Efecto del trasplante autólogo de células de la glia envolvente olfatoria en casos clínicos de lesión medular en caninos
dc.contributor.advisor | Botero Espinosa, Lucía | |
dc.contributor.advisor | Ghome Ghotme, Kemel | |
dc.contributor.author | Otálora Otálora, Juan Martín | |
dc.contributor.other | Ghotme Ghotme, Kemel | |
dc.date.accessioned | 2021-08-25T19:58:32Z | |
dc.date.available | 2021-08-25T19:58:32Z | |
dc.date.issued | 2021 | |
dc.description | gráficas, ilustraciones, tablas | spa |
dc.description.abstract | Spinal cord injury is an unfortunate event that generally involves a condition that in the short, medium and long term has multiple implications not only for the person suffering from it but also for their family nucleus and society in general (DeVivo and Chen, 2011; Angeli et al., 2018). For its treatment with cell therapy, a variety of cells have been used, among which the transplantation of ensheathing glial cells (CGEO). Specifically in canines, CGEO of the olfactory bulb and olfactory mucosa have been used, obtained through moderately invasive surgical procedures. In this research we innovate in taking the sample endoscopically in the nasal cavity avoiding the surgical approach to the nasal sinus and we also innovate by performing the transplant with a percutaneous technique with ultrasound guidance for the introduction of the needle and the deposit of cells intramedullary level without the need for an invasive surgical procedure involving laminectomy or myelotomy. We use magnetic resonance imaging to identify the exact site of the injury to perform the transplant. We measured the effect of non-purified CGEO transplantation (containing an average of 45% CGEO) in a sample of 8 companion dogs that presented chronic traumatic spinal cord injury in the city of Bogotá. Neurological tests and gait evaluation were performed using the Olby scale in pre-transplantation and monthly post-transplantation for three months, finding significant changes in some of the variables analyzed. Therefore, we were able to conclude that the effect of CGEO transplantation in clinical cases of spinal cord injury in canines is safe and brought beneficial effects in some of the patients. It is worth clarifying that there were no recoveries in the general proprioception tests or in postural reactions, so we think that the observed improvements were possibly due to local changes in spinal circuits and not to a recovery of movement that depends on long ascending and long tracts descending. | eng |
dc.description.abstract | La lesión medular es un infortunado evento que generalmente implica un padecimiento que a corto, mediano y largo plazo tiene múltiples implicaciones no solo para quien la padece sino además para su núcleo familiar y la sociedad en general (DeVivo and Chen, 2011; Angeli et al., 2018). Para su tratamiento con terapia celular se han utilizado variedad de células entre las que se destacan el trasplante de células de la glía envolvente olfatoria (CGEO). Específicamente en caninos se han utilizado CGEO del bulbo olfatorio y de la mucosa olfatoria, obtenidas mediante procedimientos quirúrgicos medianamente invasivos. En esta investigación innovamos en la toma de la muestra por vía endoscópica en la cavidad nasal evitando el abordaje quirúrgico del seno nasal e innovamos también al realizar el trasplante con una técnica percutánea con guía ecográfica para la introducción de la aguja y el depósito de las células a nivel intramedular sin necesidad de realizar un procedimiento quirúrgico invasivo que implicara laminectomía y mielotomía. Utilizamos imágenes de resonancia magnética para identificar el sitio exacto de la lesión para realizar el trasplante. Medimos el efecto del trasplante de CGEO no purificadas (conteniendo en promedio un 45% de CGEO) en una muestra de 8 perros de compañía que presentaron lesión medular traumática crónica en la ciudad de Bogotá. Se realizaron pruebas neurológicas y evaluación de la marcha utilizando la escala Olby en pre-trasplante y mensuales pos-trasplante por tres meses encontrando cambios significativos en algunas de las variables analizadas. Por lo que pudimos concluir que el efecto del trasplante de CGEO en casos clínicos de lesión medular en caninos es seguro y trajo efectos benéficos en algunos de los pacientes. Es de aclarar que no se presentaron recuperaciones en las pruebas de propiocepción general ni en reacciones posturales por lo que pensamos que las mejoras observadas se debieron posiblemente a cambios locales en circuitos medulares y no a una recuperación del movimiento que depende de tractos largos tanto ascendentes como descendentes (Texto tomado de la fuente) | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Neurociencias | spa |
dc.format.extent | XXII, 132 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80016 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Neurociencias | spa |
dc.relation.references | Wang Y, Wang J, Jang H, Zhou J, Feng X, Wang H, Tao Y. 2015. Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224-232. | spa |
dc.relation.references | Xiong Y, Hall ED. 2009. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Experimental neurology 216:105-114. | spa |
dc.relation.references | Pixley SK. 1992. The olfactory nerve contains two populations of glia, identified both in vivo and in vitro. Glia 5:269-284. | spa |
dc.relation.references | Wiese S, Karus M, Faissner A. 2012. Astrocytes as a source for extracellular matrix molecules and cytokines. Frontiers in pharmacology 3:120. Wilson JR, Hashimoto RE, Dettori JR, Fehlings MG. 2011. Spinal cord injury and quality of life: a systematic review of outcome measures. Evidence-based spine-care journal 2:37-44. | spa |
dc.relation.references | Moreno-Flores MT, Avila J. 2006. The quest to repair the damaged spinal cord. Recent patents on CNS drug discovery 1:55-63. | spa |
dc.relation.references | Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ. 2004. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. The Journal of comparative neurology 473:1-15. | spa |
dc.relation.references | Nagoshi N, Okano H. 2018. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury. Cellular and molecular life sciences : CMLS 75:989-1000. | spa |
dc.relation.references | Guest J, Herrera LP, Qian T. 2006. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal cord 44:135-142. | spa |
dc.relation.references | Huber JD, Hau VS, Mark KS, Brown RC, Campos CR, Davis TP. 2002. Viability of microvascular endothelial cells to direct exposure of formalin, lambdacarrageenan, and complete Freunds adjuvant. European journal of pharmacology 450:297-304. | spa |
dc.relation.references | Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J. 2013. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Molecular neurobiology 48:452-464. | spa |
dc.relation.references | Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. 2003. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Annals of neurology 53:588-595. | spa |
dc.relation.references | Regan RF, Choi DW. 1991. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43:585-591. | spa |
dc.relation.references | Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. 2015. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cellular and molecular life sciences : CMLS 72:2719-2737. | spa |
dc.relation.references | Andrews MR, Stelzner DJ. 2007. Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. Journal of neurotrauma 24:1773-1792. | spa |
dc.relation.references | Richter MW, Fletcher PA, Liu J, Tetzlaff W, Roskams AJ. 2005. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 25:10700- 10711. | spa |
dc.relation.references | Anwar MA, Al Shehabi TS, Eid AH. 2016. Inflammogenesis of Secondary Spinal Cord Injury. Frontiers in cellular neuroscience 10:98. | spa |
dc.relation.references | Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, Houlé JD. 2009. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:14881-14890. | spa |
dc.relation.references | Jiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, Rathbone MP. 2008. Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic signalling 4:61-71. | spa |
dc.relation.references | Au E, Roskams AJ. 2003. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224-236. | spa |
dc.relation.references | von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. 2017. Central Nervous System Injury and Nicotinamide Adenine Dinucleotide Phosphate Oxidase: Oxidative Stress and Therapeutic Targets. Journal of neurotrauma 34:755-764 | spa |
dc.relation.references | Ayala A, Muñoz MF, Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014:360438. | spa |
dc.relation.references | Penha EM, Meira CS, Guimarães ET, Mendonça MV, Gravely FA, Pinheiro CM, Pinheiro TM, Barrouin-Melo SM, Ribeiro-Dos-Santos R, Soares MB. 2014. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem cells international 2014:437521. | spa |
dc.relation.references | Peterson SL, Anderson AJ. 2014. Complement and spinal cord injury: traditional and nontraditional aspects of complement cascade function in the injured spinal cord microenvironment. Experimental neurology 258:35-47 | spa |
dc.relation.references | Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV. 2010. Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America 107:21040- 21045. | spa |
dc.relation.references | Basso DM, Beattie MS, Bresnahan JC. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of neurotrauma 12:1-21. | spa |
dc.relation.references | Kim YH, Ha KY, Kim SI. 2017. Spinal Cord Injury and Related Clinical Trials. Clinics in orthopedic surgery 9:1-9. | spa |
dc.relation.references | Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. 2002. Cell death in models of spinal cord injury. Progress in brain research 137:37-47. | spa |
dc.relation.references | Kocsis JD, Lankford KL, Sasaki M, Radtke C. 2009. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neuroscience letters 456:137-142. | spa |
dc.relation.references | Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Pruss H. 2010. Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 58:1748-1756. | spa |
dc.relation.references | Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, Jones KJ. 2001. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 33:225-229. | spa |
dc.relation.references | Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. 2004. Pathophysiology and pharmacologic treatment of acute spinal cord injury. The spine journal : official journal of the North American Spine Society 4:451-464. | spa |
dc.relation.references | Boyd JG, Doucette R, Kawaja MD. 2005. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19:694-703. | spa |
dc.relation.references | Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, Gebicke-Haerter PJ, Ignatius MJ, et al. 1989. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. The Journal of clinical investigation 83:1015-1031. | spa |
dc.relation.references | Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Döring A, Sloka S, Stirling DP, Rivest S, Yong VW. 2012. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Annals of neurology 72:419-432. | spa |
dc.relation.references | Brigstock DR. 2002. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153-165. | spa |
dc.relation.references | Leung CT, Coulombe PA, Reed RR. 2007. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nature neuroscience 10:720-726. | spa |
dc.relation.references | Li FQ, Fowler KA, Neil JE, Colton CA, Vitek MP. 2010. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury. The Journal of pharmacology and experimental therapeutics 334:106-115. | spa |
dc.relation.references | Li S, Stys PK. 2000. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:1190-1198. | spa |
dc.relation.references | Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS. 2010. Receptors for myelin inhibitors: Structures and therapeutic opportunities. Molecular and cellular neurosciences 43:1-14. | spa |
dc.relation.references | Li Y, Decherchi P, Raisman G. 2003. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:727-731. | spa |
dc.relation.references | Carter LA, MacDonald JL, Roskams AJ. 2004. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:5670-5683. | spa |
dc.relation.references | Chehrehasa F, Ekberg JA, Lineburg K, Amaya D, Mackay-Sim A, St John JA. 2012. Two phases of replacement replenish the olfactory ensheathing cell population after injury in postnatal mice. Glia 60:322-332. | spa |
dc.relation.references | Chehrehasa F, Windus LC, Ekberg JA, Scott SE, Amaya D, Mackay-Sim A, St John JA. 2010. Olfactory glia enhance neonatal axon regeneration. Molecular and cellular neurosciences 45:277-288. | spa |
dc.relation.references | Cherry JD, Olschowka JA, OBanion MK. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of neuroinflammation 11:98. | spa |
dc.relation.references | Chung RS, Woodhouse A, Fung S, Dickson TC, West AK, Vickers JC, Chuah MI. 2004. Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cellular and molecular life sciences : CMLS 61:1238-1245. | spa |
dc.relation.references | Cifuentes J.M. P. Fernández de Trocóniz NA, R. Bermúdez, P. Sánchez, I. Salazar. 2011. Anatomía Veterinaria. | spa |
dc.relation.references | Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH. 2015. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. The journal of spinal cord medicine 38:745-753. | spa |
dc.relation.references | Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, Lipinski MM. 2018. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell death & disease 9:476. | spa |
dc.relation.references | Craven BA, Neuberger T, Paterson EG, Webb AG, Josephson EM, Morrison EE, Settles GS. 2007. Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anatomical record (Hoboken, NJ : 2007) 290:1325-1340. | spa |
dc.relation.references | LoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A. 1999. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. Journal of neurophysiology 82:2143-2153. | spa |
dc.relation.references | Curt A, Van Hedel HJ, Klaus D, Dietz V. 2008. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. Journal of neurotrauma 25:677-685. | spa |
dc.relation.references | Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological reviews 53:135-159. | spa |
dc.relation.references | Czepiel M, Boddeke E, Copray S. 2015. Human oligodendrocytes in remyelination research. Glia 63:513-530. | spa |
dc.relation.references | DAutréaux B, Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews Molecular cell biology 8:813-824. | spa |
dc.relation.references | Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S, Geraghty T. 2008. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain : a journal of neurology 131:2376-2386. | spa |
dc.relation.references | David S, Zarruk JG, Ghasemlou N. 2012b. Inflammatory pathways in spinal cord injury. International review of neurobiology 106:127-152. | spa |
dc.relation.references | de Castro F. 2009. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Frontiers in neuroscience 3:52. | spa |
dc.relation.references | Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G. 2011. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem cells (Dayton, Ohio) 29:2062-2076. | spa |
dc.relation.references | Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science (New York, NY) 294:1354-1357. | spa |
dc.relation.references | Maynard FM, Jr., Bracken MB, Creasey G, Ditunno JF, Jr., Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W. 1997. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal cord 35:266-274. | spa |
dc.relation.references | Mazzone GL, Veeraraghavan P, Gonzalez-Inchauspe C, Nistri A, Uchitel OD. 2017. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience 343:398-410. | spa |
dc.relation.references | Devon R, Doucette R. 1992. Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain research 589:175-179. | spa |
dc.relation.references | Devon R, Doucette R. 1995. Olfactory ensheathing cells do not require L-ascorbic acid in vitro to assemble a basal lamina or to myelinate dorsal root ganglion neurites. Brain research 688:223-229. | spa |
dc.relation.references | Ditunno JF, Jr., Young W, Donovan WH, Creasey G. 1994. The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Paraplegia 32:70-80. | spa |
dc.relation.references | Donnelly DJ, Popovich PG. 2008. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental neurology 209:378-388. | spa |
dc.relation.references | Doucette JR. 1984. The glial cells in the nerve fiber layer of the rat olfactory bulb. The Anatomical record 210:385-391. | spa |
dc.relation.references | Doucette R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449. | spa |
dc.relation.references | Doucette R. 1996. Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 14:945-959. | spa |
dc.relation.references | Duchen MR. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular aspects of medicine 25:365-451. | spa |
dc.relation.references | Dunai Z, Bauer PI, Mihalik R. 2011. Necroptosis: biochemical, physiological and pathological aspects. Pathology oncology research : POR 17:791-800. | spa |
dc.relation.references | Durham-Lee JC, Wu Y, Mokkapati VU, Paulucci-Holthauzen AA, Nesic O. 2012. Induction of angiopoietin-2 after spinal cord injury. Neuroscience 202:454-464. | spa |
dc.relation.references | Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. 2019. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 67:125-145. | spa |
dc.relation.references | Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. 2018. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of neuroinflammation 15:90. | spa |
dc.relation.references | Dyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-Abdolrezaee S. 2015. Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPσ and Modulation of the Rho/ROCK Pathway. Stem cells (Dayton, Ohio) 33:2550-2563. | spa |
dc.relation.references | Dyck SM, Karimi-Abdolrezaee S. 2015. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental neurology 269:169-187. | spa |
dc.relation.references | Eckhardt ER, Cai L, Sun B, Webb NR, van der Westhuyzen DR. 2004. High density lipoprotein uptake by scavenger receptor SR-BII. The Journal of biological chemistry 279:14372-14381. | spa |
dc.relation.references | Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R. 2012. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PloS one 7:e32037. | spa |
dc.relation.references | Feitosa MLT, Sarmento CAP, Bocabello RZ, Beltrão-Braga PCB, Pignatari GC, Giglio RF, Miglino MA, Orlandin JR, Ambrósio CE. 2017. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta cirurgica brasileira 32:540-549. | spa |
dc.relation.references | Fernyhough P, Calcutt NA. 2010. Abnormal calcium homeostasis in peripheral neuropathies. Cell calcium 47:130-139. | spa |
dc.relation.references | Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A. 2005. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain : a journal of neurology 128:2951-2960. | spa |
dc.relation.references | Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. 2014. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. Journal of neurotrauma 31:541-552. | spa |
dc.relation.references | Fluehmann G, Doherr MG, Jaggy A. 2006. Canine neurological diseases in a referral hospital population between 1989 and 2000 in Switzerland. The Journal of small animal practice 47:582-587. | spa |
dc.relation.references | Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. 2011. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:6915-6927. | spa |
dc.relation.references | Forni PE, Wray S. 2012. Neural crest and olfactory system: new prospective. Molecular neurobiology 46:349-360. | spa |
dc.relation.references | Franceschini IA, Barnett SC. 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental biology 173:327-343. | spa |
dc.relation.references | Fujikawa DG, Shinmei SS, Cai B. 2000. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41-53. | spa |
dc.relation.references | Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell death and differentiation 19:107-120. | spa |
dc.relation.references | Garcia-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E. 2004. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. Journal of neuroscience research 75:632-641 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | Neurociencias | spa |
dc.subject.lemb | Transplantation of organs, tissues, etc | |
dc.subject.lemb | Trasplante de órganos, tejidos, etc. | |
dc.subject.lemb | Trasplante celular | |
dc.subject.lemb | Cell--transplantation | |
dc.subject.proposal | Lesión medular | spa |
dc.subject.proposal | Spinal cord injury | eng |
dc.subject.proposal | Células de la glía envolvente olfactoria | spa |
dc.subject.proposal | olfactory ensheathing glial cells | eng |
dc.subject.proposal | Trasplante autólogo | spa |
dc.subject.proposal | Autologous trasplant | eng |
dc.title | Efecto del trasplante autólogo de células de la glia envolvente olfatoria en casos clínicos de lesión medular en caninos | spa |
dc.title.translated | Effect of autologous cell trasplantation olfactory ensheathing glial in clinical cases spinal cord injury in canines | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis Especialidad en Neurociencias.pdf
- Tamaño:
- 2.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Especialidad Médica en Neurociencias
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: