Evaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado polimérico

dc.contributor.advisorOchoa Botero, Juan Carlos
dc.contributor.authorVilla Cardona, Faber Esneider
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841039spa
dc.contributor.orcidVilla Cardona, Faber Esneider [0000-0001-8683-8063]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Faber_Esneider_Villa_Cardonaspa
dc.contributor.researchgroupMateriales Compuestosspa
dc.contributor.researchgroupInnovación en Producto y Construcción Sosteniblespa
dc.contributor.researchgroupInnovación en Producto y Construcción Sosteniblespa
dc.date.accessioned2024-07-25T13:45:23Z
dc.date.available2024-07-25T13:45:23Z
dc.date.issued2024-07-24
dc.descriptionIlustraciones, fotografías, gráficosspa
dc.description.abstractLa fabricación de concretos y morteros que emplean Cemento Portland Ordinario (OPC) demanda cantidades significativas de materiales pétreos naturales. Los agregados pétreos naturales, derivados de la explotación de canteras, en particular aquellos obtenidos mediante técnicas de lavado, muestran efectos adversos en los ecosistemas naturales, incluyendo las fuentes de agua, la calidad del aire y la deforestación. En consecuencia, existe una necesidad apremiante de investigar nuevos materiales capaces de sustituir a los agregados naturales. Este estudio propone la utilización de residuos de resina de poliéster catalizada, un subproducto de la fabricación de postes para redes eléctricas, como posible sustituto de los agregados naturales en el concreto. A pesar de demostraciones previas que indican que el uso de estas resinas y materiales plásticos como agregados resulta en una disminución de la resistencia a la compresión del concreto, los esfuerzos se dirigen hacia tratamientos destinados a mejorar la interacción entre el agregado polimérico y la pasta de cemento. Para lograr este objetivo, se investigaron de manera sistemática tanto alternativas químicas (modificación polimérica con látex y SBR) como alternativas térmicas (post-curado a temperaturas de 23, 50, 80 y 110 ºC). Se evaluó la resistencia a la compresión para ambos tratamientos, revelando valores de 20,61 MPa en muestras no tratadas y de 17 a 7,60 MPa en muestras tratadas. Para muestras modificadas con SBR, las evaluaciones adicionales incluyeron la resistencia a la flexión (3,19 MPa sin aditivo y 4,31 MPa con SBR), la resistencia a la tensión indirecta (1,62 MPa sin aditivo y 2,02 MPa con SBR) y el módulo de elasticidad estático (0,61 GPa sin aditivo y 0,42 GPa con SBR). Los resultados indican que, si bien los efectos de los tratamientos influyeron negativamente en la resistencia a la compresión, las muestras modificadas con SBR tuvieron un impacto positivo en las otras propiedades evaluadas, exhibiendo resultados superiores. (Tomado de la fuente)spa
dc.description.abstractThe production of concrete and mortars using Ordinary Portland Cement (OPC) requires significant amounts of natural stone materials. Natural stone aggregates, derived from quarry exploitation, especially those obtained through washing techniques, exhibit adverse effects on natural ecosystems, including water sources, air quality, and deforestation. Consequently, there is an urgent need to investigate new materials capable of replacing natural aggregates. This study proposes the use of waste from catalyzed polyester resin, a byproduct of manufacturing utility poles for power grids, as a potential substitute for natural aggregates in concrete. Despite previous demonstrations indicating that the use of these resins and plastic materials as aggregates results in a decrease in the compressive strength of concrete, efforts are directed toward treatments aimed at improving the interaction between the polymeric aggregate and the cement paste. To achieve this goal, both chemical alternatives (polymeric modification with latex and SBR) and thermal alternatives (postcuring at temperatures of 23, 50, 80, and 110 ºC) were systematically investigated. Compressive strength was evaluated for both treatments, revealing values of 20,61 MPa in untreated samples and 17 to 7,60 MPa in treated samples. For samples modified with SBR, additional assessments included flexural strength (3,19 MPa without additive and 4,31 MPa with SBR), indirect tensile strength (1,62 MPa without additive and 2,02 MPa with SBR), and static modulus of elasticity (0,61 GPa without additive and 0,42 GPa with SBR). The results indicate that while the effects of the treatments negatively influenced compressive strength, SBR-modified samples had a positive impact on other evaluated properties, exhibiting superior results.eng
dc.description.curricularareaConstrucción Y Hábitat.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.description.researchareaMateriales y sostenibilidadspa
dc.format.extent177 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86615
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Arquitecturaspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Arquitectura - Maestría en Construcciónspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesACI. (2019). Reglamento para Concreto Estructural (Patent ACi 318-19).spa
dc.relation.referencesAgencia Nacional de Minería. (2020). RESUMEN MINERIA COLOMBIA Vista. https://www.datos.gov.co/Minas-y-Energ-a/RESUMEN-MINERIA-COLOMBIA/9gcr-rggwspa
dc.relation.referencesAïtcin, P. C., & Flatt, R. J. (2015). Science and technology of concrete admixtures. In Science and Technology of Concrete Admixtures (Issue 59). https://doi.org/10.1016/C2015-0-00150-2spa
dc.relation.referencesAjam, A., Tehrani-Bagha, A., Mustapha, S., & Harb, M. (2020). Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae. Applied Composite Materials, 27(4), 357–373. https://doi.org/10.1007/s10443-020-09821-7spa
dc.relation.referencesAlam, M. S., Slater, E., Billah, A. H. M. M., & Asce, S. M. (2013). Green Concrete Made with RCA and FRP Scrap Aggregate : Fresh and Hardened Properties. December, 1783–1794. https://doi.org/10.1061/(ASCE)MT.1943-5533spa
dc.relation.referencesAlexander, M. G. (1993). Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock. Cement and Concrete Research, 23(3), 567–575. https://doi.org/10.1016/0008-8846(93)90006-Uspa
dc.relation.referencesAlezander, M., & Mindess, S. (2010). Aggregate in Concrete. In A. Bentur (Ed.), Civil Engineering (1st Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781482264647spa
dc.relation.referencesAlmeida, N., Branco, F., & Santos, J. R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. Building and Environment, 42(2), 810–819. https://doi.org/10.1016/j.buildenv.2005.09.018spa
dc.relation.referencesAltuki, R., Tyler Ley, M., Cook, D., Jagan Gudimettla, M., & Praul, M. (2022). Increasing sustainable aggregate usage in concrete by quantifying the shape and gradation of manufactured sand. Construction and Building Materials, 321(November 2021), 125593. https://doi.org/10.1016/j.conbuildmat.2021.125593spa
dc.relation.referencesAMVA. (2017). Plan de gestión integral de residuos sólidos regional. In Pgirs-R 2017-2030 (Vol. 24).spa
dc.relation.referencesAsokan, P., Osmani, M., & Price, A. (2010). Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete. Construction and Building Materials, 24(4), 448–460. https://doi.org/10.1016/j.conbuildmat.2009.10.017spa
dc.relation.referencesAsokan, P., Osmani, M., & Price, A. D. F. (2009a). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004spa
dc.relation.referencesAsokan, P., Osmani, M., & Price, A. D. F. (2009b). Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production, 17(9), 821–829. https://doi.org/10.1016/j.jclepro.2008.12.004spa
dc.relation.referencesBank, L. C., & Yazdanbakhsh, A. (2016). Concrete containing coarse aggregate recycled from scrap FRP rebars. Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 1410–1415. https://doi.org/10.1201/9781315641645-231spa
dc.relation.referencesBarbudo, M. A. (2012). Aplicaciones de los áridos reciclados procedentes de residuos de construcción y demolición en la construcción de infraestructuras viarias. Universidad de Cordoba. Departamento de Ingeniería Rural. Área de Ingeniería de La Construcción, 119.spa
dc.relation.referencesBarrrett, Peter. J. (1980). The shape of rock particles, a critical review. Sedimentology, 27(3), 291–303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.xspa
dc.relation.referencesBeeldens, A., Van Gemert, D., Schorn, H., Ohama, Y., & Czarnecki, L. (2005). From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Materials and Structures/Materiaux et Constructions, 38(280), 601–607. https://doi.org/10.1617/14215spa
dc.relation.referencesBensted, J., & Barnes, P. (2002). Structure and Performance of Cements (2nd ed.). CRC Press.spa
dc.relation.referencesBusch, A. L. (2001). Construction Materials : Lightweight. In P. V. K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan (Ed.), Encyclopedia of Materials: Science and Technology, (Second edi, pp. 1550–1558). https://doi.org/https://doi.org/10.1016/B0-08-043152-6/00277-1spa
dc.relation.referencesChan Yam, J. L., Carcaño, R. S., & Moreno, E. I. (2003). Influencia de los agregados pétreos en las características del concreto. Ingeniería, 7(2), 39–46spa
dc.relation.referencesChandra, S., & Berntsson, L. (2002). LIGHTWEIGHT AGGREGATE CONCRETE Science, Technology, and Applications. Noyes Publications.spa
dc.relation.referencesCollivignarelli, M. C., Cillari, G., Ricciardi, P., Miino, M. C., Torretta, V., Rada, E. C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1–34. https://doi.org/10.3390/SU12197903spa
dc.relation.referencesConti, C., Catrambone, M., Colombo, C., Possenti, E., Rectenwald, K. M., Realini, M., & Strobbia, P. (2022). Scientific investigation to look into the conservation history of a Tang Dynasty terracotta Dancing Horse. Heritage Science, 10(1), 1–12. https://doi.org/10.1186/s40494-022-00758-7spa
dc.relation.referencesCorinaldesi, V. (2012). Influence of lightweight aggregates and GRP by-product powders on the properties of self-compacting concretes. Advanced Materials Research, 548, 215–220. https://doi.org/10.4028/www.scientific.net/AMR.548.215spa
dc.relation.referencesCorreia, J. R., Almeida, N. M., & Figueira, J. R. (2011). Recycling of FRP composites: Reusing fine GFRP waste in concrete mixtures. Journal of Cleaner Production, 19(15), 1745–1753. https://doi.org/10.1016/j.jclepro.2011.05.018spa
dc.relation.referencesDa Silva Spinacé, M. A., & De Paoli, M. A. (2005). A tecnologia da reciclagem de polímeros. Quimica Nova, 28(1), 65–72. https://doi.org/10.1590/s0100-40422005000100014spa
dc.relation.referencesDe La Cruz Mora, C. Y. (2009). Desarrollo de hormigones autocompactantes de resistencia media (HAC-RM), en colombia.spa
dc.relation.referencesDehghan, A., Peterson, K., & Shvarzman, A. (2017). Recycled glass fiber reinforced polymer additions to Portland cement concrete. Construction and Building Materials, 146, 238–250. https://doi.org/10.1016/j.conbuildmat.2017.04.011spa
dc.relation.referencesDjerbi, A. (2018). Effect of recycled coarse aggregate on the new interfacial transition zone concrete. Construction and Building Materials, 190, 1023–1033. https://doi.org/10.1016/j.conbuildmat.2018.09.180spa
dc.relation.referencesFarinha, C. B., de Brito, J., & Veiga, R. (2019). Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. Journal of Cleaner Production, 210, 1579–1594. https://doi.org/10.1016/j.jclepro.2018.11.080spa
dc.relation.referencesFerraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy. Academic Press.spa
dc.relation.referencesFox, T. R. (2016). Recycling wind turbine blade composite material as aggregate in concrete. In Graduate Theses and Dissertations. Iowa State University.spa
dc.relation.referencesGarcía, J. A. R., Mireles, E. N. A., Ceballos, R. R. L., Rangel, E. R., Arriaga, C. A. C., & García, R. D. L. (2019). Synthesis and characterization of concrete mortars reinforced with thermostable polymer from industrial waste. Revista de La Construccion, 17(3), 465–472. https://doi.org/10.7764/RDLC.17.3.465spa
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782spa
dc.relation.referencesGu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005spa
dc.relation.referencesGutiérrez De López, L. (2003). El Concreto Y Otros Materiales Para La Construcción. In 2003.spa
dc.relation.referencesHong, L., Gu, X., & Lin, F. (2014). Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials, 65, 338–349. https://doi.org/10.1016/j.conbuildmat.2014.04.131spa
dc.relation.referencesICONTEC. (2018). Especificaciones de los agregados para concretospa
dc.relation.referencesICONTEC. (2019a). Agregados livianos para concreto estructural.spa
dc.relation.referencesICONTEC. (2019b). Método de ensayo para determinar el módulo de elasticidad estático y la relación de poisson en concreto a compresión.spa
dc.relation.referencesICONTEC. (2019c). Método de ensayo para la determinación de la densidad volumétrica (masa unitaria) y vacíos en agregados.spa
dc.relation.referencesICONTEC. (2020). Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino.spa
dc.relation.referencesISO. (2008). Representation of results of particle size analysis — Part 6: Descriptive and quantitative representation of particle shape and morphology. In ISO 9276-6.spa
dc.relation.referencesJob, S. (2013). Recycling glass fibre reinforced composites - History and progress. Reinforced Plastics, 57(5), 19–23. https://doi.org/10.1016/S0034-3617(13)70151-6spa
dc.relation.referencesKhalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. Cement and Concrete Research, 120(January), 294–321. https://doi.org/10.1016/j.cemconres.2019.03.013spa
dc.relation.referencesKimm, M., Pico, D., & Gries, T. (2020). Investigation of surface modification and volume content of glass and carbon fibres from fibre reinforced polymer waste for reinforcing concrete. Journal of Hazardous Materials, 390(February 2019), 121797. https://doi.org/10.1016/j.jhazmat.2019.121797spa
dc.relation.referencesKiran, E., Debenedetti, P. G., & Peters, C. J. (2000). Supercritical Fluids: Fundamentals and Applications (NATO Science Series, Ed.; 1st editio). NATO ASI Series.spa
dc.relation.referencesKnapen, E., & Van Gemert, D. (2015). Polymer film formation in cement mortars modified with water-soluble polymers. Cement and Concrete Composites, 58, 23–28. https://doi.org/10.1016/j.cemconcomp.2014.11.015spa
dc.relation.referencesKnight, C. C. (2013). Recycling High-Performance Carbon Fiber Reinforced Polymer Composites Using Sub- Critical and Supercritical Water. 83–90.spa
dc.relation.referencesKobayashi, K. (2000). Characteristics of Self-Compacting by Concrete in Fresh State with Artificial Aggregate. 50. https://doi.org/10.2472/jsms.50.1021spa
dc.relation.referencesKong, L., & Du, Y. (2015). Interfacial interaction of aggregate-cement paste in concrete. Journal Wuhan University of Technology, Materials Science Edition, 30(1), 117–121. https://doi.org/10.1007/s11595-015-1111-zspa
dc.relation.referencesKosmatka, S. H., Kerkhoff.Kerkhoff, & Panarese, William. C. (2008). Design and Control of Concrete MIxtures.spa
dc.relation.referencesKosmatka, S. H., & Wilson, M. L. (Architectural engineer). (2011). Design and control of concrete mixtures (15th ed.). Portland Cement Association.spa
dc.relation.referencesKramer, C. A., & Basu, P. (2014). Performance of a model geothermal pile in sand. Physical Modelling in Geotechnics - Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014, ICPMG 2014, 2(August 2013), 771–777. https://doi.org/10.1201/b16200-106spa
dc.relation.referencesKumar, P., Pasla, D., & Jothi Saravanan, T. (2023). Self-compacting lightweight aggregate concrete and its properties: A review. Construction and Building Materials, 375(February), 130861.spa
dc.relation.referencesKumar, S., & Barai, S. V. (2019a). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesKumar, S., & Barai, S. V. (2019b). Concrete Fracture Models and Applications. In Journal of Chemical Information and Modeling (Vol. 1, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesLeón, M. P., & Ramírez, F. (2010). Caracterización morfológica de agregados para concreto mediante el análisis de imágenes Morphological characterization of concrete aggregates by means of image analysis. Revista Ingeniería de Construcción, 25, 215–240.spa
dc.relation.referencesLi, Q., Liu, P., Wang, M., & Xia, H. (2023). Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile. Journal of Building Engineering, 64(July 2022), 105585. https://doi.org/10.1016/j.jobe.2022.105585spa
dc.relation.referencesLiu, T., Zhang, M., Guo, X., Liu, C., Liu, T., Xin, J., & Zhang, J. (2017). Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polymer Degradation and Stability, 139, 20–27. https://doi.org/10.1016/j.polymdegradstab.2017.03.017spa
dc.relation.referencesMa, G., Zhou, B., Zhang, M., & Sanjayan, J. (2022). Understanding and eliminating of expansion caused by recycled glass fiber reinforced plastic powder in concrete. Construction and Building Materials, 347(February), 128542. https://doi.org/10.1016/j.conbuildmat.2022.128542spa
dc.relation.referencesMa, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131spa
dc.relation.referencesMartinez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78.spa
dc.relation.referencesMartínez Ponce, D. D. (1993). Hormigones de altas prestaciones. RE: Revista de Edificación, 15, 71–78.spa
dc.relation.referencesMaso, J. C. (1992). Interfaces in Cementitious Composites. In Interfaces in Cementitious Composites. https://doi.org/10.1201/9781482271256spa
dc.relation.referencesMehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties and materials. In International Journal of Cement Composites and Lightweight Concrete (Vol. 3, Issue 4). https://doi.org/10.1016/0262-5075(86)90055-spa
dc.relation.referencesNeville, A. M. (2011). Properties of concrete (5th ed.). Pearson. https://doi.org/10.4324/9780203967874-11spa
dc.relation.referencesNewman, J., & Owens, P. (2003). Properties of lightweight concrete. In Advanced Concrete Technology. Woodhead Publishing Limited. https://doi.org/10.1016/B978-075065686-3/50288-3spa
dc.relation.referencesOgi, K., Shinoda, T., & Mizui, M. (2005). Strength in concrete reinforced with recycled CFRP pieces. Composites Part A: Applied Science and Manufacturing, 36(7), 893–902. https://doi.org/10.1016/j.compositesa.2004.12.009spa
dc.relation.referencesOliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004spa
dc.relation.referencesOllivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials, 2(1), 30–38. https://doi.org/10.1016/1065-7355(95)90037-3spa
dc.relation.referencesOsmani, M., & Asokan, P. (2010). An assessment of the compressive strength of glass reinforced plastic waste filled concrete for potential applications in construction. Concrete Research Letters 1.1, 1(May), 1–5.spa
dc.relation.referencesPatel, S. H., Gonsalves, K. E., Stivala, S. S., Reich, L., & Trivedi, D. H. (1993). Alternative procedures for the recycling of sheet molding compounds. Advances in Polymer Technology, 12(1), 35–45. https://doi.org/10.1002/adv.1993.060120104spa
dc.relation.referencesPickering, S. J. (2006). Recycling technologies for thermoset composite materials-current status. Composites Part A: Applied Science and Manufacturing, 37(8), 1206–1215. https://doi.org/10.1016/j.compositesa.2005.05.030spa
dc.relation.referencesPiñero-Hernanz, R., García-Serna, J., Dodds, C., Hyde, J., Poliakoff, M., Cocero, M. J., Kingman, S., Pickering, S., & Lester, E. (2008). Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. Journal of Supercritical Fluids, 46(1), 83–92. https://doi.org/10.1016/j.supflu.2008.02.008spa
dc.relation.referencesPlascticEurope-Association of Plastics Manufactures. (2020). Plastics – the Facts 2020. PlasticEurope, 1–64.spa
dc.relation.referencesProkopski, G., & Halbiniak, J. (2000). Interfacial transition zone in cementitious materials. Cement and Concrete Research, 30(4), 579–583. https://doi.org/10.1016/S0008-8846(00)00210-6spa
dc.relation.referencesRamachandran, V. S. (1995). Concrete Admixtures Handbook: Properties, Science, and Technology. In Concr Admixtures Handb, Prop, Sci, and Technol (2nd ed.). Noyes Publications.spa
dc.relation.referencesRao, A. S., & Rao, G. A. (2014). Fracture Mechanics of Fiber Reinforced Concrete: An Overview. International Journal of Engineering Innovations and Research, 3(4), 517spa
dc.relation.referencesRibeiro, M. C. S., Fiúza, A., & Ferreira, A. J. M. (2017). Recycling and reuse of fiber reinforced polymer wastes in concrete composite materials. Handbook of Composites from Renewable Materials, 1–8, 155–173. https://doi.org/10.1002/9781119441632.ch46spa
dc.relation.referencesSchneider, U. (1988). Concrete at high temperatures - A general review. Fire Safety Journal, 13(1), 55–68. https://doi.org/10.1016/0379-7112(88)90033-1spa
dc.relation.referencesScrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4cspa
dc.relation.referencesShen, J., & Xu, Q. (2019). Effect of elevated temperatures on compressive strength of concrete. Construction and Building Materials, 229, 116846. https://doi.org/10.1016/j.conbuildmat.2019.116846spa
dc.relation.referencesSidorova, A. (2013). Estudio del efecto de la naturaleza del árido reciclado en la microestructura y propiedades de la zona de transición árido-pasta de cemento. Universidad Politécnica de Catalunya, 1–171.spa
dc.relation.referencesSon, H. N., & Hosoda, A. (2010). Detection of microcracking in concrete subjected to elevated temperature at very early age by acoustic emission. Journal of Advanced Concrete Technology, 8(2), 201–211. https://doi.org/10.3151/jact.8.201spa
dc.relation.referencesSoroka, I. (1979). Portland Cement Paste and Concrete. In Portland Cement Paste and Concrete (First). THE MACMILLAN PRESS LTD. https://doi.org/10.1007/978-1-349-03994-4spa
dc.relation.referencesSúarez Durán, M. (2012). Descripcion del uso de concretos especiales en colombia desde el 2000 hasta el 2010. Universidad Pontificia Bolivariana.spa
dc.relation.referencesTian, Y., Jin, X. Y., Jin, N. G., Zhao, R., Li, Z. J., & Ma, H. Y. (2013). Research on the microstructure formation of polyacrylate latex modified mortars. Construction and Building Materials, 47, 1381–1394. https://doi.org/10.1016/j.conbuildmat.2013.06.016spa
dc.relation.referencesTittarelli, F. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 2. Construction and Building Materials, 47, 1539–1543. https://doi.org/10.1016/j.conbuildmat.2013.06.086spa
dc.relation.referencesTittarelli, F., Kawashima, S., Tregger, N., Moriconi, G., & Shah, S. P. (2010). Effect of GRP by-product addition on plastic and hardened properties of cement mortars. 2nd International Conference on Sustainable Construction Materials and Technologies, 677–687.spa
dc.relation.referencesTittarelli, F., & Shah, S. P. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Construction and Building Materials, 47, 1532–1538. https://doi.org/10.1016/j.conbuildmat.2013.06.043spa
dc.relation.referencesTorres, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Legarreta, J. A., Cabrero, M. A., González, A., Chomón, M. J., & Gondra, K. (2000). Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel, 79(8), 897–902. https://doi.org/10.1016/S0016-2361(99)00220-3spa
dc.relation.referencesUtekar, S., V K, S., More, N., & Rao, A. (2021). Comprehensive study of recycling of thermosetting polymer composites – Driving force, challenges and methods. Composites Part B: Engineering, 207(September 2020), 108596. https://doi.org/10.1016/j.compositesb.2020.108596spa
dc.relation.referencesVan Gemert, D., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., Łukowski, P., & Knapen, E. (2005). Cement concrete and concrete-polymer composites: Two merging worlds: A report from 11th ICPIC Congress in Berlin, 2004. Cement and Concrete Composites, 27(9–10), 926–933. https://doi.org/10.1016/j.cemconcomp.2005.05.004spa
dc.relation.referencesVargas Samboni, P. (2016). Evaluación de la influencia de propiedades físicas y morfolígicas de agregados livianos, en la microestructura de la Zona de Transición Interfacial (ITZ), en concretos. 122.spa
dc.relation.referencesVo Dong, P. A., Azzaro-Pantel, C., & Cadene, A. L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling, 133(January), 63–75. https://doi.org/10.1016/j.resconrec.2018.01.024spa
dc.relation.referencesWang, X., Saifullah, H. A., Nishikawa, H., & Nakarai, K. (2020). Effect of water–cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646. https://doi.org/10.1016/j.conbuildmat.2020.119646spa
dc.relation.referencesWinter, H., Mostert, H. A. M., Smeets, P. J. H. M., & Paas, G. (1995). Recycling of sheet‐molding compounds by chemical routes. Journal of Applied Polymer Science, 57(11), 1409–1417. https://doi.org/10.1002/app.1995.070571116spa
dc.relation.referencesXu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. https://doi.org/10.1016/j.conbuildmat.2014.04.054spa
dc.relation.referencesXu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. https://doi.org/10.1016/S0008-8846(01)00513-0spa
dc.relation.referencesYazdanbakhsh, A., & Bank, L. C. (2014). A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers, 6(6), 1810–1826. https://doi.org/10.3390/polym6061810spa
dc.relation.referencesYazdanbakhsh, A., Bank, L. C., & Chen, C. (2016). Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Construction and Building Materials, 121, 278–284. https://doi.org/10.1016/j.conbuildmat.2016.05.165spa
dc.relation.referencesYazdanbakhsh, A., Bank, L. C., Rieder, K. A., Tian, Y., & Chen, C. (2018). Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resources, Conservation and Recycling, 128(August 2017), 11–21. https://doi.org/10.1016/j.resconrec.2017.08.005spa
dc.relation.referencesYuan, P., Zhang, B., Yang, Y., Jiang, T., Li, J., Qiu, J., & He, H. (2023). Application of polymer cement repair mortar in underground engineering: A review. Case Studies in Construction Materials, 19(October), e02555. https://doi.org/10.1016/j.cscm.2023.e02555spa
dc.relation.referencesZambrano, A. M. (2014). Aproximación Conceptual al Análisis Térmico y sus Principales Aplicaciones. Universidad Nacional de Colombia, 1–92.spa
dc.relation.referencesZhang, C., Yang, X., & Gao, H. (2018a). Air-Void-Affected Zone in Concrete Beam Under Four-Point Bending Fracture. Journal of Civil Engineering and Management, 24(2), 130–137. https://doi.org/10.3846/jcem.2018.456spa
dc.relation.referencesZhang, C., Yang, X., & Gao, H. (2018b). Effect of Randomness of Interfacial Properties on Fracture Behavior of Concrete Under Uniaxial Tension. Acta Mechanica Solida Sinica, 31(2), 174–186. https://doi.org/10.1007/s10338-018-0014-xspa
dc.relation.referencesZhang, J., Chevali, V. S., Wang, H., & Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193(April), 108053. https://doi.org/10.1016/j.compositesb.2020.108053spa
dc.relation.referencesZhang, M. H., & Gjørv, O. E. (1990). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610–618. https://doi.org/10.1016/0008-8846(90)90103-5spa
dc.relation.referencesZhao, L., Zhang, S., Huang, D., & Wang, X. (2020). A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Construction and Building Materials, 247, 117906. https://doi.org/10.1016/j.conbuildmat.2019.117906spa
dc.relation.referencesZheng, J. J., Li, C. Q., & Zhou, X. Z. (2005). Thickness of interfacial transition zone and cement content profiles around aggregates. Magazine of Concrete Research, 57(7), 397–406. https://doi.org/10.1680/macr.2005.57.7.397spa
dc.relation.referencesZhou, Y., Weng, Y., Li, L., Hu, B., Huang, X., & Zhu, Z. (2022). Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. 1–20.spa
dc.relation.referencesZhu, J. H., Chen, P. Y., Su, M. N., Pei, C., & Xing, F. (2019). Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin. Green Chemistry, 21(7), 1635–1647. https://doi.org/10.1039/c8gc03672aspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembPolímeros
dc.subject.lembCompuestos poliméricos
dc.subject.lembCemento impregnado de polimeros
dc.subject.lembHormigón - Procesos químicos
dc.subject.lembAprovechamiento de residuos
dc.subject.proposalAgregado poliméricospa
dc.subject.proposalConcretospa
dc.subject.proposalPRFspa
dc.subject.proposalPoliésterspa
dc.subject.proposalPolímerospa
dc.subject.proposalReciclajespa
dc.subject.proposalPolymeric aggregateeng
dc.subject.proposalWasteeng
dc.subject.proposalConcreteeng
dc.subject.proposalFRPeng
dc.subject.proposalPolyestereng
dc.subject.proposalPolymereng
dc.titleEvaluación de métodos químicos y térmicos para mejorar algunas propiedades físicas y mecánicas en concretos elaborados con agregado poliméricospa
dc.title.translatedEvaluation of chemical and thermal methods to improve selected physical and mechanical properties in concrete made with polymeric aggregateeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8125589.2024 (1).pdf
Tamaño:
18.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: