Órdenes de experimentación secuenciales en diseños factoriales
dc.contributor.advisor | Correa Espinal, Alexander Alberto | |
dc.contributor.advisor | Úsuga Manco, Olga Cecilia | |
dc.contributor.author | Conto López, Romario Ademir | |
dc.contributor.orcid | Conto López, Romario Ademir [0000-0002-9944-137X] | spa |
dc.contributor.researchgroup | Modelamiento Para la Gestión de Operaciones (Gimgo) | spa |
dc.date.accessioned | 2025-07-02T18:46:21Z | |
dc.date.available | 2025-07-02T18:46:21Z | |
dc.date.issued | 2025-06 | |
dc.description.abstract | Un principio básico del diseño experimental consiste en realizar la experimentación de manera completamente aleatoria, con la finalidad de que los posibles efectos generados por factores externos no afecten las estimaciones. Sin embargo, este enfoque puede resultar complicado y costoso, debido a la cantidad resultante de cambios de nivel en los factores, además de que un orden aleatorio no garantiza la eliminación del sesgo. En esta tesis doctoral, se presenta una propuesta para construir secuencias de experimentación en diseños factoriales completos y fraccionados, buscando un equilibrio entre disminuir el número de cambios de nivel y el sesgo asociado a factores desconocidos. Este enfoque, denominado método de asignación-expansión, adapta el problema de asignación de programación lineal para generar los ordenamientos, y posteriormente extiende las propiedades obtenidas a diseños con mayor cantidad de factores y niveles. Como resultado, se logran secuencias de experimentación para una amplia variedad de diseños factoriales con las propiedades deseadas, logrando incluso valores mínimos tanto en el sesgo como en el número de cambios de nivel. (Tomado de la fuente) | spa |
dc.description.abstract | A fundamental principle of experimental design is to conduct experiments in a completely random manner, to ensure that potential effects caused by external factors do not influence the estimates. However, this approach can be challenging and costly due to the number of factor-level changes, and a random order does not necessarily guarantee the elimination of bias. This doctoral thesis proposes a method for constructing experimental sequences in full and fractional factorial designs. It seeks a balance between reducing the number of factor-level changes and minimizing the bias associated with unknown factors. This approach, called the assignment-expansion method, adapts the assignment problem in linear programming to generate the sequences and subsequently extends the obtained properties to designs with a greater number of factors and levels. As a result, experimental sequences were obtained for a wide variety of factorial designs, meeting the desired properties, and even achieving minimal values for both bias and the number of factor level changes. | eng |
dc.description.curriculararea | Ingeniería Administrativa E Ingeniería Industrial.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería - Industria y Organizaciones | spa |
dc.description.researcharea | Estadística industrial: Diseño de experimentos y control estadístico de calidad | spa |
dc.format.extent | 152 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88271 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Angelopoulos, P., H. Evangelaras, and C. Koukouvinos. 2009. Run orders for efficient two-level experimental plans with minimum factor level changes robust to time trends. Journal of Statistical Planning and Inference 139 (10):3718–24. doi:10.1016/j.jspi.2009.05.002. | spa |
dc.relation.references | Atkinson, A., and A. Donev. 1996. Experimental designs optimally balanced for trend. Technometrics 38 (4):333–41. doi:10.1080/00401706.1996.10484545. | spa |
dc.relation.references | Bailey, R. A., C. S. Cheng, and P. Kipnis. 1992. Construction of trend-resistant factorial designs. Statistica Sinica 2 (2):393–411. doi:10.2307/24304867. | spa |
dc.relation.references | Bhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2020. On the generation of factorial designs with minimumlevel changes. Communications in Statistics - Simulation and Computation 51 (6):3400–09. doi:10.1080/03610918.2020.1720244. | spa |
dc.relation.references | Bhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2015. Factorial experiments with mínimum changes in run sequences. Journal of the Indian Society of Agricultural Statistics 69 (3):243–55. | spa |
dc.relation.references | Bhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2017. Minimally changed run sequences in factorial experiments. Communications in Statistics – Theory and Methods 46 (15):7444–59. doi:10.1080/03610926.2016.1152490. | spa |
dc.relation.references | Bhowmik, A., E. Varghese, S. Jaggi, C. Varghese, and C. Kaur. 2017b. On the generation of cost-effective response surface designs. Computers and Electronics in Agriculture 133:37–45. doi:10.1016/j.compag.2016.11.020. | spa |
dc.relation.references | Bhowmik, A., E. Varghese, S. Jaggi, C. Varghese, and S. Lall. 2019. On the construction of response surface designs with minimum level changes. Utilitas Mathematica 110:293–303. | spa |
dc.relation.references | Box, G. E. P. 1952. Multi-factor designs of first order. Biometrika 39 (1-2):49–57. doi:10.2307/2332462. | spa |
dc.relation.references | Box, G. E. P., and W. A. Hay. 1953. A statistical design for the removal of trends occurring in a comparative experiment with an application in biological assay. Biometrics 9 (3):304–19.doi:10.2307/3001706. | spa |
dc.relation.references | Box, G., W. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters. New York:Wiley. | spa |
dc.relation.references | Chanda, B., A. Bhowmik, S. Jaggi, E. Varghese, A. Datta, C. Varghese, N. Das-Saha, A. Bhatia, and B. Chakrabarti. 2021. Minimal cost multifactor experiments for agricultural research involving hard to change factors. The Indian Journal of Agricultural Sciences 91 (7):97–100. | spa |
dc.relation.references | Chen, M. H., and P. C. Wang. 2001. Multi-level factorial designs with minimum numbers of level changes. Communications in Statistics: Theory and Methods 30 (5):875–85. doi:10.1081/STA-100002263. | spa |
dc.relation.references | Cheng, C., and M. Jacroux. 1988. The construction of trend-free run orders of two level factorial designs. Journal of the American Statistical Association 83 (404):1152–8. doi:10.1080/01621459.1988.10478713. | spa |
dc.relation.references | Cheng, C. S., R. J.Martin, and B. Tang. 1998. Two-level factorial designs with extreme numbers of level changes. The Annals of Statistics 26 (4):1522–39. doi:10.1214/aos/1024691252. | spa |
dc.relation.references | Cheng, C. S., andD. M. Steinberg. 1991. Trend robust two-level factorial designs. Biometrika 78 (2):325–36. doi:10.1093/biomet/78.2.325. | spa |
dc.relation.references | Correa, A. 2007. Órdenes de experimentación en diseños factoriales. PhD diss., Universitat Politècnica de Catalunya. | spa |
dc.relation.references | Correa, A., P. Grima, and X. Tort-Martorell. 2009. Experimentation order with good properties for 2n factorial designs. Journal of Applied Statistics 36 (7):743–54. doi:10.1080/02664760802499337. | spa |
dc.relation.references | Correa, A., P. Grima, and X. Tort-Martorell. 2012. Experimentation order in factorial designs: New findings. Journal of Applied Statistics 39 (7):1577–91. doi:10.1080/02664763.2012.661706. | spa |
dc.relation.references | Coster, D. C. 1993a. Tables of minimum cost, linear trend-free run sequences for two and three-level fractional factorial design. Computational Statistics & Data Analysis 16 (3):325–36. doi:10.1016/0167-9473(93)90133-E. | spa |
dc.relation.references | Coster, D. C. 1993b. Trend-free run orders of mixed-level fractional factorial designs. The Annals of Statistics 21 (4):2072–86. doi:10.1214/aos/1176349410. | spa |
dc.relation.references | Coster,D.C., andC. S.Cheng. 1988.Minimumcost trend-free run orders of fractional factorial designs. The Annals of Statistics 16 (3):1188–205. doi:10.2307/2241626. | spa |
dc.relation.references | Cox, D. R. 1952. Some recent work on systematic experimental design. Journal of the Royal Statistical Society: Series B (Methodological) 14 (2):211–9. doi:10.1111/j.2517-6161.1952.tb00114.x. | spa |
dc.relation.references | Cui, X., and P.W. John. 1998. Time-trend free run orders with the minimum level changes. Communications in Statistics – Theory and Methods 27 (1):55–68. doi:10.1080/03610929808832650. | spa |
dc.relation.references | Daniel, C., and F. Wilcoxon. 1966. Factorial 2p−q plans robust against linear and quadratic trends. Technometrics 8 (2):259–78. doi:10.1080/00401706.1966.10490346. | spa |
dc.relation.references | De León, G. 2004. Análisis y propuestas sobre algunos aspectos de la aplicación del diseño de experimentos en la industria. PhD diss., Universitat Politècnica de Catalunya. | spa |
dc.relation.references | De León, G., P. Grima, and X. Tort-Martorell. 2005. Experimentation order in factorial designs with 8 or 16 runs. Journal of Applied Statistics 32 (3):297–313. doi:10.1080/02664760500054731. | spa |
dc.relation.references | Dickinson, W. 1974. Some orders requiring a minimum number of factor level changes for 24 and 25 main effects plans. Technometrics 16 (1):31–7. doi:10.2307/1267489. | spa |
dc.relation.references | Draper, N. R., and D. M. Stoneman. 1968. Factor changes and linear trends in eight-run two-level factorial designs. Technometrics 10 (2):301–11. doi:10.2307/1267045. | spa |
dc.relation.references | Elliott, L. J., J. A. Eccleston, and R. J. Martin. 1999. An algorithmfor the design of factorial experiments when the data are correlated. Statistics and Computing 9 (3):195–201. doi:10.1023/A:1008965829964. | spa |
dc.relation.references | Hemavathi M., Eldho Varghese, Shashi Shekhar, Seema Jaggi, Arpan Bhowmik and T. V. Sathianandan. 2022. Run order consideration for sequential third order rotatable designs, Communications in Statistics - Simulation and Computation, doi: 10.1080/03610918.2022.2039706. | spa |
dc.relation.references | Hill, H. M. 1960. Experimental designs to adjust for time trend. Technometrics 2 (1):67–82. doi:10.1080/00401706.1960.10489881. | spa |
dc.relation.references | Hilow, H. 2013. Comparison among algorithms for sequencing runs of the full 2n factorial experiment. International Journal of Experimental Design and Process Optimization 3 (4):397–406. doi:10.1016/j.csda.2012.09.013. | spa |
dc.relation.references | Hilow, H. 2014. Minimum cost linear trend-free 12-run fractional factorial designs. Journal of Applied Statistics 41 (4):802–16. doi:10.1080/02664763.2013.856384. | spa |
dc.relation.references | Hilow, H. 2015a.Minimumcost linear trend free 2n−(n−k) designs of resolution IV. Communications in Statistics – Theory and Methods 44 (15):3158–72. doi:10.1080/03610926.2013.819925. | spa |
dc.relation.references | Hilow, H. 2015b. Three categories of minimum cost systematic full 2n factorial designs. Journal of Statistical Theory and Practice 9 (3):463–78. doi:10.1080/15598608.2014.932728. | spa |
dc.relation.references | Hilow, H., and I. Al-Maayteh. 2021. Three categories of minimum cost trend fesistant 2n factorial experiments derivable fromthe normalized Sylvester- Hadamardmatrices of size 2n × 2n. Journal of Statistical Theory and Practice 15 (3):1–20. doi:10.1007/s42519-021-00198-9. | spa |
dc.relation.references | Jacroux, M. 1994a. On the construction of trend-resistant fractional factorial row-column designs. Sankhya: The Indian Journal of Statistics, Series B 56 (2):251–8. doi:10.2307/25052842. | spa |
dc.relation.references | Jacroux, M. 1994b. On the construction of trend resistant mixed level factorial run orders. The Annals of Statistics 22 (2):904–16. doi:10.2307/2242297. | spa |
dc.relation.references | Jacroux, M., and R. SahaRay. 1990a. On construction of trend–free row-column 2-level factorial experiments. Metrika 37 (1):163–80. doi:10.1007/bf02613518. | spa |
dc.relation.references | Jacroux, M., and R. SahaRay. 1990b. On the construction of trend-free run orders of treatments. Biometrika 77 (1):187–91. doi:10.2307/2336061. | spa |
dc.relation.references | Jacroux, M., and R. SahaRay. 1991. Run orders of trend resistant 2-level factorial designs. Sankhya: The Indian Journal of Statistics, Series B 53 (2):202–12. doi:10.2307/25052692. | spa |
dc.relation.references | John, P. W. 1990. Time trends and factorial experiments. Technometrics 32 (3):275–82. doi:10.2307/1269104. | spa |
dc.relation.references | Joiner, B. L., andC.Campbell. 1976.Designing experimentswhen run order is important. Technometrics 18 (3):249–59. doi:10.2307/1268734. | spa |
dc.relation.references | Ju, H. L., and J. M. Lucas. 2002. Lk factorial experiments with hard-to-change and easy-to-change factors. Journal of Quality Technology 34 (4):411–21. doi:10.1080/00224065.2002.11980173. | spa |
dc.relation.references | Kim, K. 1997. Construction and analysis of linear trend-free factorial designs under a general cost structure. PhD diss., Virginia Polytechnic Institute and State University. | spa |
dc.relation.references | Kitchenham, B. 2004. Procedures for performing systematic reviews. KeeleUniversity Technical Report TR/SE-0401 ISSN:1353-7776. Joint Technical Report. Australia: Department of Computer Science, Keele University. | spa |
dc.relation.references | Kuhn, H.W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2 (1–2): 83–97 doi:10.1002/nav.3800020109. | spa |
dc.relation.references | Martin, R. J., J. A. Eccleston, and B. S. P. Chan. 2004. Efficient factorial experiments when the data are spatially correlated. Journal of Statistical Planning and Inference 126 (1):377–95. doi:10.1016/j.jspi.2003.08.001. | spa |
dc.relation.references | Martin, R. J., G. Jones, and J. A. Eccleston. 1998a. Some results on two-level factorial designs with dependent observations. Journal of Statistical Planning and Inference 66 (2):363–84. doi:10.1016/s0378-3758(97)00086-4. | spa |
dc.relation.references | Martin, R. J., G. Jones, and J. A. Eccleston. 1998b. Some results on multi-level factorial designs with dependent observations. Journal of Statistical Planning and Inference 73 (1-2):91–111. doi:10.1016/s0378-3758(98)00054-8. | spa |
dc.relation.references | Mossadeq, E., and A. Koblinsky. 1992. Run orders and quantitative factors in asymmetrical designs. Applied Stochastic Models and Data Analysis 8 (4):259–81. doi:10.1002/asm.3150080403. | spa |
dc.relation.references | Núñez, J., and P. Goos. 2019. An integer linear programing approach to find tren robust run orders of experimental designs. Journal of Quality Technology 51 (1):37–50. doi:10.1080/00224065.2018.1545496. | spa |
dc.relation.references | Oprime, P. C., V. M. Miranda, and S. Conceição. 2017. Systematic sequencing of factorial experiments as an alternative to the random order. Gestão & Produção 24 (1):108–22. doi:10.1590/0104-530X1266-16. | spa |
dc.relation.references | Peng, J., and D. K. L. Lin. 2019. Construction of optimal run order in design of experiments. Journal of Quality Technology 51 (2):159–70. doi:10.1080/00224065.2018.1541381. | spa |
dc.relation.references | Quinlan, K. R., and D. K. J. Lin. 2015. Run order considerations for Plackett and Burman designs. Journal of Statistical Planning and Inference 165:56–62. doi:10.1016/j.jspi.2015.04.001. | spa |
dc.relation.references | Singh, P., P. Thapliya, and V. Budhraja. 2016. A technique to construct linear trend free fractional factorial design using some linear codes. International Journal of Statistics and Mathematics 3 (1):73–81. | spa |
dc.relation.references | Steinberg, D. M. 1988. Factorial experiments with time trends. Technometrics 30 (3):259–69. doi:10.2307/1270080. | spa |
dc.relation.references | Tack, L., andM.Vandebroek. 2002. Trend resistant and cost-efficient block designs with fixed or random block effects. Journal of Quality Technology 34 (4):422–36. doi:10.1080/00224065.2002.11980174. | spa |
dc.relation.references | Tiahrt,K. J., and L.Weeks. 1970.Amethod of constrained randomization for 2k factorial. Technometrics 12 (3):471–86. doi:10.2307/1267197. | spa |
dc.relation.references | Wang, P. C. 1991. Symbol changes and trend resistance in orthogonal plans of symmetrical factorial. Sankhya: The Indian Journal of Statistics, Series B 53 (3):297–303. doi:10.2307/25052704. | spa |
dc.relation.references | Wang, P. C. 1996. Level changes and trend resistance in LN(2p4q) orthogonal arrays. Statistica Sinica 6:471–9. doi:10.2307/24306028. | spa |
dc.relation.references | Wang, P. C., and M. H. Chen. 1998. Level changes and trend resistance on replacement in asymmetric orthogonal arrays. Journal of Statistical Planning and Inference 69 (2):349–58. doi:10.1016/s0378-3758(97)00168-7. | spa |
dc.relation.references | Wang, P. C., and H. W. Jan. 1995. Designing two-level factorial experiments using orthogonal arrays when the run order is important. The Statistician 44 (3):379–88. doi:10.2307/2348709. | spa |
dc.relation.references | Wang, P. C., and S.Wu. 2013. Trend-free designs in blocked factorial experiments. Communications in Statistics – Theory and Methods 42 (10):1870–8. doi:10.1080/03610926.2011.597917. | spa |
dc.relation.references | Williams, H.P. (2013). Model building in mathematical programming. John Wiley & Sons. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | Diseño experimental de factores | |
dc.subject.lemb | Análisis factorial | |
dc.subject.lemb | Algoritmos | |
dc.subject.proposal | Diseños factoriales | spa |
dc.subject.proposal | Órdenes de experimentación | spa |
dc.subject.proposal | Problema de asignación | spa |
dc.subject.proposal | Método de expansión | spa |
dc.subject.proposal | Cambios de nivel | spa |
dc.subject.proposal | Sesgo experimental | spa |
dc.subject.proposal | Factorial designs | eng |
dc.subject.proposal | Run orders | eng |
dc.subject.proposal | Assignment problem | eng |
dc.subject.proposal | Expansion method | eng |
dc.subject.proposal | Level changes | eng |
dc.subject.proposal | Experimental bias | eng |
dc.title | Órdenes de experimentación secuenciales en diseños factoriales | spa |
dc.title.translated | Run orders in factorial designs | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017181365.2025.pdf
- Tamaño:
- 4.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Industria y Organizaciones
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: