Determinación de la Influencia de la temperatura en la precisión de los pronósticos de la demanda : Caso de estudio en una empresa de consumo masivo de café soluble liofilizado

dc.contributor.advisorAntero Arango, Jaime
dc.contributor.authorCarreño Muñoz, Juan David
dc.date.accessioned2025-03-14T19:42:51Z
dc.date.available2025-03-14T19:42:51Z
dc.date.issued2025
dc.descriptiongraficas, tablasspa
dc.description.abstractInfluencia de la temperatura en la precisión de los pronósticos de la demanda: Caso de estudio en una empresa de consumo masivo de café soluble liofilizado. El objetivo principal de este trabajo final de maestría fue determinar la influencia de la temperatura en la precisión de los pronósticos de demanda de café soluble liofilizado para un proveedor colombiano en el mercado mexicano. Se recopilaron datos históricos de ventas mensuales de café soluble y temperaturas promedio (2004-2019) en México, con el propósito de analizar la correlación entre la temperatura promedio y las ventas de café soluble en cada estado mediante el coeficiente de Pearson, encontrando una relación negativa fuerte (-0.9 promedio). Los resultados evidencian que las ventas tienden a incrementarse en estaciones más frías (invierno y otoño) y a disminuir en periodos cálidos (primavera y verano). Por otro lado, se logró mejorar la precisión de los pronósticos de la empresa objeto de estudio al implementar modelos estadísticos que incorporan la estacionalidad como una variable determinante. Se concluye que la temperatura es un factor clave en el comportamiento de las ventas de café soluble en México, impactando así mismo el abastecimiento desde su proveedor colombiano. Se recomienda replicar para futuros trabajos el estudio en otros mercados y la exploración de métodos alternativos para integrar variables exógenas adicionales que puedan influir en las ventas (Texto tomado de la fuente).spa
dc.description.abstractInfluence of Temperature on the Accuracy of Demand Forecasts: A Case Study in a Mass-Consumption Freeze-Dried Instant Coffee Company. The main objective of this master's thesis was to determine the influence of temperature on the accuracy of demand forecasts for freeze-dried instant coffee for a Colombian supplier in the Mexican market. Historical data on monthly coffee sales and average temperatures (2004-2019) in Mexico were collected to analyze the correlation between average temperature and coffee sales in each state using Pearson's coefficient, revealing a strong negative relationship (average of -0.9). The results show that sales tend to increase during colder seasons (winter and autumn) and decrease during warmer periods (spring and summer). Additionally, the accuracy of the company’s forecasts improved by implementing statistical models that consider seasonality as a key variable. It is concluded that temperature is a critical factor in the sales behavior of instant coffee in Mexico and, therefore, in the sales of its Colombian supplier. It is recommended to replicate this study in other markets for future research and explore alternative methods to integrate additional exogenous variables that may influence sales.eng
dc.description.curricularareaAdministración.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Administraciónspa
dc.description.researchareaGestión de operacionesspa
dc.format.extentxiii, 56 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87657
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Administración - Maestría en Administraciónspa
dc.relation.referencesAndrés Méndez Giraldo, G. (2014). Methodology to demand forecastingunder multiproduct environments and high variability (Vol. 18, Issue 40).spa
dc.relation.referencesBahng, Y., & Kincade, D. H. (2012). The relationship between temperature and sales: Sales data analysis of a retailer of branded women’s business wear. International Journal of Retail & Distribution Management, 40(6), 410–426. https://doi.org/10.1108/09590551211230232spa
dc.relation.referencesBala, M., & Kumar, D. (2011). Supply chain performance attributes for the fast moving consumer goods industry. Journal of Transport and Supply Chain Management, 5(1). https://doi.org/10.4102/jtscm.v5i1.19spa
dc.relation.referencesBasson, L. M., Kilbourn, P. J., & Walters, J. (2019). Forecast accuracy in demand planning: A fast-moving consumer goods case study. Journal of Transport and Supply Chain Management, 13. https://doi.org/10.4102/jtscm.v13i0.427spa
dc.relation.referencesBeverland, M., Lindgreen, A., Napoli, J., Kotler, P., & Pfoertsch, W. (2007). Being known or being one of many: The need for brand management for business-to-business (B2B) companies. Journal of Business & Industrial Marketing, 22(6). https://doi.org/10.1108/08858620710780118spa
dc.relation.referencesCassettari, L., Bendato, I., Mosca, M., & Mosca, R. (2017). A new stochastic multi source approach to improve the accuracy of the sales forecasts. Foresight, 19(1). https://doi.org/10.1108/FS-07-2016-0036spa
dc.relation.referencesChase, R., Jacobs, R., & Aquiliano, N. (2017). Operations and supply management. In Gestion-Calidad.comspa
dc.relation.referencesColin D. Lewis. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Scientific, June 1981spa
dc.relation.referencesCooper, L. G., Baron, P., Levy, W., Swisher, M., & Gogos, P. (1999). PromoCastTM: A new forecasting method for promotion planning. Marketing Science, 18(3). https://doi.org/10.1287/mksc.18.3.301spa
dc.relation.referencesCroxton, K. L., Lambert, D. M., García-Dastugue, S. J., & Rogers, D. S. (2002). The Demand Management Process. The International Journal of Logistics Management, 13(2). https://doi.org/10.1108/09574090210806423spa
dc.relation.referencesDaros, W. R. (2002). ¿Qué es un marco teórico? Enfoques, XIV, númer. https://doi.org/10.4067/S0718-09342002005100014spa
dc.relation.referencesEuromonitor. (2023). Private label: Evolution of premium in food and beveragesspa
dc.relation.referencesFarizal, F., Dachyar, M., Taurina, Z., & Qaradhawi, Y. (2021). Disclosing fast moving consumer goods demand forecasting predictor using multi linear regression. Engineering and Applied Science Research, 48(5), 627–636. https://doi.org/10.14456/easr.2021.64spa
dc.relation.referencesGaravito, K. (2021). Implementación de un método para el pronóstico de demanda de computadores portátiles. Universidad Nacional de Colombiaspa
dc.relation.referencesGrewal, R., & Lilien, G. L. (2012). Business-to-business marketing: Looking back, looking forward. In Handbook of Business-to-Business Marketing. https://doi.org/10.4337/9781781002445.00008spa
dc.relation.referencesGuru, B. K., & Das, A. (2021). COVID-19 and uncertainty spillovers in Indian stock market. MethodsX, 8, 101199. https://doi.org/10.1016/j.mex.2020.101199spa
dc.relation.referencesHernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, M. del P. (2010). Definición del alcance de la investigación a realizar: exploratoria, descriptiva, correlacional o explicativa. In Metodología de la investigaciónspa
dc.relation.referencesHewage, H. C., Perera, H. N., & De Baets, S. (2022). Forecast adjustments during post- promotional periods. European Journal of Operational Research, 300(2), 461–472. https://doi.org/10.1016/j.ejor.2021.07.057spa
dc.relation.referencesHyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4). https://doi.org/10.1016/j.ijforecast.2006.03.001spa
dc.relation.referencesKilger, C., & Wagner, M. (2008). Demand Planning. In Supply Chain Management and Advanced Planning (pp. 133–160). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74512-9_8spa
dc.relation.referencesKoutsandreas, D., Spiliotis, E., Petropoulos, F., & Assimakopoulos, V. (2022). On the selection of forecasting accuracy measures. Journal of the Operational Research Society, 73(5). https://doi.org/10.1080/01605682.2021.1892464spa
dc.relation.referencesLiu, Y., Li, M., & Zhu, Z. (2013). Simulated annealing sales combining forecast in FMCG. Proceedings - 2013 IEEE 10th International Conference on e-Business Engineering, ICEBE 2013, 230–235. https://doi.org/10.1109/ICEBE.2013.35spa
dc.relation.referencesLMC. (2023). Coffee market Insightspa
dc.relation.referencesMakridakis, S., Fry, C., Petropoulos, F., & Spiliotis, E. (2022). The Future of Forecasting Competitions: Design Attributes and Principles. INFORMS Journal on Data Science, 1(1), 96–113. https://doi.org/10.1287/ijds.2021.0003spa
dc.relation.referencesMartínez-de-Albéniz, V., & Belkaid, A. (2021). Here comes the sun: Fashion goods retailing under weather fluctuations. European Journal of Operational Research, 294(3), 820–830. https://doi.org/10.1016/j.ejor.2020.01.064spa
dc.relation.referencesMehdiyev, N., Enke, D., Fettke, P., & Loos, P. (2016). Evaluating Forecasting Methods by Considering Different Accuracy Measures. Procedia Computer Science, 95, 264–271. https://doi.org/10.1016/j.procs.2016.09.332spa
dc.relation.referencesNicolai, A., & Seidl, D. (2010). That’s relevant! different forms of practical relevance in management science. Organization Studies, 31(9–10). https://doi.org/10.1177/0170840610374401spa
dc.relation.referencesNikolopoulos, K., & Fildes, R. (2013). Adjusting supply chain forecasts for short-term temperature estimates: A case study in a Brewing company. IMA Journal of Management Mathematics, 24(1), 79–88. https://doi.org/10.1093/imaman/dps006spa
dc.relation.referencesParker, P. M., & Tavassoli, N. T. (2000). Homeostasis and consumer behavior across cultures. International Journal of Research in Marketing, 17(1). https://doi.org/10.1016/s0167-8116(00)00006-9spa
dc.relation.referencesRamanathan, U., & Muyldermans, L. (2010). Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK. International Journal of Production Economics, 128(2), 538–545. https://doi.org/10.1016/j.ijpe.2010.07.007spa
dc.relation.referencesSarmiento, A. T., & Soto, O. C. (2014). New product forecasting demand by using neural networks and similar product analysis. DYNA, 81(186). https://doi.org/10.15446/dyna.v81n186.45223spa
dc.relation.referencesSivillo, J., & Reilly, D. (2004). Forecasting Consumer Product Demand With Weather Information: a Case Study. Journal of Business Forecastingspa
dc.relation.referencesSkinner, W. (1969). Manufacturing-missing link in corporate strategy. Harvard Business Review, 47(3)spa
dc.relation.referencesStevenson, W. (2007). Operations Management (8th ed.). McGraw-Hillspa
dc.relation.referencesTarallo, E., Akabane, G. K., Shimabukuro, C. I., Mello, J., & Amancio, D. (2019). Machine learning in predicting demand for fast-moving consumer goods: An exploratory research. IFAC-PapersOnLine, 52(13), 737–742. https://doi.org/10.1016/j.ifacol.2019.11.203spa
dc.relation.referencesTian, X., Cao, S., & Song, Y. (2021). The impact of weather on consumer behavior and retail performance: Evidence from a convenience store chain in China. Journal of Retailing and Consumer Services, 62. https://doi.org/10.1016/j.jretconser.2021.102583spa
dc.relation.referencesVivares-Vergara, J. A., Sarache, W., & Naranjo-Valencia, J. C. (2015). Estrategia de manufactura: Explorando el contenido y el proceso. Informacion Tecnologica, 26(3). https://doi.org/10.4067/S0718-07642015000300013spa
dc.relation.referencesWang, J. (2013). Pearson Correlation Coefficient. In Encyclopedia of Systems Biology. https://doi.org/10.1007/978-1-4419-9863-7_372spa
dc.relation.referencesWang, Z. X., Wu, J. M., Zhou, C. J., & Li, Q. (2020). Identifying the factors of China’s seasonal retail sales of consumer goods using a data grouping approach–based GRA method. Grey Systems, 10(2), 125–143. https://doi.org/10.1108/GS-11-2019-0055spa
dc.relation.referencesYau, A., Berger, N., Law, C., Cornelsen, L., Greener, R., Adams, J., Boyland, E. J., Burgoine, T., de Vocht, F., Egan, M., Er, V., Lake, A. A., Lock, K., Mytton, O., Petticrew, M., Thompson, C., White, M., & Cummins, S. (2022). Changes in household food and drink purchases following restrictions on the advertisement of high fat, salt, and sugar products across the Transport for London network: A controlled interrupted time series analysis. PLoS Medicine, 19(2). https://doi.org/10.1371/journal.pmed.1003915spa
dc.relation.referencesYohannes, M. F., & Matsuda, T. (2016). Weather Effects on Household Demand for Coffee and Tea in Japan. Agribusiness, 32(1). https://doi.org/10.1002/agr.21434spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::606 - Organizacionesspa
dc.subject.proposalPlaneación de la demandaspa
dc.subject.proposalPronósticospa
dc.subject.proposalTemperaturaspa
dc.subject.proposalEstacionesspa
dc.subject.proposalCafé soluble liofilizadospa
dc.subject.proposalDemand planningeng
dc.subject.proposalForecastingeng
dc.subject.proposalTemperatureeng
dc.subject.proposalSeasonseng
dc.subject.proposalFreeze-Dried Instant Coffeeeng
dc.subject.unescoCaféspa
dc.subject.unescoDemandaspa
dc.subject.unescoConsumo de alimentosspa
dc.titleDeterminación de la Influencia de la temperatura en la precisión de los pronósticos de la demanda : Caso de estudio en una empresa de consumo masivo de café soluble liofilizadospa
dc.title.translatedDetermining the influence of temperature on the accuracy of demand forecasts : A case study in a mass-consumption freeze-dried instant coffee companyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053867984.2025.pdf
Tamaño:
1.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Administración

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: