Expresión de receptores para la hormona luteinizante y su ácido ribonucléico mensajero en folículos preovulatorios de vacas Romosinuano y Brahman - posible relación con los niveles séricos de progesterona

dc.contributor.advisorHernández Vásquez, Aurelianospa
dc.contributor.authorVejarano Orjuela, Álvarospa
dc.contributor.researchgroupBiología de la adaptación animal al trópico - Genética y Biotecnología de la reproducción .spa
dc.date.accessioned2020-08-04T00:51:06Zspa
dc.date.available2020-08-04T00:51:06Zspa
dc.date.issued2019-06-23spa
dc.description.abstractIn order to identify and compare possible polymorphisms of the Luteinizing hormone receptor (LHR/LHCGR), the preovulatory follicle development (POF), the corpus luteum (CL) development and its progesterone (P4) secretion, as potential indicators of fertility in Romosinuano (RS) and Brahman (Br) breeds, an echographic follow up of ovarian dynamics during two consecutive estrous cycles (EC) was carried out in five females of each breed and their ovaries that contained the POF were surgically obtained. The POF was sectioned through its major diameter, as to obtain, from one half, histological preparations of 5 µm thick to calculate the volume occupied by the granulosa (GCV) and inner theca cells (ITCV). From the other half of the POF the total mRNA was extracted and the cDNA obtained as related to the gen that codifies for the LHCGR for sequential study in Macrogen. No differences were found (p>0.05) between the two breeds for the inter-estrous period, estrous duration, estrous – ovulation interval, the POF´s diameter, the GCV or TICV. Differences were encountered between breeds for the CL´s Diameter and the (P4) values at the seventh day of the estrous cycle. There was no correlation between corpus luteum diameter and (P4). The codding region of the LHCGR gen did not register variants related to the Gen Bank´s report in any of the 2 breeds studied. It is recommended to extend the present study to other physiological events, such as postpartum, by measuring the expression of the LHCGR gene and steroidogenesis in the same cell layers.spa
dc.description.abstractPara identificar y comparar posibles polimorfismos del gen del receptor de la hormona luteinizante (LHCGR), el desarrollo del folículo preovulatorio (FPO), el consecuente desarrollo del cuerpo lúteo (CL) y su secreción de progesterona (P4) como potenciales indicadores de fertilidad en bovinos Romosinuano (RS) y Brahman (Br), se realizó a cinco hembras de cada raza seguimiento ecográfico de la dinámica ovárica durante dos ciclos estrales consecutivos (CE); se obtuvieron quirúrgicamente los ovarios que contenían el FPO y este se seccionó diametralmente para obtener de una de las mitades preparados histológicos de 5 µm de grosor para calcular el volumen ocupado por la capa de células de la granulosa (VCG) y de la teca interna (VCTI). De la pared de la otra mitad del FPO se extrajo el ARNm total y se obtuvo el ADNc para el gen que codifica el LHCGR para secuenciación en Macrogen. No se encontraron diferencias significativas (p>0.05) entre las dos razas para periodo inter estros, duración del estro, intervalo estro – ovulación, el diámetro del FPO, ni para el VCG o VTI. No hubo correlación entre las variables Diámetro FPO y VCG o VCTI. Se hallaron diferencias en el diámetro del CL y (P4) en el día siete del CE. No se observó correlación entre DCL y (P4). La región codificante del gen LHCGR no registró variantes con respecto a los reportes del Gen Bank. Se recomienda ampliar el estudio a otros estados fisiológicos como el posparto, midiendo la expresión del gen del LHCGR y la esteroidogénesis en las mismas capas celulares.spa
dc.description.additionalLínea de Investigación: Fisiología del Ciclo Estral y Mortalidad Embrionaria.spa
dc.description.commentsavejaran@ut.edu.cospa
dc.description.degreelevelDoctoradospa
dc.format.extent98spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVejarano, O.A.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77910
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Doctorado en Ciencias - Salud Animal o Producción Animalspa
dc.relation.referencesChazal, G., Faudon, M., Gogan, F., & Laplante, E. (1974). Negative and positive effects of oestradiol upon luteinizing hormone secretion in the female rat. Journal of Endocrinology, 61(3), 511-512.spa
dc.relation.referencesChoi, Y., Yuan, D., & Rajkovic, A. (2008). Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biology of Reproduction, 79(6), 1176-1182.spa
dc.relation.referencesClelland, E., & Peng, C. (2009). Endocrine/paracrine control of zebrafish ovarian development. Molecular and Cellular Endocrinology, 312(1-2), 42-52.spa
dc.relation.referencesCombelles, C. M. (2013). The antral follicle: a microenvironment for oocyte differentiation. International Journal of Developmental Biology, 56(10-11-12), 819-831.spa
dc.relation.referencesComin, A., Peric, T., Montillo, M., Cappa, A., Marchi, V., Veronesi, M. C., & Prandi, A. (2017). Luteal activity and effect of dietary energy restriction on follicular development in lactating cows. Reproduction in Domestic Animals.spa
dc.relation.referencesCooke, R., & Arthington, J. (2009). Plasma progesterone concentrations as puberty criteria for Brahman-crossbred heifers. Livestock Science, 123(1), 101-105.spa
dc.relation.referencesCuster, E., Berardinelli, J., Short, R., Wehrman, M., & Adair, R. (1990). Postpartum interval to estrus and patterns of LH and progesterone in first-calf suckled beef cows exposed to mature bulls. Journal of animal science, 68(5), 1370-1377.spa
dc.relation.referencesDelemi, A. Identificaion of the expression level to LH-r Gene in dominant and cystic ovarian follicles cells of the cow.spa
dc.relation.referencesDelidow, B., Lynch, J., White, B., & Peluso, J. (1992). Regulation of proto-oncogene expression and deoxyribonucleic acid synthesis in granulosa cells of perifused immature rat ovaries. Biology of Reproduction, 47(3), 428-435.spa
dc.relation.referencesDi Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. I. (2008). versión 2008. Córdoba (Argentina): Grupo InfoStat, FCA, Universidad Nacional de Córdoba.spa
dc.relation.referencesDickinson, R. E., Stewart, A. J., Myers, M., Millar, R. P., & Duncan, W. C. (2009). Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology, 150(6), 2873-2881.spa
dc.relation.referencesDonaldson, L., Bassett, J., & Thorburn, G. (1970). Peripheral plasma progesterone concentration of cows during puberty, oestrous cycles, pregnancy and lactation, and the effects of under-nutrition or exogenous oxytocin on progesterone concentration. Journal of Endocrinology, 48(4), 599-614.spa
dc.relation.referencesDubey, P. K., & Sharma, G. T. (2016). Nitric oxide and ovarian folliculogenesis: a possible role in follicular atresia. Asian-Australasian Journal of Animal Sciences.spa
dc.relation.referencesDufau, M. L., Tsai-Morris, C. H., Zhang, Z. H., & Buczko, E. (1995). Structure and regulation of the luteinizing hormone receptor gene. The Journal of steroid biochemistry and molecular biology, 53(1), 283-291.spa
dc.relation.referencesDurlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Ingraham, H. A., Nachtigal, M. W., . . . Themmen, A. P. (2002). Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology, 143(3), 1076-1084.spa
dc.relation.referencesEdson, M. A., Nagaraja, A. K., & Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocrine reviews, 30(6), 624-712.spa
dc.relation.referencesEnjoy, D., Endel, D., Cabrera, P., Vivas, I., & Díaz, T. (2012). Dinámica folicular ovárica durante el ciclo estral en vacas brahman. Revista de la Facultad de Ciencias Veterinarias, 53(1), 39-47.spa
dc.relation.referencesEppig, J. J., Wigglesworth, K., & Chesnel, F. (1993). Secretion of cumulus expansion enabling factor by mouse oocytes: relationship to oocyte growth and competence to resume meiosis. Developmental biology, 158(2), 400-409.spa
dc.relation.referencesEspey, L. L. (1980). Ovulation as an inflammatory reaction-a hypothesis. Biology of Reproduction, 22(1), 73-106.spa
dc.relation.referencesFigueiredo, R., Barros, C., Pinheiro, O., & Soler, J. (1997). Ovarian follicular dynamics in Nelore breed (Bos indicus) cattle. Theriogenology, 47(8), 1489-1505.spa
dc.relation.referencesForde, N., Beltman, M., Lonergan, P., Diskin, M., Roche, J., & Crowe, M. (2011). Oestrous cycles in Bos taurus cattle. Animal reproduction science, 124(3), 163-169.spa
dc.relation.referencesForrest, D., Kaltenbach, C., & Dunn, T. (1981). Estriol-and estradiol-17 beta-induced luteinizing hormone release in ovariectomized cows and ewes. Journal of animal science, 52(5), 1106-1113.spa
dc.relation.referencesFortune, J., Willis, E., Bridges, P., & Yang, C. (2009). The periovulatory period in cattle: progesterone, prostaglandins, oxytocin and ADAMTS proteases. Animal reproduction/Colegio Brasileiro de Reproducao Animal, 6(1), 60.spa
dc.relation.referencesFricke, P. (2002). Scanning the future—Ultrasonography as a reproductive management tool for dairy cattle. Journal of dairy science, 85(8), 1918-1926.spa
dc.relation.referencesGalina, C., & Arthur, G. (1990). Review on cattle reproduction in the tropics. Part 4. Oestrous cycles. Paper presented at the Animal Breeding Abstracts.spa
dc.relation.referencesGarcía-Guerra, A., Kirkpatrick, B. W., & Wiltbank, M. C. (2017). Follicular waves and hormonal profiles during the estrous cycle of carriers and non-carriers of the Trio allele, a major bovine gene for high ovulation and fecundity. Theriogenology.spa
dc.relation.referencesGay, V., Midgley Jr, A., & Niswender, G. (1970). Patterns of gonadotrophin secretion associated with ovulation. Paper presented at the Federation proceedings.spa
dc.relation.referencesGilbert, I. (2011). Étude de l'expression génique dans les cellules de la granulosa bovine durant la période pré-ovulatoire.spa
dc.relation.referencesGinther, O. (2000). Selection of the dominant follicle in cattle and horses. Animal reproduction science, 60, 61-79.spa
dc.relation.referencesGinther, O., Bergfelt, D., Beg, M., & Kot, K. (2001). Follicle Selection in Cattle: Role of Luteinizing Hormone 1. Biology of Reproduction, 64(1), 197-205.spa
dc.relation.referencesGinther, O., Bergfelt, D., Kulick, L., & Kot, K. (1998). Pulsatility of systemic FSH and LH concentrations during follicular-wave development in cattle. Theriogenology, 50(4), 507-519.spa
dc.relation.referencesGinther, O., Wiltbank, M., Fricke, P., Gibbons, J., & Kot, K. (1996). Selection of the dominant follicle in cattle. Biology of Reproduction, 55, 1187-1194.spa
dc.relation.referencesGóngora, A., & Hernández, A. (2006). Comportamiento sexual, duración del estro y del ciclo estral en novillas criollas sanmartineras y brahman del piedemonte llanero colombiano. Livestock Research for Rural Development, 18(1).spa
dc.relation.referencesGóngora, A., & Hernández, A. (2010). La reproducción de la vaca se afecta por las altas temperaturas ambientales. Revista UDCA Actualidad & Divulgación Científica, 13(2), 141-151.spa
dc.relation.referencesGonzaIez-Padilla, E., Wiltbank, J., & Niswender, G. (1975). Puberty in beef heifers. I. The interrelationship between pituitary, hypothalamic and ovarian hormones. Journal of animal science, 40(6), 1091-1104.spa
dc.relation.referencesGrado-Ahuir, J., Aad, P., & Spicer, L. (2011). New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. Journal of animal science, 89(6), 1769-1786.spa
dc.relation.referencesGrajales, H. (2008). Comportamiento reproductivo de grupos raciales bovinos en trópico cálido húmedo colombiano: pubertad, ciclo estral, preñez temprana, posparto, niveles de hormonas esteroides y su relación con la eficiencia reproductiva. . (Doctor en Ciencias), Universidad Nacional de Colombia.spa
dc.relation.referencesGrajales, H., Hernández, A., & Prieto, E. (2006). Determinación de parámetros reproductivos basado en los niveles de progesterona en novillas doble propósito en el trópico Colombiano. Livest Res Rural Develop, 18.spa
dc.relation.referencesGrazul-Bilska, A., Navanukraw, C., Johnson, M., Vonnahme, K., Ford, S., Reynolds, L., & Redmer, D. (2007). Vascularity and expression of angiogenic factors in bovine dominant follicles of the first follicular wave. Journal of animal science, 85(8), 1914-1922.spa
dc.relation.referencesGreen, M., Hunter, M., & Mann, G. (2005). Relationships between maternal hormone secretion and embryo development on day 5 of pregnancy in dairy cows. Animal reproduction science, 88(3-4), 179-189.spa
dc.relation.referencesGregson, E., Webb, R., Sheldrick, E. L., Campbell, B. K., Mann, G. E., Liddell, S., & Sinclair, K. D. (2016). Molecular determinants of a competent bovine corpus luteum: first-vs final-wave dominant follicles. Reproduction, 151(6), 563-575.spa
dc.relation.referencesHammond, A., Olson, T., Chase, C., Bowers, E., Randel, R., Murphy, C., . . . Tewolde, A. (1996). Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. Journal of animal science, 74(2), 295-303.spa
dc.relation.referencesHan, Z.-B., Lan, G.-C., Wu, Y.-G., Han, D., Feng, W.-G., Wang, J.-Z., & Tan, J.-H. (2006). Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction, 132(5), 749-758.spa
dc.relation.referencesHan, Z. B., Lan, G. C., Wu, Y. G., Han, D., Feng, W. G., Wang, J. Z., & Tan, J. H. (2006). Interactive effects of granulosa cell apoptosis, follicle size, cumulus-oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction, 132(5), 749.spa
dc.relation.referencesHansen, T. R., Bott, R., Romero, J., Antoniazzi, A., & Davis, J. S. (2017). Corpus luteum and early pregnancy in ruminants The Life Cycle of the Corpus Luteum (pp. 205-225): Springer.spa
dc.relation.referencesHenricks, D., Dickey, J., & Niswender, G. (1970). Serum luteinizing hormone and plasma progesterone levels during the estrous cycle and early pregnancy in cows. Biology of Reproduction, 2(3), 346-351.spa
dc.relation.referencesHernández, A., & Jiménez, C. (2008). El ciclo estral. En: Reproducción en la vaca. Fisiología y aplicaciones. : Editorial Universidad Nacional de Colombia.spa
dc.relation.referencesHirshfield, A. N. (1990). Development of follicles in the mammalian ovary. International review of cytology, 124, 43-101.spa
dc.relation.referencesHoldridge, L. R. (1967). Life zone ecology. Life zone ecology.(rev. ed.).spa
dc.relation.referencesHsueh, A. J., Kawamura, K., Cheng, Y., & Fauser, B. C. (2015). Intraovarian control of early folliculogenesis. Endocrine reviews, 36(1), 1-24.spa
dc.relation.referencesHurst, P. R., Mora, J. M., & Fenwick, M. A. (2006). Caspase-3, TUNEL and ultrastructural studies of small follicles in adult human ovarian biopsies. Human Reproduction, 21(8), 1974-1980.spa
dc.relation.referencesJimenez-Krassel, F., Folger, J., Ireland, J., Smith, G., Hou, X., Davis, J., . . . Ireland, J. (2009). Evidence that high variation in ovarian reserves of healthy young adults has a negative impact on the corpus luteum and endometrium during estrous cycles in cattle. Biology of Reproduction, 80(6), 1272-1281.spa
dc.relation.referencesJohnson, A., Bridgham, J., & Wagner, B. (1996). Characterization of a chicken luteinizing hormone receptor (cLH-R) complementary deoxyribonucleic acid, and expression of cLH-R messenger ribonucleic acid in the ovary. Biology of Reproduction, 55(2), 304-309.spa
dc.relation.referencesKaczmarek, M. M., Schams, D., & Ziecik, A. J. (2005). Role of vascular endothelial growth factor in ovarian physiology–an overview. Reprod Biol, 5(2), 111-136.spa
dc.relation.referencesKaneko, H., Todoroki, J., Noguchi, J., Kikuchi, K., Mizoshita, K., Kubota, C., & Yamakuchi, H. (2002). Perturbation of estradiol-feedback control of luteinizing hormone secretion by immunoneutralization induces development of follicular cysts in cattle. Biology of Reproduction, 67(6), 1840-1845.spa
dc.relation.referencesKaveh, A., Khelejani, M. V., Noei, F., Shahryari, A., Kordelar, M. J., Isaloo, P., . . . Irany, A. (2013). Evaluation of Relationship between Serum Progesterone levels and Size of Normal and Vacuolated Corpus Luteum and Comparison of Fertility in Holstein dairy cows. Bull. Env. Pharmacol. Life Sci, 3(1), 33-36.spa
dc.relation.referencesKawate, N. (2004). Studies on the regulation of expression of luteinizing hormone receptor in the ovary and the mechanism of follicular cyst formation in ruminants. Journal of Reproduction and Development, 50(1), 1-8.spa
dc.relation.referencesKayacik, V., Salmanoǧlu, M. R., Polat, B., & Özluer, A. (2006). Evaluation of the corpus luteum size throughout the cycle by ultrasonography and progesterone assay in cows. Turkish Journal of Veterinary and Animal Sciences, 29(6), 1311-1316.spa
dc.relation.referencesKim, J. Y. (2012). Control of ovarian primordial follicle activation. Clinical and experimental reproductive medicine, 39(1), 10-14.spa
dc.relation.referencesKotwica, J., Rekawiecki, R., & Duras, M. (2004). Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. BULLETIN-VETERINARY INSTITUTE IN PULAWY, 48(2), 139-146.spa
dc.relation.referencesKotwica, J., & Williams, G. (1982). Relationship of plasma testosterone concentrations to pituitary-ovarian hormone secretion during the bovine estrous cycle and the effects of testosterone propionate administered during luteal regression. Biology of Reproduction, 27(4), 790-801.spa
dc.relation.referencesKumar, R., Alwani, M., Kosta, S., Kaur, R., & Agarwal, S. (2017). BMP15 and GDF9 Gene Mutations in Premature Ovarian Failure. Journal of Reproduction & Infertility, 18(1), 185-189.spa
dc.relation.referencesKumar, T. R., Wang, Y., Lu, N., & Matzuk, M. M. (1997). Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature genetics, 15(2), 201-204.spa
dc.relation.referencesLarsson, B. (1987). Determination of Ovulation by Ultrasound Examination and its Relation to the LH‐Peak in Heifers. Journal of Veterinary Medicine Series A, 34(1‐10), 749-754.spa
dc.relation.referencesLei, Z., Chegini, N., & Rao, C. V. (1991). Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biology of Reproduction, 44(6), 1148-1156.spa
dc.relation.referencesLi, P., Meng, J., Zhu, Z., Folger, J. K., & Lyu, L. (2018). Detection of Genes Associated with Follicle Development Through Transcriptome Analysis of Bovine Ovarian Follicles GCs. Current Bioinformatics, 13(2), 127-140.spa
dc.relation.referencesLiu, K.-C., Lin, S.-W., & Ge, W. (2011). Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane. Endocrinology, 152(11), 4418-4430.spa
dc.relation.referencesLodish, H. (2005). Biología celular y molecular: Ed. Médica Panamericana.spa
dc.relation.referencesMa, T., Xiong, Q., Yuan, B., Jiang, H., Gao, Y., Xu, J., . . . Zhao, Y. (2012). Luteinizing hormone receptor splicing variants in bovine Leydig cells. Genet. Mol. Res., 11, 1721-1730.spa
dc.relation.referencesMamluk, R., Wolfenson, D., & Meidan, R. (1998). LH receptor mRNA and cytochrome P450 side-chain cleavage expression in bovine theca and granulosa cells luteinized by LH or forskolin. Domestic Animal Endocrinology, 15(2), 103-114.spa
dc.relation.referencesMann, G. (2009). Corpus luteum size and plasma progesterone concentration in cows. Animal reproduction science, 115(1), 296-299.spa
dc.relation.referencesMann, G., Fray, M., & Lamming, G. (2006). Effects of time of progesterone supplementation on embryo development and interferon-τ production in the cow. The Veterinary Journal, 171(3), 500-503.spa
dc.relation.referencesMann, G., Lamming, G., & Fray, M. (1995). Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Animal reproduction science, 37(2), 121-131.spa
dc.relation.referencesMarsters, P., Kendall, N., & Campbell, B. (2015). Pre-translational regulation of luteinizing hormone receptor in follicular somatic cells of cattle. Animal reproduction science, 163, 63-74.spa
dc.relation.referencesMartínez-Villate, G. C., Martínez-Correal, G., & Manrique-Perdomo, C. (2009). Estimación de parámetros genéticos de características de crecimiento predestete del bovino criollo de raza sanmartinero (SM). Orinoquia, 13(2).spa
dc.relation.referencesMcArdle, C., & Roberson, M. (2015). Gonadotropes and gonadotropin-releasing hormone signaling. Knobil and Neill’s Physiology of Reproduction, 4, 335-397.spa
dc.relation.referencesMcCracken, J. A., Custer, E. E., & Lamsa, J. C. (1999). Luteolysis: a neuroendocrine-mediated event. Physiological reviews, 79(2), 263-323.spa
dc.relation.referencesMcGee, E. A., & Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles 1. Endocrine reviews, 21(2), 200-214.spa
dc.relation.referencesMedan, M. S., & El-Aty, A. A. (2010). Advances in ultrasonography and its applications in domestic ruminants and other farm animals reproduction. Journal of Advanced Research, 1(2), 123-128.spa
dc.relation.referencesMicevych, P., & Sinchak, K. (2008). Synthesis and function of hypothalamic neuroprogesterone in reproduction. Endocrinology, 149(6), 2739-2742.spa
dc.relation.referencesMicevych, P. E., Chaban, V., Ogi, J., Dewing, P., Lu, J. K., & Sinchak, K. (2007). Estradiol stimulates progesterone synthesis in hypothalamic astrocyte cultures. Endocrinology, 148(2), 782-789.spa
dc.relation.referencesMilazzotto, M., Rahal, P., Nichi, M., Miranda-Neto, T., Teixeira, L., Ferraz, J., . . . Garcia, J. (2008). New molecular variants of hypothalamus–pituitary–gonad axis genes and their association with early puberty phenotype in Bos taurus indicus (Nellore). Livestock Science, 114(2), 274-279.spa
dc.relation.referencesMishra, S., Bharati, J., Rajesh, G., Chauhan, V., Sharma, G. T., Bag, S., . . . Sarkar, M. (2017). Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) synergistically promote steroidogenesis and survival of cultured buffalo granulosa cells. Animal reproduction science, 179, 88-97.spa
dc.relation.referencesMonget, P., & Bondy, C. (2000). Importance of the IGF system in early folliculogenesis. Molecular and Cellular Endocrinology, 163(1), 89-93.spa
dc.relation.referencesMonget, P., Fabre, S., Mulsant, P., Lecerf, F., Elsen, J.-M., Mazerbourg, S., . . . Monniaux, D. (2002). Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domestic Animal Endocrinology, 23(1), 139-154.spa
dc.relation.referencesMonsivais, D., Matzuk, M. M., & Pangas, S. A. (2017). The TGF-β Family in the Reproductive Tract. Cold Spring Harbor Perspectives in Biology, a022251.spa
dc.relation.referencesMossa, F., Jimenez-Krassel, F., Folger, J. K., Ireland, J., Smith, G., Lonergan, P., . . . Ireland, J. J. (2010). Evidence that high variation in antral follicle count during follicular waves is linked to alterations in ovarian androgen production in cattle. Reproduction, 140(5), 713.spa
dc.relation.referencesMukasa-Mugerwa, E., & Tegegne, A. (1989). Peripheral plasma progesterone concentration in zebu (Bos indicus) cows during pregnancy. Reproduction Nutrition Development, 29(3), 303-306.spa
dc.relation.referencesNejad, S. Z., Tehrani, F. R., & Zadeh-Vakili, A. (2017). The Role of Kisspeptin in Female Reproduction. International Journal of Endocrinology and Metabolism(In Press).spa
dc.relation.referencesNiemann, H., Sacher, B., & Elsaesser, F. (1985). Pregnancy rates relative to recipient plasma progesterone levels on the day of nonsurgical transfer of frozen/thawed bovine embryos. Theriogenology, 23(4), 631-639.spa
dc.relation.referencesNiswender, G., Schwall, R., Fitz, T., Farin, C., & Sawyer, H. (2013). Regulation of luteal function in domestic ruminants: new concepts. Recent Prog Horm Resl985, 41, 101-151.spa
dc.relation.referencesNiswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., & McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, 80(1), 1-29.spa
dc.relation.referencesNivet, A. L., Vigneault, C., Blondin, P., & Sirard, M. A. (2018). Influence of luteinizing hormone support on granulosa cells transcriptome in cattle. Animal Science Journal, 89(1), 21-30.spa
dc.relation.referencesNogueira, M., Buratini, J., Price, C., Castilho, A., Pinto, M., & Barros, C. (2007). Expression of LH receptor mRNA splice variants in bovine granulosa cells: changes with follicle size and regulation by FSH in vitro. Molecular reproduction and development, 74(6), 680-686.spa
dc.relation.referencesNogueira, M. F. G., Fernandes, P., Ereno, R. L., Simões, R. A. L., Buratini Júnior, J., & Barros, C. M. (2010). Luteinizing Hormone Receptor (LHR): basic concepts in cattle and other mammals. A review. Animal Reproduction, 51-64.spa
dc.relation.referencesO'shea, J. (1986). Heterogeneous cell types in the corpus luteum of sheep, goats and cattle. Journal of reproduction and fertility. Supplement, 34, 71-85.spa
dc.relation.referencesO'shea, J., Rodgers, R., & D'occhio, M. (1989). Cellular composition of the cyclic corpus luteum of the cow. Journal of reproduction and fertility, 85(2), 483-487.spa
dc.relation.referencesOsorio, M., & León, F. (1998). Diversidad y relaciones filogenéticas del ganado criollo colomiano. Retrieved fromspa
dc.relation.referencesOssa, G. A., & Suárez, M. A. (2007). Factores ambientales y genéticos que influyen la edad al primer parto y el intervalo entre partos en hembras de la raza criolla Romosinuano. Corpoica Ciencia y Tecnología Agropecuaria, 8(2), 74-80.spa
dc.relation.referencesParr, R., Davis, I., Miles, M., & Squires, T. (1993). Liver blood flow and metabolic clearance rate of progesterone in sheep. Research in Veterinary Science, 55(3), 311-316.spa
dc.relation.referencesPeiró, J. R., Nogueira, G. M., Nogueira, G. P., Perri, S. H., & Cardoso, D. (2009). Ovariectomy by left flank approach in prepubertal Nelore (Bos indicus) heifers. Canadian Journal of Veterinary Research, 73(3), 237.spa
dc.relation.referencesPeng, X.-R., Hsue, A. J., Lapolt, P. S., Bjerrsing, L., & Ny, T. (1991). Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology, 129(6), 3200-3207.spa
dc.relation.referencesPeña, M., Góngora, A., & Estrada, J. (2007). Growth factors in the follicular development, embryonic early and implantation. Implications in the production of bovine embryos. Revista MVZ Córdoba, 12(1), 942-954.spa
dc.relation.referencesPerry, G. A., Smith, M. F., Lucy, M. C., Green, J. A., Parks, T. E., MacNeil, M. D., . . . Geary, T. W. (2005). Relationship between follicle size at insemination and pregnancy success. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5268-5273.spa
dc.relation.referencesPierson, R., & Ginther, O. (1984). Ultrasonography of the bovine ovary. Theriogenology, 21(3), 495-504.spa
dc.relation.referencesPierson, R., & Ginther, O. (1988). Ultrasonic imaging of the ovaries and uterus in cattle. Theriogenology, 29(1), 21-37.spa
dc.relation.referencesPinheiro, O., Barros, C., Figueiredo, R., Do Valle, E., Encarnação, R., & Padovani, C. (1998). Estrous behavior and the estrus-to-ovulation interval in nelore cattle (Bosindicus with natural estrus or estrus induced with prostaglandin F2α or norgestomet and estradiol valerate. Theriogenology, 49(3), 667-681.spa
dc.relation.referencesPlasse, D., Warnick, A., Reese, R., & Koger, M. (1968). Reproductive Behavior of Bos Indicus Females in a Subtropical Environment. II. Gestation Length in Brahman Cattle 1. Journal of animal science, 27(1), 101-104.spa
dc.relation.referencesRahe, C., Owens, R., Fleeger, J., Newton, H., & Harms, P. (1980). Pattern of plasma luteinizing hormone in the cyclic cow: dependence upon the period of the cycle. Endocrinology, 107(2), 498-503.spa
dc.relation.referencesRajakoski, E. (1960). The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, and left-right variations. Acta endocrinologica, 34(3 Suppl), S7-S68.spa
dc.relation.referencesRajamahendran, R., Ambrose, D. J., & Burton, B. (1994). Clinical and research applications of real-time ultrasonography in bovine reproduction: a review. The Canadian Veterinary Journal, 35(9), 563.spa
dc.relation.referencesRawan, A., Yoshioka, S., Abe, H., & Acosta, T. (2015). Insulin‐Like Growth Factor‐1 Regulates the Expression of Luteinizing Hormone Receptor and Steroid Production in Bovine Granulosa Cells. Reproduction in Domestic Animals, 50(2), 283-291.spa
dc.relation.referencesRekawiecki, R., & Kotwica, J. (2007). Molecular regulation of progesterone synthesis in the bovine corpus luteum. VETERINARNI MEDICINA-PRAHA-, 52(9), 405.spa
dc.relation.referencesRekawiecki, R., Kowalik, M., Slonina, D., & Kotwica, J. (2008). Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, 59(suppl 9), 75-89.spa
dc.relation.referencesRemsen, L., Roussel, J., & Karihaloo, A. (1982). Pregnancy rates relating to plasma progesterone levels in recipient heifers at day of transfer. Theriogenology, 18(3), 365-372.spa
dc.relation.referencesRhodes, F., De'Ath, G., & Entwistle, K. (1995). Animal and temporal effects on ovarian follicular dynamics in Brahman heifers. Animal reproduction science, 38(4), 265-277.spa
dc.relation.referencesRichards, J., & Hedin, L. (1988). Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annual Review of Physiology, 50(1), 441-463.spa
dc.relation.referencesRimon-Dahari, N., Yerushalmi-Heinemann, L., Alyagor, L., & Dekel, N. (2016). Ovarian Folliculogenesis Molecular Mechanisms of Cell Differentiation in Gonad Development (pp. 167-190): Springer.spa
dc.relation.referencesRizov, M., Andreeva, P., & Dimova, I. (2017). Molecular regulation and role of angiogenesis in reproduction. Taiwanese Journal of Obstetrics and Gynecology, 56(2), 127-132.spa
dc.relation.referencesRobert, C., Gagne, D., Lussier, J., Bousquet, D., Barnes, F., & Sirard, M. (2003). Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmental competence and characterization of the bovine splicing isoforms. Reproduction, 125(3), 437-446.spa
dc.relation.referencesRobertson, H. (1972). Sequential changes in plasma progesterone in the cow during the estrous cycle, pregnancy, at parturition, and post-partum. Canadian journal of animal science, 52(4), 645-658.spa
dc.relation.referencesRobinson, R., Hammond, A., Hunter, M., & Mann, G. (2005). The induction of a delayed post-ovulatory progesterone rise in dairy cows: a novel model. Domestic Animal Endocrinology, 28(3), 285-295.spa
dc.relation.referencesRobker, R., Russell, D., Espey, L. L., Lydon, J., O'Malley, B., & Richards, J. (2000). Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proceedings of the National Academy of Sciences, 97(9), 4689-4694.spa
dc.relation.referencesRodgers, R. J., & Irving-Rodgers, H. F. (2010). Formation of the ovarian follicular antrum and follicular fluid. Biology of Reproduction, 82(6), 1021-1029.spa
dc.relation.referencesRodriguez, A., Matzuk, M. M., & Pangas, S. A. (2019). Growth Factors and Reproduction Yen and Jaffe's Reproductive Endocrinology (Eighth Edition) (pp. 132-148. e134): Elsevier.spa
dc.relation.referencesRybska, M., Knap, S., Jankowski, M., Jeseta, M., Bukowska, D., Antosik, P., . . . Jaśkowski, J. M. (2018). Characteristic of factors influencing the proper course of folliculogenesis in mammals. Medical Journal of Cell Biology, 6(1), 33-38.spa
dc.relation.referencesSartori, Spies, C., & Wiltbank, M. C. (2017). Effects of dry matter and energy intake on quality of oocytes and embryos in ruminants. Reproduction, Fertility and Development, 29(1), 58-65.spa
dc.relation.referencesSartori, R., Bastos, M., Baruselli, P., Gimenes, L., Ereno, R., & Barros, C. (2010). Physiological differences and implications to reproductive management of Bos taurus and Bos indicus cattle in a tropical environment. Reprod Domest Rumin Vii, 67, 357-375.spa
dc.relation.referencesSartori, R., Fricke, P. M., Ferreira, J. C., Ginther, O., & Wiltbank, M. C. (2001). Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biology of Reproduction, 65(5), 1403-1409.spa
dc.relation.referencesSartori, R., Rosa, G., & Wiltbank, M. (2002). Ovarian structures and circulating steroids in heifers and lactating cows in summer and lactating and dry cows in winter. Journal of dairy science, 85(11), 2813-2822.spa
dc.relation.referencesSchams, D., Hoffmann, B., Fischer, S., Marz, E., & Karg, H. (1972). Simultaneous determination of LH and progesterone in peripheral bovine blood during pregnancy, normal and corticoid-induced parturition and the post-partum period. Journal of reproduction and fertility, 29(1), 37-48.spa
dc.relation.referencesSchams, D., & Karg, H. (1969). Radioimmunologische LH-Bestimmung im Blutserum vom Rind unter besonderer Berücksichtigung des Brunstzyklus. Acta endocrinologica, 61(1), 96-103.spa
dc.relation.referencesSchoenemann, H., Humphrey, W., Crowder, M., Nett, T., & Reeves, J. (1985). Pituitary luteinizing hormone-releasing hormone receptors in ovariectomized cows after challenge with ovarian steroids. Biology of Reproduction, 32(3), 574-583.spa
dc.relation.referencesSenger. (2012). Pathways to pregnancy and parturition. Redmond: Current Conceptions: Inc.spa
dc.relation.referencesSenger, P. L. (1997). Pathways to pregnancy and parturition: Current Conceptions, Inc., 1615 NE Eastgate Blvd.spa
dc.relation.referencesShi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular cell, 9(3), 459-470.spa
dc.relation.referencesShirasuna, K., Jiemtaweeboon, S., Raddatz, S., Nitta, A., Schuberth, H.-J., Bollwein, H., . . . Miyamoto, A. (2012). Rapid accumulation of polymorphonuclear neutrophils in the corpus luteum during prostaglandin F 2α-induced luteolysis in the cow. PloS one, 7(1), e29054.spa
dc.relation.referencesSilva, J., Figueiredo, J., & Van den Hurk, R. (2009). Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology, 71(8), 1193-1208.spa
dc.relation.referencesSiqueira, L. G. B., Torres, C. A., Amorim, L. S., Souza, E. D., Camargo, L. S. A., Fernandes, C. A., & Viana, J. H. M. (2009). Interrelationships among morphology, echotexture, and function of the bovine corpus luteum during the estrous cycle. Animal reproduction science, 115(1-4), 18-28.spa
dc.relation.referencesSirois, J., & Fortune, J. (1988). Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography. Biology of Reproduction, 39(2), 308-317.spa
dc.relation.referencesSkarzynski, D., Ferreira‐Dias, G., & Okuda, K. (2008). Regulation of luteal function and corpus luteum regression in cows: hormonal control, immune mechanisms and intercellular communication. Reproduction in Domestic Animals, 43(s2), 57-65.spa
dc.relation.referencesSleiter, N., Pang, Y., Park, C., Horton, T. H., Dong, J., Thomas, P., & Levine, J. E. (2009). Progesterone receptor A (PRA) and PRB-independent effects of progesterone on gonadotropin-releasing hormone release. Endocrinology, 150(8), 3833-3844.spa
dc.relation.referencesSmith, M., McIntush, E., & Smith, G. (1994). Mechanisms associated with corpus luteum development. Journal of animal science, 72(7), 1857-1872.spa
dc.relation.referencesSong, Y. S., Ji, I., Beauchamp, J., Isaacs, N. W., & Ji, T. H. (2001). Hormone Interactions to Leu-rich Repeats in the Gonadotropin Receptors I. ANALYSIS OF LEU-RICH REPEATS OF HUMAN LUTEINIZING HORMONE/CHORIONIC GONADOTROPIN RECEPTOR AND FOLLICLE-STIMULATING HORMONE RECEPTOR. Journal of Biological Chemistry, 276(5), 3426-3435.spa
dc.relation.referencesSpell, A., Beal, W., Corah, L., & Lamb, G. (2001). Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle. Theriogenology, 56(2), 287-297.spa
dc.relation.referencesSpicer, L., & Echternkamp, S. (1986). Ovarian follicular growth, function and turnover in cattle: a review. Journal of animal science, 62(2), 428-451.spa
dc.relation.referencesSpicer, L. J., Aad, P. Y., Allen, D. T., Mazerbourg, S., Payne, A. H., & Hsueh, A. J. (2008). Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biology of Reproduction, 78(2), 243-253.spa
dc.relation.referencesStabenfeldt, G., Ewing, L., & McDonald, L. (1969). Peripheral plasma progesterone levels during the bovine oestrous cycle. Journal of reproduction and fertility, 19(3), 433-442.spa
dc.relation.referencesTaylor, P., Wilson, H., Hillier, S., Wiegand, S., & Fraser, H. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular human reproduction, 13(10), 729-736.spa
dc.relation.referencesTena-Sempere, M. (2006). GPR54 and kisspeptin in reproduction. Human Reproduction Update, 12(5), 631-639.spa
dc.relation.referencesThompson, I. R., & Kaiser, U. B. (2014). GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Molecular and Cellular Endocrinology, 385(1), 28-35.spa
dc.relation.referencesTomac, J., Cekinović, Đ., & Arapović, J. (2011). Biology of the corpus luteum. Periodicum biologorum, 113(1), 43-49.spa
dc.relation.referencesTortorella, R. D., de Paula Nogueira, G., Modesto, M. R., Silva, P. C. P., da Silva, J. P., Neves, J. P., & Ramos, A. F. (2017). Characterizing emergence and divergence in the first follicular wave in a tropically adapted Bos taurus breed. Theriogenology, 88, 9-17.spa
dc.relation.referencesTotty, M., Morrell, B., & Spicer, L. (2017). Fibroblast growth factor 9 (FGF9) regulation of cyclin D1 and cyclin-dependent kinase-4 in ovarian granulosa and theca cells of cattle. Molecular and Cellular Endocrinology, 440, 25-33.spa
dc.relation.referencesTownson, D., Tsang, P., Butler, W., Frajblat, M., Griel, L., Johnson, C., . . . Pate, J. (2002). Relationship of fertility to ovarian follicular waves before breeding in dairy cows. Journal of animal science, 80(4), 1053-1058.spa
dc.relation.referencesTsutsui, K. (2008). Progesterone biosynthesis and action in the developing neuron. Endocrinology, 149(6), 2757-2761.spa
dc.relation.referencesVan Tol, H., Van Eijk, M., Mummery, C., Van Den Hurk, R., & Bevers, M. (1996). Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Molecular reproduction and development, 45(2), 218-224.spa
dc.relation.referencesVasconcelos, J., Sartori, R., Oliveira, H., Guenther, J., & Wiltbank, M. (2001). Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology, 56(2), 307-314.spa
dc.relation.referencesVejarano A, O. F., Gómez VH, Vélez G, Suárez AA, Villa NA. (2003). Estudio de la dinámica ovárica durante un ciclo estral en novillas Brahman y su relación con los niveles de progesterona. . Paper presented at the IV Seminario internacional de reproducción en grandes animales.spa
dc.relation.referencesVillavicencio, J. L. E., Pérez, R. O., Palacios-Espinosa, A., Méndez, J. V., & Flores, C. F. A. (2007). Crecimiento folicular ovárico en animales domésticos: una revisión. Interciencia: Revista de ciencia y tecnología de América, 32(2), 93-99.spa
dc.relation.referencesWalker, S., Smith, R., Jones, D., Routly, J., & Dobson, H. (2008). Chronic stress, hormone profiles and estrus intensity in dairy cattle. Hormones and Behavior, 53(3), 493-501.spa
dc.relation.referencesWalker, W., Nebel, R., & McGilliard, M. (1996). Time of ovulation relative to mounting activity in dairy cattle. Journal of dairy science, 79(9), 1555-1561.spa
dc.relation.referencesWoad, K. J. Luteal angiogenesis and its control. Theriogenology, 86(1), 221.spa
dc.relation.referencesWoad, K. J., & Robinson, R. S. (2016). Luteal angiogenesis and its control. Theriogenology, 86(1), 221-228.spa
dc.relation.referencesXu, Z., Garverick, H. A., Smith, G. W., Smith, M. F., Hamilton, S. A., & Youngquist, R. S. (1995). Expression of follicle-stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biology of Reproduction, 53(4), 951-957.spa
dc.relation.referencesYang, M., Cushman, R., & Fortune, J. (2017). Anti-Müllerian hormone inhibits activation and growth of bovine ovarian follicles in vitro and is localized to growing follicles. Molecular human reproduction, 1.spa
dc.relation.referencesYang, M. Y., & Fortune, J. E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol Reprod Dev, 74(9), 1095-1104. doi:10.1002/mrd.20633spa
dc.relation.referencesYoung, J., & McNeilly, A. S. (2010). Theca: the forgotten cell of the ovarian follicle. Reproduction, 140(4), 489-504.spa
dc.relation.referencesYoungquist, R. S., & Threlfall, W. R. (2006). Current therapy in large animal theriogenology: Elsevier Health Sciences.spa
dc.relation.referencesYung, M., VandeHaar, M., Fogwell, R., & Sharma, B. (1996). Effect of energy balance and somatotropin on insulin-like growth factor I in serum and on weight and progesterone of corpus luteum in heifers. Journal of animal science, 74(9), 2239-2244.spa
dc.relation.referencesAbdennebi, L., Lesport, A., Remy, J., Grebert, D., Pisselet, C., Monniaux, D., & Salesse, R. (2002). Differences in splicing of mRNA encoding LH receptor in theca cells according to breeding season in ewes. Reproduction, 123(6), 819-826.spa
dc.relation.referencesAbel, M. H., Wootton, A. N., Wilkins, V., Huhtaniemi, I., Knight, P. G., & Charlton, H. M. (2000). The Effect of a Null Mutation in the Follicle-Stimulating Hormone Receptor Gene on Mouse Reproduction 1. Endocrinology, 141(5), 1795-1803.spa
dc.relation.referencesAbreu, F., da Silva, M. C., Cruppe, L., Mussard, M., Bridges, G., Harstine, B., . . . Day, M. (2018). Role of progesterone concentrations during early follicular development in beef cattle: I. Characteristics of LH secretion and oocyte quality. Animal reproduction science, 196, 59-68.spa
dc.relation.referencesAcosta, T. J. (2007). Studies of follicular vascularity associated with follicle selection and ovulation in cattle. Journal of Reproduction and Development, 53(1), 39-44.spa
dc.relation.referencesAdams, G., Jaiswal, R., Singh, J., & Malhi, P. (2008). Progress in understanding ovarian follicular dynamics in cattle. Theriogenology, 69(1), 72-80.spa
dc.relation.referencesAdams, G. P., Matteri, R., Kastelic, J., Ko, J., & Ginther, O. (1992). Association between surges of follicle-stimulating hormone and the emergence of follicular waves in heifers. Journal of reproduction and fertility, 94(1), 177-188.spa
dc.relation.referencesAdams, G. P., & Singh, J. (2015). Ovarian follicular and luteal dynamics in cattle. Bovine reproduction, 219-244.spa
dc.relation.referencesAerts, J., & Bols, P. (2010). Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in Domestic Animals, 45(1), 180-187.spa
dc.relation.referencesAraújo, V., Silva, G., Duarte, A., Magalhães, D., Almeida, A., Gonçalves, R., . . . Rodrigues, A. (2011). Vascular endothelial growth factor-A165 (VEGF-A165) stimulates the in vitro development and oocyte competence of goat preantral follicles. Cell and tissue research, 346(2), 273-281.spa
dc.relation.referencesAraújo, V. R., Duarte, A. B. G., Bruno, J. B., Lopes, C. A. P., & de Figueiredo, J. R. (2013). Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals. Zygote, 21(3), 295.spa
dc.relation.referencesAsadi, E., Najafi, A., Moeini, A., Pirjani, R., Hassanzadeh, G., Mikaeili, S., . . . Khosravi, F. (2017). Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. Journal of Endocrinology, 232(2), 205-219.spa
dc.relation.referencesBadinga, L., Collier, R. J., Thatcher, W., & Wilcox, C. (1985). Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment. Journal of dairy science, 68(1), 78-85.spa
dc.relation.referencesBao, B., Garverick, H. A., Smith, G. W., Smith, M. F., Salfen, B. E., & Youngquist, R. S. (1997). Changes in messenger ribonucleic acid encoding luteinizing hormone receptor, cytochrome P450-side chain cleavage, and aromatase are associated with recruitment and selection of bovine ovarian follicles. Biology of Reproduction, 56(5), 1158-1168.spa
dc.relation.referencesBarros, C. M., Ereno, R. L., Simões, R. A., Fernandes, P., Buratini, J., & Nogueira, M. F. (2009). Use of knowledge regarding LH receptors to improve superstimulatory treatments in cattle. Reproduction, Fertility and Development, 22(1), 132-137.spa
dc.relation.referencesBeg, M., & Ginther, O. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction, 132(3), 365-377.spa
dc.relation.referencesBerardinelli, J., Dailey, R., Butcher, R., & Inskeep, E. (1979). Source of progesterone prior to puberty in beef heifers. Journal of animal science, 49(5), 1276-1280.spa
dc.relation.referencesBerisha, B., & Schams, D. (2005). Ovarian function in ruminants. Domestic Animal Endocrinology, 29(2), 305-317.spa
dc.relation.referencesBerisha, B., Schams, D., Rodler, D., & Pfaffl, M. W. (2015). Angiogenesis in the ovary–the most important regulatory event for follicle and corpus luteum development and function in cow–An overview. Anatomia, histologia, embryologia.spa
dc.relation.referencesBorges, A., Torres, C., Rocha Júnior, V., Ruas, J., Gioso, M., Fonseca, J., . . . Maffili, V. (2004). Follicular dynamic and ovulation time of non-lactating Gir and Nelore cows during two seasons of the year. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 56(3), 346-354.spa
dc.relation.referencesBraun, T., Schofield, P. R., & Sprengel, R. (1991). Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. The EMBO journal, 10(7), 1885.spa
dc.relation.referencesBulman, D. C., & Lamming, G. (1978). Milk progesterone levels in relation to conception, repeat breeding and factors influencing acyclicity in dairy cows. Journal of reproduction and fertility, 54(2), 447-458.spa
dc.relation.referencesCacioppo, J. A., Lin, P.-C. P., Hannon, P. R., McDougle, D. R., Gal, A., & Ko, C. (2017). Granulosa cell endothelin-2 expression is fundamental for ovulatory follicle rupture. Scientific reports, 7.spa
dc.relation.referencesCadagan, D., & Towlson, C. (2017). Mechanisms of Luteinising Hormone Regulation in Female Steroidogenesis. American Journal of Medical Case Reports, 5(3), 65-68.spa
dc.relation.referencesCasarini, L., Huhtaniemi, I., Simoni, M., & Rivero-Müller, A. (2017). Gonadotrophin Receptors. Endocrinology of the Testis and Male Reproduction, 1-46.spa
dc.relation.referencesCasarini, L., Pignatti, E., & Simoni, M. (2011). Effects of polymorphisms in gonadotropin and gonadotropin receptor genes on reproductive function. Reviews in Endocrine and Metabolic Disorders, 12(4), 303.spa
dc.relation.referencesCasarini, L., Santi, D., Gary, R. M., & Simoni, M. (2018). LH (Luteinizing Hormone).spa
dc.relation.referencesCastilho, A., Price, C., Dalanezi, F., Ereno, R., Machado, M., Barros, C., . . . Buratini, J. (2017). Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle. Reproduction, Fertility and Development, 29(2), 234-243.spa
dc.relation.referencesCattanach, B., Iddon, C. A., Charlton, H., Chiappa, S. A., & Fink, G. (1977). Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature, 269(5626), 338-340.spa
dc.relation.referencesCavalieri, J., Rubio, I., Kinder, J., Entwistle, K., & Fitzpatrick, L. (1997). Synchronization of estrus and ovulation and associated endocrine changes in Bos indicus cows. Theriogenology, 47(4), 801-814.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc636 - Producción animal (Zootecnia)spa
dc.subject.proposalLHR/LHCGReng
dc.subject.proposalLHR/LHCGRspa
dc.subject.proposalbovinosspa
dc.subject.proposalbovineeng
dc.subject.proposalgranulosa cellseng
dc.subject.proposalgranulosaspa
dc.subject.proposalteca internaspa
dc.subject.proposalinner theca cellseng
dc.titleExpresión de receptores para la hormona luteinizante y su ácido ribonucléico mensajero en folículos preovulatorios de vacas Romosinuano y Brahman - posible relación con los niveles séricos de progesteronaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
AlvaroVejarano2020.pdf
Tamaño:
1.24 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: