Efecto del trasplante autólogo de células de la glia envolvente olfatoria en casos clínicos de lesión medular en caninos
dc.contributor.advisor | Botero Espinosa, Lucía | |
dc.contributor.advisor | Ghome Ghotme, Kemel | |
dc.contributor.author | Otálora Otálora, Juan Martín | |
dc.contributor.other | Ghotme Ghotme, Kemel | |
dc.date.accessioned | 2021-08-25T19:58:32Z | |
dc.date.available | 2021-08-25T19:58:32Z | |
dc.date.issued | 2021 | |
dc.description | gráficas, ilustraciones, tablas | spa |
dc.description.abstract | Spinal cord injury is an unfortunate event that generally involves a condition that in the short, medium and long term has multiple implications not only for the person suffering from it but also for their family nucleus and society in general (DeVivo and Chen, 2011; Angeli et al., 2018). For its treatment with cell therapy, a variety of cells have been used, among which the transplantation of ensheathing glial cells (CGEO). Specifically in canines, CGEO of the olfactory bulb and olfactory mucosa have been used, obtained through moderately invasive surgical procedures. In this research we innovate in taking the sample endoscopically in the nasal cavity avoiding the surgical approach to the nasal sinus and we also innovate by performing the transplant with a percutaneous technique with ultrasound guidance for the introduction of the needle and the deposit of cells intramedullary level without the need for an invasive surgical procedure involving laminectomy or myelotomy. We use magnetic resonance imaging to identify the exact site of the injury to perform the transplant. We measured the effect of non-purified CGEO transplantation (containing an average of 45% CGEO) in a sample of 8 companion dogs that presented chronic traumatic spinal cord injury in the city of Bogotá. Neurological tests and gait evaluation were performed using the Olby scale in pre-transplantation and monthly post-transplantation for three months, finding significant changes in some of the variables analyzed. Therefore, we were able to conclude that the effect of CGEO transplantation in clinical cases of spinal cord injury in canines is safe and brought beneficial effects in some of the patients. It is worth clarifying that there were no recoveries in the general proprioception tests or in postural reactions, so we think that the observed improvements were possibly due to local changes in spinal circuits and not to a recovery of movement that depends on long ascending and long tracts descending. | eng |
dc.description.abstract | La lesión medular es un infortunado evento que generalmente implica un padecimiento que a corto, mediano y largo plazo tiene múltiples implicaciones no solo para quien la padece sino además para su núcleo familiar y la sociedad en general (DeVivo and Chen, 2011; Angeli et al., 2018). Para su tratamiento con terapia celular se han utilizado variedad de células entre las que se destacan el trasplante de células de la glía envolvente olfatoria (CGEO). Específicamente en caninos se han utilizado CGEO del bulbo olfatorio y de la mucosa olfatoria, obtenidas mediante procedimientos quirúrgicos medianamente invasivos. En esta investigación innovamos en la toma de la muestra por vía endoscópica en la cavidad nasal evitando el abordaje quirúrgico del seno nasal e innovamos también al realizar el trasplante con una técnica percutánea con guía ecográfica para la introducción de la aguja y el depósito de las células a nivel intramedular sin necesidad de realizar un procedimiento quirúrgico invasivo que implicara laminectomía y mielotomía. Utilizamos imágenes de resonancia magnética para identificar el sitio exacto de la lesión para realizar el trasplante. Medimos el efecto del trasplante de CGEO no purificadas (conteniendo en promedio un 45% de CGEO) en una muestra de 8 perros de compañía que presentaron lesión medular traumática crónica en la ciudad de Bogotá. Se realizaron pruebas neurológicas y evaluación de la marcha utilizando la escala Olby en pre-trasplante y mensuales pos-trasplante por tres meses encontrando cambios significativos en algunas de las variables analizadas. Por lo que pudimos concluir que el efecto del trasplante de CGEO en casos clínicos de lesión medular en caninos es seguro y trajo efectos benéficos en algunos de los pacientes. Es de aclarar que no se presentaron recuperaciones en las pruebas de propiocepción general ni en reacciones posturales por lo que pensamos que las mejoras observadas se debieron posiblemente a cambios locales en circuitos medulares y no a una recuperación del movimiento que depende de tractos largos tanto ascendentes como descendentes (Texto tomado de la fuente) | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Neurociencias | spa |
dc.format.extent | XXII, 132 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80016 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Neurociencias | spa |
dc.relation.references | Simón D, Martín-Bermejo MJ, Gallego-Hernández MT, Pastrana E, García-Escudero V, García-Gómez A, Lim F, Díaz-Nido J, Avila J, Moreno-Flores MT. 2011. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia 59:1458-1471. | spa |
dc.relation.references | Handelmann GE, Boyles JK, Weisgraber KH, Mahley RW, Pitas RE. 1992. Effects of apolipoprotein E, beta-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. Journal of lipid research 33:1677-1688. | spa |
dc.relation.references | Sandvig I, Thuen M, Hoang L, Olsen Ø, Sardella TC, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A. 2012. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR in biomedicine 25:620-631. | spa |
dc.relation.references | Santamaría AJ, Solano JP, Benavides FD, Guest JD. 2018. Intraspinal Delivery of Schwann Cells for Spinal Cord Injury. Methods in molecular biology (Clifton, NJ) 1739:467-484. | spa |
dc.relation.references | Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M. 2001. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Experimental neurology 172:115-127. | spa |
dc.relation.references | Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD. 2006. Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia 53:352-359. | spa |
dc.relation.references | Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. 2019. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in neurology 10:282. | spa |
dc.relation.references | Sekhon LH, Fehlings MG. 2001. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2-12. | spa |
dc.relation.references | Shao C, Roberts KN, Markesbery WR, Scheff SW, Lovell MA. 2006. Oxidative stress in head trauma in aging. Free radical biology & medicine 41:77-85. | spa |
dc.relation.references | Guo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ. 2007. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal cord 45:15-24. | spa |
dc.relation.references | Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. 2012. Inflammation & apoptosis in spinal cord injury. The Indian journal of medical research 135:287-296. | spa |
dc.relation.references | Imaizumi T, Lankford KL, Kocsis JD. 2000b. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain research 854:70-78. | spa |
dc.relation.references | Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD. 1998. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:6176-6185. | spa |
dc.relation.references | Tator CH, Fehlings MG. 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. Journal of neurosurgery 75:15- 26. | spa |
dc.relation.references | Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ. 2018. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. The New England journal of medicine 379:1244-1250. | spa |
dc.relation.references | Jani HR, Raisman G. 2004. Ensheathing cell cultures from the olfactory bulb and mucosa. Glia 47:130-137. | spa |
dc.relation.references | Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, Houlé JD. 2009. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:14881-14890. | spa |
dc.relation.references | Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW. 2000. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:2427-2438. | spa |
dc.relation.references | Jones LL, Oudega M, Bunge MB, Tuszynski MH. 2001. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. The Journal of physiology 533:83- 89. | spa |
dc.relation.references | Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R, Rogler A, Stöhr R, Hartmann A, Provenzano M, Otto VI, Detmar M. 2013. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer research 73:1097-1106 | spa |
dc.relation.references | Kafitz KW, Greer CA. 1999. Olfactory ensheathing cells promote neurite extension from embryonic olfactory receptor cells in vitro. Glia 25:99-110. | spa |
dc.relation.references | Penha EM, Meira CS, Guimarães ET, Mendonça MV, Gravely FA, Pinheiro CM, Pinheiro TM, Barrouin-Melo SM, Ribeiro-Dos-Santos R, Soares MB. 2014. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem cells international 2014:437521. | spa |
dc.relation.references | Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell stem cell 7:470-482. | spa |
dc.relation.references | Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV. 2010. Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America 107:21040- 21045. | spa |
dc.relation.references | Basso DM, Beattie MS, Bresnahan JC. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of neurotrauma 12:1-21. | spa |
dc.relation.references | Kim YH, Ha KY, Kim SI. 2017. Spinal Cord Injury and Related Clinical Trials. Clinics in orthopedic surgery 9:1-9. | spa |
dc.relation.references | Kirshblum S, Botticello A, Benedetto J, Donovan J, Marino R, Hsieh S, Wagaman N. 2020. A Comparison of Diagnostic Stability of the ASIA Impairment Scale Versus Frankel Classification Systems for Traumatic Spinal Cord Injury. Archives of physical medicine and rehabilitation. | spa |
dc.relation.references | Kocsis JD, Lankford KL, Sasaki M, Radtke C. 2009. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neuroscience letters 456:137-142. | spa |
dc.relation.references | Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Pruss H. 2010. Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 58:1748-1756. | spa |
dc.relation.references | Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, Jones KJ. 2001. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 33:225-229. | spa |
dc.relation.references | Botero. L. 2015. Evaluación de la regeneración axonal en ratas con sección medular aguda y crónica despues del trasplante con CGEO y aFGF. In: TESIS. DOCTORADO EN CIENCIAS BIOMEDICAS.: UNIVERSIDAD NACIONAL DE COLOMBIA. p 249. | spa |
dc.relation.references | Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, Madalena KM, Brown BP, Weng YL, Li S, Karimi-Abdolrezaee S, Busch SA, Shen Y, Silver J. 2015. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518:404-408 | spa |
dc.relation.references | Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, Gebicke-Haerter PJ, Ignatius MJ, et al. 1989. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. The Journal of clinical investigation 83:1015-1031. | spa |
dc.relation.references | Brennan FH, Gordon R, Lao HW, Biggins PJ, Taylor SM, Franklin RJ, Woodruff TM, Ruitenberg MJ. 2015. The Complement Receptor C5aR Controls Acute Inflammation and Astrogliosis following Spinal Cord Injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 35:6517-6531. | spa |
dc.relation.references | Brigstock DR. 2002. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153-165. | spa |
dc.relation.references | Leung CT, Coulombe PA, Reed RR. 2007. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nature neuroscience 10:720-726. | spa |
dc.relation.references | Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA. 2009. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC neurology 9:32. | spa |
dc.relation.references | Cao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, Li Z, Zhu Y, Huang Z, Huang A, He C. 2006. Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia 54:536-544. | spa |
dc.relation.references | Li S, Stys PK. 2001. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience 107:675-683. | spa |
dc.relation.references | Carlson GD, Gorden C. 2002. Current developments in spinal cord injury research. The spine journal : official journal of the North American Spine Society 2:116-128. | spa |
dc.relation.references | Li Y, Field PM, Raisman G. 1997. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science (New York, NY) 277:2000-2002. | spa |
dc.relation.references | Li Y, Li D, Raisman G. 2005. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the pathway hypothesis. Journal of neurocytology 34:343-351. | spa |
dc.relation.references | Chehrehasa F, Windus LC, Ekberg JA, Scott SE, Amaya D, Mackay-Sim A, St John JA. 2010. Olfactory glia enhance neonatal axon regeneration. Molecular and cellular neurosciences 45:277-288. | spa |
dc.relation.references | Lindsay SL, Riddell JS, Barnett SC. 2010. Olfactory mucosa for transplant-mediated repair: a complex tissue for a complex injury? Glia 58:125-134 | spa |
dc.relation.references | Chung RS, Woodhouse A, Fung S, Dickson TC, West AK, Vickers JC, Chuah MI. 2004. Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cellular and molecular life sciences : CMLS 61:1238-1245. | spa |
dc.relation.references | Cifuentes J.M. P. Fernández de Trocóniz NA, R. Bermúdez, P. Sánchez, I. Salazar. 2011. Anatomía Veterinaria. | spa |
dc.relation.references | Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH. 2015. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. The journal of spinal cord medicine 38:745-753. | spa |
dc.relation.references | Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, Lipinski MM. 2018. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell death & disease 9:476. | spa |
dc.relation.references | Liu Y, Levine B. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell death and differentiation 22:367-376. | spa |
dc.relation.references | LoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A. 1999. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. Journal of neurophysiology 82:2143-2153. | spa |
dc.relation.references | Curt A, Van Hedel HJ, Klaus D, Dietz V. 2008. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. Journal of neurotrauma 25:677-685. | spa |
dc.relation.references | Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological reviews 53:135-159. | spa |
dc.relation.references | Czepiel M, Boddeke E, Copray S. 2015. Human oligodendrocytes in remyelination research. Glia 63:513-530. | spa |
dc.relation.references | Lu P, Yang H, Culbertson M, Graham L, Roskams AJ, Tuszynski MH. 2006. Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:11120-11130. | spa |
dc.relation.references | David S, Lopez-Vales R, Wee Yong V. 2012a. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook of clinical neurology 109:485-502. | spa |
dc.relation.references | David S, Zarruk JG, Ghasemlou N. 2012b. Inflammatory pathways in spinal cord injury. International review of neurobiology 106:127-152. | spa |
dc.relation.references | de Castro F. 2009. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Frontiers in neuroscience 3:52. | spa |
dc.relation.references | Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G. 2011. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem cells (Dayton, Ohio) 29:2062-2076. | spa |
dc.relation.references | Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science (New York, NY) 294:1354-1357. | spa |
dc.relation.references | Maynard FM, Jr., Bracken MB, Creasey G, Ditunno JF, Jr., Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W. 1997. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal cord 35:266-274. | spa |
dc.relation.references | DeVivo MJ, Chen Y. 2011. Trends in new injuries, prevalent cases, and aging with spinal cord injury. Archives of physical medicine and rehabilitation 92:332-338. | spa |
dc.relation.references | McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, Fullwood S, Hulsebosch CE. 2005. The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage --> glutamate release --> damage --> glutamate release --> etc. Brain research 1038:92-99. | spa |
dc.relation.references | McKinley WO, Seel RT, Gadi RK, Tewksbury MA. 2001. Nontraumatic vs. traumatic spinal cord injury: a rehabilitation outcome comparison. American journal of physical medicine & rehabilitation 80:693-699; quiz 700, 716 | spa |
dc.relation.references | Ditunno JF, Jr., Young W, Donovan WH, Creasey G. 1994. The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Paraplegia 32:70-80. | spa |
dc.relation.references | Donnelly DJ, Popovich PG. 2008. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental neurology 209:378-388. | spa |
dc.relation.references | Doucette JR. 1984. The glial cells in the nerve fiber layer of the rat olfactory bulb. The Anatomical record 210:385-391. | spa |
dc.relation.references | Doucette R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449. | spa |
dc.relation.references | Doucette R. 1996. Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 14:945-959. | spa |
dc.relation.references | Duchen MR. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular aspects of medicine 25:365-451. | spa |
dc.relation.references | Dunai Z, Bauer PI, Mihalik R. 2011. Necroptosis: biochemical, physiological and pathological aspects. Pathology oncology research : POR 17:791-800. | spa |
dc.relation.references | Durham-Lee JC, Wu Y, Mokkapati VU, Paulucci-Holthauzen AA, Nesic O. 2012. Induction of angiopoietin-2 after spinal cord injury. Neuroscience 202:454-464. | spa |
dc.relation.references | Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. 2019. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 67:125-145. | spa |
dc.relation.references | Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. 2018. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of neuroinflammation 15:90. | spa |
dc.relation.references | Dyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-Abdolrezaee S. 2015. Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPσ and Modulation of the Rho/ROCK Pathway. Stem cells (Dayton, Ohio) 33:2550-2563. | spa |
dc.relation.references | Dyck SM, Karimi-Abdolrezaee S. 2015. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental neurology 269:169-187. | spa |
dc.relation.references | Eckhardt ER, Cai L, Sun B, Webb NR, van der Westhuyzen DR. 2004. High density lipoprotein uptake by scavenger receptor SR-BII. The Journal of biological chemistry 279:14372-14381. | spa |
dc.relation.references | Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R. 2012. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PloS one 7:e32037. | spa |
dc.relation.references | Feitosa MLT, Sarmento CAP, Bocabello RZ, Beltrão-Braga PCB, Pignatari GC, Giglio RF, Miglino MA, Orlandin JR, Ambrósio CE. 2017. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta cirurgica brasileira 32:540-549. | spa |
dc.relation.references | Fernyhough P, Calcutt NA. 2010. Abnormal calcium homeostasis in peripheral neuropathies. Cell calcium 47:130-139. | spa |
dc.relation.references | Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A. 2005. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain : a journal of neurology 128:2951-2960. | spa |
dc.relation.references | Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. 2014. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. Journal of neurotrauma 31:541-552. | spa |
dc.relation.references | Fluehmann G, Doherr MG, Jaggy A. 2006. Canine neurological diseases in a referral hospital population between 1989 and 2000 in Switzerland. The Journal of small animal practice 47:582-587. | spa |
dc.relation.references | Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. 2011. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:6915-6927. | spa |
dc.relation.references | Forni PE, Wray S. 2012. Neural crest and olfactory system: new prospective. Molecular neurobiology 46:349-360. | spa |
dc.relation.references | Franceschini IA, Barnett SC. 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental biology 173:327-343. | spa |
dc.relation.references | Fujikawa DG, Shinmei SS, Cai B. 2000. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41-53. | spa |
dc.relation.references | Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell death and differentiation 19:107-120. | spa |
dc.relation.references | Garcia-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E. 2004. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. Journal of neuroscience research 75:632-641 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | Neurociencias | spa |
dc.subject.lemb | Transplantation of organs, tissues, etc | |
dc.subject.lemb | Trasplante de órganos, tejidos, etc. | |
dc.subject.lemb | Trasplante celular | |
dc.subject.lemb | Cell--transplantation | |
dc.subject.proposal | Lesión medular | spa |
dc.subject.proposal | Spinal cord injury | eng |
dc.subject.proposal | Células de la glía envolvente olfactoria | spa |
dc.subject.proposal | olfactory ensheathing glial cells | eng |
dc.subject.proposal | Trasplante autólogo | spa |
dc.subject.proposal | Autologous trasplant | eng |
dc.title | Efecto del trasplante autólogo de células de la glia envolvente olfatoria en casos clínicos de lesión medular en caninos | spa |
dc.title.translated | Effect of autologous cell trasplantation olfactory ensheathing glial in clinical cases spinal cord injury in canines | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis Especialidad en Neurociencias.pdf
- Tamaño:
- 2.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Especialidad Médica en Neurociencias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: