Órdenes de experimentación secuenciales en diseños factoriales

dc.contributor.advisorCorrea Espinal, Alexander Alberto
dc.contributor.advisorÚsuga Manco, Olga Cecilia
dc.contributor.authorConto López, Romario Ademir
dc.contributor.orcidConto López, Romario Ademir [0000-0002-9944-137X]spa
dc.contributor.researchgroupModelamiento Para la Gestión de Operaciones (Gimgo)spa
dc.date.accessioned2025-07-02T18:46:21Z
dc.date.available2025-07-02T18:46:21Z
dc.date.issued2025-06
dc.description.abstractUn principio básico del diseño experimental consiste en realizar la experimentación de manera completamente aleatoria, con la finalidad de que los posibles efectos generados por factores externos no afecten las estimaciones. Sin embargo, este enfoque puede resultar complicado y costoso, debido a la cantidad resultante de cambios de nivel en los factores, además de que un orden aleatorio no garantiza la eliminación del sesgo. En esta tesis doctoral, se presenta una propuesta para construir secuencias de experimentación en diseños factoriales completos y fraccionados, buscando un equilibrio entre disminuir el número de cambios de nivel y el sesgo asociado a factores desconocidos. Este enfoque, denominado método de asignación-expansión, adapta el problema de asignación de programación lineal para generar los ordenamientos, y posteriormente extiende las propiedades obtenidas a diseños con mayor cantidad de factores y niveles. Como resultado, se logran secuencias de experimentación para una amplia variedad de diseños factoriales con las propiedades deseadas, logrando incluso valores mínimos tanto en el sesgo como en el número de cambios de nivel. (Tomado de la fuente)spa
dc.description.abstractA fundamental principle of experimental design is to conduct experiments in a completely random manner, to ensure that potential effects caused by external factors do not influence the estimates. However, this approach can be challenging and costly due to the number of factor-level changes, and a random order does not necessarily guarantee the elimination of bias. This doctoral thesis proposes a method for constructing experimental sequences in full and fractional factorial designs. It seeks a balance between reducing the number of factor-level changes and minimizing the bias associated with unknown factors. This approach, called the assignment-expansion method, adapts the assignment problem in linear programming to generate the sequences and subsequently extends the obtained properties to designs with a greater number of factors and levels. As a result, experimental sequences were obtained for a wide variety of factorial designs, meeting the desired properties, and even achieving minimal values for both bias and the number of factor level changes.eng
dc.description.curricularareaIngeniería Administrativa E Ingeniería Industrial.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Industria y Organizacionesspa
dc.description.researchareaEstadística industrial: Diseño de experimentos y control estadístico de calidadspa
dc.format.extent152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88271
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAngelopoulos, P., H. Evangelaras, and C. Koukouvinos. 2009. Run orders for efficient two-level experimental plans with minimum factor level changes robust to time trends. Journal of Statistical Planning and Inference 139 (10):3718–24. doi:10.1016/j.jspi.2009.05.002.spa
dc.relation.referencesAtkinson, A., and A. Donev. 1996. Experimental designs optimally balanced for trend. Technometrics 38 (4):333–41. doi:10.1080/00401706.1996.10484545.spa
dc.relation.referencesBailey, R. A., C. S. Cheng, and P. Kipnis. 1992. Construction of trend-resistant factorial designs. Statistica Sinica 2 (2):393–411. doi:10.2307/24304867.spa
dc.relation.referencesBhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2020. On the generation of factorial designs with minimumlevel changes. Communications in Statistics - Simulation and Computation 51 (6):3400–09. doi:10.1080/03610918.2020.1720244.spa
dc.relation.referencesBhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2015. Factorial experiments with mínimum changes in run sequences. Journal of the Indian Society of Agricultural Statistics 69 (3):243–55.spa
dc.relation.referencesBhowmik, A., E. Varghese, S. Jaggi, and C. Varghese. 2017. Minimally changed run sequences in factorial experiments. Communications in Statistics – Theory and Methods 46 (15):7444–59. doi:10.1080/03610926.2016.1152490.spa
dc.relation.referencesBhowmik, A., E. Varghese, S. Jaggi, C. Varghese, and C. Kaur. 2017b. On the generation of cost-effective response surface designs. Computers and Electronics in Agriculture 133:37–45. doi:10.1016/j.compag.2016.11.020.spa
dc.relation.referencesBhowmik, A., E. Varghese, S. Jaggi, C. Varghese, and S. Lall. 2019. On the construction of response surface designs with minimum level changes. Utilitas Mathematica 110:293–303.spa
dc.relation.referencesBox, G. E. P. 1952. Multi-factor designs of first order. Biometrika 39 (1-2):49–57. doi:10.2307/2332462.spa
dc.relation.referencesBox, G. E. P., and W. A. Hay. 1953. A statistical design for the removal of trends occurring in a comparative experiment with an application in biological assay. Biometrics 9 (3):304–19.doi:10.2307/3001706.spa
dc.relation.referencesBox, G., W. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters. New York:Wiley.spa
dc.relation.referencesChanda, B., A. Bhowmik, S. Jaggi, E. Varghese, A. Datta, C. Varghese, N. Das-Saha, A. Bhatia, and B. Chakrabarti. 2021. Minimal cost multifactor experiments for agricultural research involving hard to change factors. The Indian Journal of Agricultural Sciences 91 (7):97–100.spa
dc.relation.referencesChen, M. H., and P. C. Wang. 2001. Multi-level factorial designs with minimum numbers of level changes. Communications in Statistics: Theory and Methods 30 (5):875–85. doi:10.1081/STA-100002263.spa
dc.relation.referencesCheng, C., and M. Jacroux. 1988. The construction of trend-free run orders of two level factorial designs. Journal of the American Statistical Association 83 (404):1152–8. doi:10.1080/01621459.1988.10478713.spa
dc.relation.referencesCheng, C. S., R. J.Martin, and B. Tang. 1998. Two-level factorial designs with extreme numbers of level changes. The Annals of Statistics 26 (4):1522–39. doi:10.1214/aos/1024691252.spa
dc.relation.referencesCheng, C. S., andD. M. Steinberg. 1991. Trend robust two-level factorial designs. Biometrika 78 (2):325–36. doi:10.1093/biomet/78.2.325.spa
dc.relation.referencesCorrea, A. 2007. Órdenes de experimentación en diseños factoriales. PhD diss., Universitat Politècnica de Catalunya.spa
dc.relation.referencesCorrea, A., P. Grima, and X. Tort-Martorell. 2009. Experimentation order with good properties for 2n factorial designs. Journal of Applied Statistics 36 (7):743–54. doi:10.1080/02664760802499337.spa
dc.relation.referencesCorrea, A., P. Grima, and X. Tort-Martorell. 2012. Experimentation order in factorial designs: New findings. Journal of Applied Statistics 39 (7):1577–91. doi:10.1080/02664763.2012.661706.spa
dc.relation.referencesCoster, D. C. 1993a. Tables of minimum cost, linear trend-free run sequences for two and three-level fractional factorial design. Computational Statistics & Data Analysis 16 (3):325–36. doi:10.1016/0167-9473(93)90133-E.spa
dc.relation.referencesCoster, D. C. 1993b. Trend-free run orders of mixed-level fractional factorial designs. The Annals of Statistics 21 (4):2072–86. doi:10.1214/aos/1176349410.spa
dc.relation.referencesCoster,D.C., andC. S.Cheng. 1988.Minimumcost trend-free run orders of fractional factorial designs. The Annals of Statistics 16 (3):1188–205. doi:10.2307/2241626.spa
dc.relation.referencesCox, D. R. 1952. Some recent work on systematic experimental design. Journal of the Royal Statistical Society: Series B (Methodological) 14 (2):211–9. doi:10.1111/j.2517-6161.1952.tb00114.x.spa
dc.relation.referencesCui, X., and P.W. John. 1998. Time-trend free run orders with the minimum level changes. Communications in Statistics – Theory and Methods 27 (1):55–68. doi:10.1080/03610929808832650.spa
dc.relation.referencesDaniel, C., and F. Wilcoxon. 1966. Factorial 2p−q plans robust against linear and quadratic trends. Technometrics 8 (2):259–78. doi:10.1080/00401706.1966.10490346.spa
dc.relation.referencesDe León, G. 2004. Análisis y propuestas sobre algunos aspectos de la aplicación del diseño de experimentos en la industria. PhD diss., Universitat Politècnica de Catalunya.spa
dc.relation.referencesDe León, G., P. Grima, and X. Tort-Martorell. 2005. Experimentation order in factorial designs with 8 or 16 runs. Journal of Applied Statistics 32 (3):297–313. doi:10.1080/02664760500054731.spa
dc.relation.referencesDickinson, W. 1974. Some orders requiring a minimum number of factor level changes for 24 and 25 main effects plans. Technometrics 16 (1):31–7. doi:10.2307/1267489.spa
dc.relation.referencesDraper, N. R., and D. M. Stoneman. 1968. Factor changes and linear trends in eight-run two-level factorial designs. Technometrics 10 (2):301–11. doi:10.2307/1267045.spa
dc.relation.referencesElliott, L. J., J. A. Eccleston, and R. J. Martin. 1999. An algorithmfor the design of factorial experiments when the data are correlated. Statistics and Computing 9 (3):195–201. doi:10.1023/A:1008965829964.spa
dc.relation.referencesHemavathi M., Eldho Varghese, Shashi Shekhar, Seema Jaggi, Arpan Bhowmik and T. V. Sathianandan. 2022. Run order consideration for sequential third order rotatable designs, Communications in Statistics - Simulation and Computation, doi: 10.1080/03610918.2022.2039706.spa
dc.relation.referencesHill, H. M. 1960. Experimental designs to adjust for time trend. Technometrics 2 (1):67–82. doi:10.1080/00401706.1960.10489881.spa
dc.relation.referencesHilow, H. 2013. Comparison among algorithms for sequencing runs of the full 2n factorial experiment. International Journal of Experimental Design and Process Optimization 3 (4):397–406. doi:10.1016/j.csda.2012.09.013.spa
dc.relation.referencesHilow, H. 2014. Minimum cost linear trend-free 12-run fractional factorial designs. Journal of Applied Statistics 41 (4):802–16. doi:10.1080/02664763.2013.856384.spa
dc.relation.referencesHilow, H. 2015a.Minimumcost linear trend free 2n−(n−k) designs of resolution IV. Communications in Statistics – Theory and Methods 44 (15):3158–72. doi:10.1080/03610926.2013.819925.spa
dc.relation.referencesHilow, H. 2015b. Three categories of minimum cost systematic full 2n factorial designs. Journal of Statistical Theory and Practice 9 (3):463–78. doi:10.1080/15598608.2014.932728.spa
dc.relation.referencesHilow, H., and I. Al-Maayteh. 2021. Three categories of minimum cost trend fesistant 2n factorial experiments derivable fromthe normalized Sylvester- Hadamardmatrices of size 2n × 2n. Journal of Statistical Theory and Practice 15 (3):1–20. doi:10.1007/s42519-021-00198-9.spa
dc.relation.referencesJacroux, M. 1994a. On the construction of trend-resistant fractional factorial row-column designs. Sankhya: The Indian Journal of Statistics, Series B 56 (2):251–8. doi:10.2307/25052842.spa
dc.relation.referencesJacroux, M. 1994b. On the construction of trend resistant mixed level factorial run orders. The Annals of Statistics 22 (2):904–16. doi:10.2307/2242297.spa
dc.relation.referencesJacroux, M., and R. SahaRay. 1990a. On construction of trend–free row-column 2-level factorial experiments. Metrika 37 (1):163–80. doi:10.1007/bf02613518.spa
dc.relation.referencesJacroux, M., and R. SahaRay. 1990b. On the construction of trend-free run orders of treatments. Biometrika 77 (1):187–91. doi:10.2307/2336061.spa
dc.relation.referencesJacroux, M., and R. SahaRay. 1991. Run orders of trend resistant 2-level factorial designs. Sankhya: The Indian Journal of Statistics, Series B 53 (2):202–12. doi:10.2307/25052692.spa
dc.relation.referencesJohn, P. W. 1990. Time trends and factorial experiments. Technometrics 32 (3):275–82. doi:10.2307/1269104.spa
dc.relation.referencesJoiner, B. L., andC.Campbell. 1976.Designing experimentswhen run order is important. Technometrics 18 (3):249–59. doi:10.2307/1268734.spa
dc.relation.referencesJu, H. L., and J. M. Lucas. 2002. Lk factorial experiments with hard-to-change and easy-to-change factors. Journal of Quality Technology 34 (4):411–21. doi:10.1080/00224065.2002.11980173.spa
dc.relation.referencesKim, K. 1997. Construction and analysis of linear trend-free factorial designs under a general cost structure. PhD diss., Virginia Polytechnic Institute and State University.spa
dc.relation.referencesKitchenham, B. 2004. Procedures for performing systematic reviews. KeeleUniversity Technical Report TR/SE-0401 ISSN:1353-7776. Joint Technical Report. Australia: Department of Computer Science, Keele University.spa
dc.relation.referencesKuhn, H.W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2 (1–2): 83–97 doi:10.1002/nav.3800020109.spa
dc.relation.referencesMartin, R. J., J. A. Eccleston, and B. S. P. Chan. 2004. Efficient factorial experiments when the data are spatially correlated. Journal of Statistical Planning and Inference 126 (1):377–95. doi:10.1016/j.jspi.2003.08.001.spa
dc.relation.referencesMartin, R. J., G. Jones, and J. A. Eccleston. 1998a. Some results on two-level factorial designs with dependent observations. Journal of Statistical Planning and Inference 66 (2):363–84. doi:10.1016/s0378-3758(97)00086-4.spa
dc.relation.referencesMartin, R. J., G. Jones, and J. A. Eccleston. 1998b. Some results on multi-level factorial designs with dependent observations. Journal of Statistical Planning and Inference 73 (1-2):91–111. doi:10.1016/s0378-3758(98)00054-8.spa
dc.relation.referencesMossadeq, E., and A. Koblinsky. 1992. Run orders and quantitative factors in asymmetrical designs. Applied Stochastic Models and Data Analysis 8 (4):259–81. doi:10.1002/asm.3150080403.spa
dc.relation.referencesNúñez, J., and P. Goos. 2019. An integer linear programing approach to find tren robust run orders of experimental designs. Journal of Quality Technology 51 (1):37–50. doi:10.1080/00224065.2018.1545496.spa
dc.relation.referencesOprime, P. C., V. M. Miranda, and S. Conceição. 2017. Systematic sequencing of factorial experiments as an alternative to the random order. Gestão & Produção 24 (1):108–22. doi:10.1590/0104-530X1266-16.spa
dc.relation.referencesPeng, J., and D. K. L. Lin. 2019. Construction of optimal run order in design of experiments. Journal of Quality Technology 51 (2):159–70. doi:10.1080/00224065.2018.1541381.spa
dc.relation.referencesQuinlan, K. R., and D. K. J. Lin. 2015. Run order considerations for Plackett and Burman designs. Journal of Statistical Planning and Inference 165:56–62. doi:10.1016/j.jspi.2015.04.001.spa
dc.relation.referencesSingh, P., P. Thapliya, and V. Budhraja. 2016. A technique to construct linear trend free fractional factorial design using some linear codes. International Journal of Statistics and Mathematics 3 (1):73–81.spa
dc.relation.referencesSteinberg, D. M. 1988. Factorial experiments with time trends. Technometrics 30 (3):259–69. doi:10.2307/1270080.spa
dc.relation.referencesTack, L., andM.Vandebroek. 2002. Trend resistant and cost-efficient block designs with fixed or random block effects. Journal of Quality Technology 34 (4):422–36. doi:10.1080/00224065.2002.11980174.spa
dc.relation.referencesTiahrt,K. J., and L.Weeks. 1970.Amethod of constrained randomization for 2k factorial. Technometrics 12 (3):471–86. doi:10.2307/1267197.spa
dc.relation.referencesWang, P. C. 1991. Symbol changes and trend resistance in orthogonal plans of symmetrical factorial. Sankhya: The Indian Journal of Statistics, Series B 53 (3):297–303. doi:10.2307/25052704.spa
dc.relation.referencesWang, P. C. 1996. Level changes and trend resistance in LN(2p4q) orthogonal arrays. Statistica Sinica 6:471–9. doi:10.2307/24306028.spa
dc.relation.referencesWang, P. C., and M. H. Chen. 1998. Level changes and trend resistance on replacement in asymmetric orthogonal arrays. Journal of Statistical Planning and Inference 69 (2):349–58. doi:10.1016/s0378-3758(97)00168-7.spa
dc.relation.referencesWang, P. C., and H. W. Jan. 1995. Designing two-level factorial experiments using orthogonal arrays when the run order is important. The Statistician 44 (3):379–88. doi:10.2307/2348709.spa
dc.relation.referencesWang, P. C., and S.Wu. 2013. Trend-free designs in blocked factorial experiments. Communications in Statistics – Theory and Methods 42 (10):1870–8. doi:10.1080/03610926.2011.597917.spa
dc.relation.referencesWilliams, H.P. (2013). Model building in mathematical programming. John Wiley & Sons.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembDiseño experimental de factores
dc.subject.lembAnálisis factorial
dc.subject.lembAlgoritmos
dc.subject.proposalDiseños factorialesspa
dc.subject.proposalÓrdenes de experimentaciónspa
dc.subject.proposalProblema de asignaciónspa
dc.subject.proposalMétodo de expansiónspa
dc.subject.proposalCambios de nivelspa
dc.subject.proposalSesgo experimentalspa
dc.subject.proposalFactorial designseng
dc.subject.proposalRun orderseng
dc.subject.proposalAssignment problemeng
dc.subject.proposalExpansion methodeng
dc.subject.proposalLevel changeseng
dc.subject.proposalExperimental biaseng
dc.titleÓrdenes de experimentación secuenciales en diseños factorialesspa
dc.title.translatedRun orders in factorial designseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017181365.2025.pdf
Tamaño:
4.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: