation.references | Zhao HL, Zhang CP, Zhu H, Jiang YF, Fu XB. Autofluorescence of collagen fibres in scar. Skin Research and Technology. 2017;23(4):588–92 | spa |
dc.relation.references | Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater. 2016;43:139– 49 | spa |
dc.relation.references | Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv. 2014;32(2):462–84 | spa |
dc.relation.references | Nehrer S, Breinan+ HA, Ramappa A, Young G, Shortkroff S, Louie+ LK, Sledge CB, Yannas+ I v, Spector M. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomoterials. 1997;18(11):769-76 | spa |
dc.relation.references | Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5(2):670–9 | spa |
dc.relation.references | Kemppainen JM, Hollister SJ. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials. 2010;31(2):279–87 | spa |
dc.relation.references | Bautista CA, Park HJ, Mazur CM, Aaron RK, Bilgen B. Effects of chondroitinase ABC-Mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS One. 2016;11(7):e0158976 | spa |
dc.relation.references | Sutherland AJ, Beck EC, Dennis SC, Converse GL, Hopkins RA, Berkland CJ, Detamore MS. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One. 2015;10(5):e0121966 | spa |
dc.relation.references | Nasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biologicals. 2017;48:39–46 | spa |
dc.relation.references | Huang B, Caetano G, Vyas C, Blaker JJ, Diver C, Bártolo P. Polymer-ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate. Materials. 2018;11(1):129 | spa |
dc.relation.references | Uppanan P, Thavornyutikarn B, Kosorn W, Kaewkong P, Janvikul W. Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments. J Biomed Mater Res A. 2015;103(7):2322–32 | spa |
dc.relation.references | Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C Mater Biol Appl. 2019;104:109883 | spa |
dc.relation.references | Cámara-Torres M, Sinha R, Scopece P, Neubert T, Lachmann K, Patelli A, Mota C, Moroni L. Tuning cell behavior on 3d scaffolds fabricated by atmospheric plasma- assisted additive manufacturing. ACS Appl Mater Interfaces. 2021;13(3):3631–44 | spa |
dc.relation.references | Dadsetan M, Pumberger M, Casper ME, Shogren K, Giuliani M, Ruesink T, Hefferan TE, Currier BL, Yaszemski MJ. The effects of fixed electrical charge on chondrocyte behavior. Acta Biomater. 2011;7(5):2080–90 | spa |
dc.relation.references | Yang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, Zhang X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cellsin vitroandin vivo. J Mater Chem B. 2020;8(21):4680–93 | spa |
dc.relation.references | Gholipourmalekabadi M, Mozafari M, Salehi M, Seifalian A, Bandehpour M, Ghanbarian H, Urbanska AM, Sameni M, Samadikuchaksaraei A, Seifalian AM. Development of a cost-effective and simple protocol for decellularization and preservation of human amniotic membrane as a soft tissue replacement and delivery system for bone marrow stromal cells. Adv Healthc Mater. 2015;4(6):918–26 | spa |
dc.relation.references | Elder S, Pinheiro A, Young C, Smith P, Wright E. Evaluation of genipin for stabilization of decellularized porcine cartilage. Journal of Orthopaedic Research. 2017;35(9):1949–57 | spa |
dc.relation.references | Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502 | spa |
dc.relation.references | Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28(9):1664–71 | spa |
dc.relation.references | Vickers SM, Gotterbarm T, Spector M. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG Scaffolds seeded with bone marrow- derived mesenchymal stem cells. Journal of Orthopaedic Research. 2010;28(9):1184–92 | spa |
dc.relation.references | Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen- glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145-54 | spa |
dc.relation.references | Pevsner-Fischer M, Levin S, Zipori D. The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Rev Rep. 2011;7(3):560–8 | spa |
dc.relation.references | Nehrer S, Breinan HA, Ramappa A, Hsu HP, Minas T, Shortkroff S, Sledge CB, Yannas I v, Spector M, Mit H/. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials. 1998;19(4):2313-28 | spa |
dc.relation.references | Schwarz S, Elsaesser AF, Koerber L, Goldberg-Bockhorn E, Seitz AM, Bermueller C, Dürselen L, Ignatius A, Breiter R, Rotter N. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: Effects on chondrocyte differentiation and function. J Tissue Eng Regen Med. 2015;9(12):E239–51 | spa |
dc.relation.references | Francioli SE, Candrian C, Martin K, Heberer M, Martin I, Barbero A. Effect of three- dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. J Biomed Mater Res A. 2010;95(3 A):924–31 | spa |
dc.relation.references | Bara JJ, McCarthy HE, Humphrey E, Johnson WEB, Roberts S. Bone Marrow- Derived Mesenchymal Stem Cells Become Antiangiogenic When Chondrogenically or Osteogenically Differentiated: Implications for Bone and Cartilage Tissue Engineering. Tissue Eng Part A. 2014;20(1–2):147–59 | spa |
dc.relation.references | Lee CS, Burnsed OA, Raghuram V, Kalisvaart J, Boyan BD, Schwartz Z. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Rest Ther. 2012;3(4):35. | spa |
dc.relation.references | Hayami T, Shukunami C, Mitsui K, Endo N, Tokunaga K, Kondo J, Takahashi HE, Hiraki Y. Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo. FEBS Lett. 1999;458(3):436–40 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.decs | Cartílago Hialino | spa |
dc.subject.decs | Hyaline Cartilage | eng |
dc.subject.decs | Colágeno Tipo II | spa |
dc.subject.decs | Collagen Type II | eng |
dc.subject.decs | Condrocitos | spa |
dc.subject.decs | Chondrocytes | eng |
dc.subject.decs | Células Madre Mesenquimatosas | spa |
dc.subject.decs | Mesenchymal Stem Cells | eng |
dc.subject.proposal | Tráquea bovina | spa |
dc.subject.proposal | Soportes de colágeno II | spa |
dc.subject.proposal | Soportes de cartílago hialino descelularizado | spa |
dc.subject.proposal | Factores angiogénicos | spa |
dc.subject.proposal | Bovine trachea | eng |
dc.subject.proposal | Collagen II scaffolds | eng |
dc.subject.proposal | Decellularized hyaline cartilage scaffolds | eng |
dc.subject.proposal | Angiogenic factors | eng |
dc.title | Evaluación del potencial para inducir condrogénesis de soportes de colágeno II y cartílago hialino descelularizado, sembrados con condrocitos o células madre mesenquimales | spa |
dc.title.translated | Evaluation of the potential to induce chondrogenesis of collagen II and decellularized hyaline cartilage scaffolds, seeded with chondrocytes or mesenchymal stem cells | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 52845333.2022.pdf
- Tamaño:
- 38.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: