Design of a photovoltaic microinverter for active and reactive power injection
dc.contributor.advisor | Osorio Londoño, Gustavo Adolfo | |
dc.contributor.advisor | Bastidas Rodriguez, Juan David | |
dc.contributor.author | Bolaños Navarrete, Mario Andrés | |
dc.contributor.researchgroup | Percepción y Control Inteligente (Pci) | spa |
dc.date.accessioned | 2025-07-16T20:03:56Z | |
dc.date.available | 2025-07-16T20:03:56Z | |
dc.date.issued | 2025 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | The integration of photovoltaic (PV) systems into the power grid marks a significant stride towards renewable energy adoption, necessitating advancements in power conversion technologies. An important technology to this development are microinverters, which facilitate DC to AC conversion directly at the PV panel level. This dissertation explores the design, modeling in small and large signal, and implementation of photovoltaic microinverters with a focus on their capabilities for active and reactive power injection, a feature that enhances grid stability and efficiency. Microinverters offer a multitude of advantages over traditional centralized inverter systems. By optimizing the performance of individual solar panels, they mitigate issues such as shading and ensure a more reliable and efficient energy production. The ability of microinverters to inject reactive power into the grid is particularly beneficial, as it aids in voltage regulation and grid stability. The dissertation presents an state-of-the-art review of inverter technologies capable of reactive power control, including a detailed examination of a commercial inverter and its computational modeling. This groundwork helps for understanding the current landscape of inverter technology. The exploration of power converters for DC-DC conversion, such as the Flyback converter and a resonant converter variant, highlight the objectives of this dissertation in improving the efficiency of PV systems. A novel nonlinear averaged model for the Flyback converter, developed as part of this research, facilitates the simulations of power systems in extended time without increment the computational complexity. The detailed analysis of the resonant converter highlights its suitability for optimizing PV system performance through Maximum Power Point Tracking (MPPT) algorithms while maintain high efficiency. Further, the dissertation introduces two inverter (DC-AC) designs: the Dual Buck (DB) and the Full Bridge (FB) inverters. These designs are analyzed due to its extended use and increased efficiency when operated with unipolar commutation. Also, an innovative commutation technique for the FB to address zero-crossing distortion is presented, exemplifiying the potential of this inverter technologies to maintain the benefits of the Dual Buck design while enhancing grid stability and power quality. The analysis also shows the advantages of FB over DB in terms of grid support functionalities. Integrating the DC-DC and DC-AC stages, the dissertation culminates in a comprehensive microinverter design. This integration, detailed through control techniques and four-quadrant switching analysis for reactive power injection, confirms the microinverter’s capability to support grid stability. The theoretical models and control strategies proposed are substantiated through simulation results and experimental setups, validating the practical applicability of the research findings. In this way, this dissertation contributes to the field of renewable energy by advancing the understanding and capabilities of microinverters, not only as efficient power converters but also as key components for ensuring the stability and reliability of energy networks. The research also presents a design and control concepts that contribute to the construction of robust microinvertes based in power converters (Texto tomado de la fuente). | eng |
dc.description.abstract | La integración de los sistemas fotovoltaicos (PV) en la red eléctrica representa un avance significativo hacia la adopción de energías renovables, lo que requiere avances en las tecnologías de conversión de energía. Una tecnología importante para este desarrollo son los microinversores, que facilitan la conversión de corriente continua (DC) a corriente alterna (AC) directamente a nivel del panel fotovoltaico. Esta disertación explora el diseño, modelado en pequeña y gran señal, e implementación de microinversores fotovoltaicos, con un enfoque en sus capacidades para la inyección de potencia activa y reactiva, una característica que mejora la estabilidad y eficiencia de la red. Los microinversores ofrecen múltiples ventajas sobre los sistemas de inversores centralizados tradicionales. Al optimizar el rendimiento de los paneles solares individuales, mitigan problemas como el sombreado y garantizan una producción de energía más confiable y eficiente. La capacidad de los microinversores para inyectar potencia reactiva a la red es especialmente beneficiosa, ya que contribuye a la regulación de voltaje y a la estabilidad de la red. La disertación presenta una revisión del estado del arte de las tecnologías de inversores capaces de controlar potencia reactiva, incluyendo un análisis detallado de un inversor comercial y su modelado computacional. Esta base ayuda a comprender el panorama actual de la tecnología de inversores. La exploración de convertidores de potencia para la conversión DC-DC, como el convertidor Flyback y una variante de convertidor resonante, resalta los objetivos de esta disertación para mejorar la eficiencia de los sistemas fotovoltaicos. Un nuevo modelo promediado no lineal del convertidor Flyback, desarrollado como parte de esta investigación, facilita las simulaciones de los sistemas de potencia en tiempos extendidos sin incrementar la complejidad computacional. El análisis detallado del convertidor resonante destaca su idoneidad para optimizar el rendimiento del sistema fotovoltaico a través de algoritmos de Seguimiento del Punto de Máxima Potencia (MPPT) mientras se mantiene una alta eficiencia. Además, la disertación presenta dos diseños de inversores (DC-AC): el inversor Dual Buck (DB) y el inversor Full Bridge (FB). Estos diseños se analizan debido a su uso extendido y a su alta eficiencia cuando operan con conmutación unipolar. También se propone una técnica de conmutación innovadora para el inversor FB que aborda el problema de la distorsión en el cruce por cero, ejemplificando el potencial de estas tecnologías de inversores para mantener los beneficios del diseño Dual Buck mientras se mejora la estabilidad de la red y la calidad de la energía. El análisis también muestra las ventajas del inversor FB sobre el DB en cuanto a las funcionalidades de soporte a la red. Integrando las etapas DC-DC y DC-AC, la disertación culmina en un diseño integral de microinversor. Esta integración, detallada a través de técnicas de control y un análisis de conmutación en cuatro cuadrantes para la inyección de potencia reactiva, confirma la capacidad del microinversor para respaldar la estabilidad de la red. Los modelos teóricos y las estrategias de control propuestas son validadas a través de resultados de simulación y configuraciones experimentales, lo que confirma la aplicabilidad práctica de los hallazgos de la investigación. De este modo, esta disertación contribuye al campo de la energía renovable al avanzar en la comprensión y las capacidades de los microinversores, no solo como convertidores de energía eficientes, sino también como componentes clave para garantizar la estabilidad y la fiabilidad de las redes energéticas. La investigación también presenta conceptos de diseño y control que contribuyen a la construcción de microinversores robustos basados en convertidores de potencia. | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Electrónica de potencia | spa |
dc.description.sponsorship | El proyecto de investigación fue financiado por la Beca de Doctorados Nacionales 785, otorgada por Minciencias (Ministerio de Ciencia, Tecnología e Innovación de Colombia), en el marco de la convocatoria nacional para formación de alto nivel. | spa |
dc.format.extent | xiv, 133 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88350 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | spa |
dc.relation.references | Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, ‘‘The renewable energy role in the global energy transformations,’’ Renewable Energy Focus, vol. 48, p. 100545, 2024. | spa |
dc.relation.references | S. Tabassum, T. Rahman, A. U. Islam, S. Rahman, D. R. Dipta, S. Roy, N. Mohammad, N. Nawar, and E. Hossain, ‘‘Solar energy in the united states: Development, challenges and future prospects,’’ Energies, vol. 14, no. 23, p. 8142, 2021. | spa |
dc.relation.references | I. Mehedi, Z. Salam, M. Ramli, V. Chin, H. Bassi, M. Rawa, and M. Abdullah, ‘‘Critical evaluation and review of partial shading mitigation methods for grid-connected pv system using hardware solutions: The module-level and array-level approaches,’’ Renewable and Sustainable Energy Reviews, vol. 146, p. 111138, 2021. | spa |
dc.relation.references | S. Tabet, R. Ihaddadene, B. Guerira, and N. Ihaddadene, ‘‘Impact of dust and degradation on the electrical properties of pv panels,’’ Journal of Renewable Energy and Environment, vol. 10, no. 4, pp. 78--88, 2023. | spa |
dc.relation.references | E. Pulli, E. Rozzi, and F. Bella, ‘‘Transparent photovoltaic technologies: Current trends towards upscaling,’’ Energy Conversion and Management, vol. 219, p. 112982, 2020. | spa |
dc.relation.references | O. Almora, D. Baran, G. Bazan, C. Berger, C. I. Cabrera, K. Catchpole, S. Erten-Ela, F. Guo, J. Hauch, A. Ho-baillie, T. Jacobsson, R. A. J. Janssen, T. Kirchartz, N. Kopidakis, Y. Li, M. Loi, R. Lunt, X. Mathew, M. McGehee, J. Min, D. Mitzi, M. Nazeeruddin, J. Nelson, A. Nogueira, U. Paetzold, N. Park, B. P. Rand, U. Rau, H. Snaith, E. Unger, L. Vaillant-Roca, H. Yip, and C. Brabec, ‘‘Device performance of emerging photovoltaic materials (version 1),’’ Advanced Energy Materials, vol. 11, 2020. | spa |
dc.relation.references | S. B. Kang, B. Salimzhanov, W. Park, M. H. Jeong, J. Kim, and K. Choi, ‘‘Flexible and colorful transparent silicon photovoltaics with unprecedented flexibility,’’ Advanced Functional Materials, vol. 32, 2021. | spa |
dc.relation.references | M. Afzal, J. Li, W. Amin, Q. Huang, K. Umer, S. A. Ahmad, F. Ahmad, and A. Raza, ‘‘Role of blockchain technology in transactive energy market: A review,’’ Sustainable Energy Technologies and Assessments, vol. 53, p. 102646, 2022. | spa |
dc.relation.references | F. Obeidat, ‘‘A comprehensive review of future photovoltaic systems,’’ Solar Energy, vol. 163, no. July 2017, pp. 545--551, 2018. | spa |
dc.relation.references | M. Obi and R. Bass, ‘‘Trends and challenges of grid-connected photovoltaic systems – A review,’’ Renewable and Sustainable Energy Reviews, vol. 58, pp. 1082--1094, 5 2016. | spa |
dc.relation.references | R. Maltione, V. G. Marcos Dos Reis, D. I. Narvaez, M. G. Villalva, L. C. Kretly, M. V. G. Reis, D. I. Narvaez, M. G. Villalva, and L. C. Kretly, ‘‘Small size inverters: Development challenges for PV, renewable energy applications, as Well IoT, EMC, lightning and robustness tradeoffs,’’ 2018 13th IEEE International Conference on Industry Applications, INDUSCON 2018 - Proceedings, pp. 1150--1157, 2019. | spa |
dc.relation.references | W. Zhang, PhD Thesis Control of Grid Connected Power Converters with Grid Support Functionalities Weiyi Zhang. PhD thesis, 2017. | spa |
dc.relation.references | B. Liu, M. Su, J. Yang, D. Song, D. He, and S. Song, ‘‘Combined reactive power injection modulation and grid current distortion improvement approach for h6 transformer-less photovoltaic inverter,’’ IEEE Transactions on Energy Conversion, vol. 32, pp. 1456--1467, 12 2017. | spa |
dc.relation.references | A. Águila Téllez, G. López, I. Isaac, and J. W. González, ‘‘Optimal reactive power compensation in electrical distribution systems with distributed resources. Review.,’’ Heliyon, vol. 4, p. e00746, 8 2018. | spa |
dc.relation.references | M. G. Alves, G. A. Melo, C. A. Canesin, and M. A. De Brito, ‘‘Photovoltaic micro-grid for GD with active and reactive power injection control for connected and islanded operation,’’ SBSE 2018 - 7th Brazilian Electrical Systems Symposium, pp. 1--6, 2018 | spa |
dc.relation.references | P. Monica and M. Kowsalya, ‘‘Control strategies of parallel operated inverters in renewable energy application: A review,’’ Renewable and Sustainable Energy Reviews, vol. 65, pp. 885--901, 2016. | spa |
dc.relation.references | U. Tamrakar, D. Shrestha, M. Maharjan, B. Bhattarai, T. Hansen, and R. Tonkoski, ‘‘Virtual Inertia: Current Trends and Future Directions,’’ Applied Sciences, vol. 7, no. 7, p. 654, 2017. | spa |
dc.relation.references | H. P. Ikkurti and S. Saha, ‘‘A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV),’’ Renewable and Sustainable Energy Reviews, vol. 47, pp. 997--1006, 2015. | spa |
dc.relation.references | R. Dogga and M. K. Pathak, ‘‘Recent trends in solar PV inverter topologies,’’ Solar Energy, vol. 183, pp. 57--73, 5 2019. | spa |
dc.relation.references | D. Kolantla, S. Mikkili, S. R. Pendem, and A. A. Desai, ‘‘Critical review on various inverter topologies for pv system architectures,’’ IET Renewable Power Generation, vol. 14, no. 17, pp. 3418--3438, 2020. | spa |
dc.relation.references | I. Vairavasundaram, V. Varadarajan, P. J. Pavankumar, R. K. Kanagavel, L. Ravi, and S. Vairavasundaram, ‘‘A review on small power rating pv inverter topologies and smart pv inverters,’’ Electronics, vol. 10, no. 11, p. 1296, 2021. | spa |
dc.relation.references | J. L. de Souza Silva, H. S. Moreira, M. V. G. dos Reis, T. A. dos Santos Barros, and M. G. Villalva, ‘‘Theoretical andbehavioral analysis of power optimizers for grid-connected photovoltaic systems,’’ Energy Reports, vol. 8, pp. 10154--10167, 2022. | spa |
dc.relation.references | Y. S. Kim and R. Winston, ‘‘Power conversion in concentrating photovoltaic systems: central, string, and micro-inverters,’’ Progress in Photovoltaics: Research and Applications, vol. 22, no. 9, pp. 984--992, 2014. | spa |
dc.relation.references | K. A. Horowitz, G. Nielson, A. Ramdas, D. W. Cunningham, Z. Majumdar, D. Feldman, R. Fu, and B. Sigrin, ‘‘The effect of photovoltaic module efficiency on installed system costs and markets in residential rooftop installations in the united states,’’ tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States); Nielson . . . , 2020. | spa |
dc.relation.references | M. Afridi, S. Tatapudi, J. Flicker, D. Srinivasan, and G. Tamizhmani, ‘‘Reliability of microinverters for photovoltaic systems: High-temperature accelerated testing with fixed and cyclic power stresses,’’ Energies, vol. 16, no. 18, p. 6511, 2023. | spa |
dc.relation.references | R. Panigrahi, S. K. Mishra, S. C. Srivastava, A. K. Srivastava, and N. N. Schulz, ‘‘Grid integration of small-scale photovoltaic systems in secondary distribution network—a review,’’ IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 3178--3195, 2020. | spa |
dc.relation.references | M. Kühnbach, A. Bekk, and A. Weidlich, ‘‘Towards improved prosumer participation: Electricity trading in local markets,’’ Energy, vol. 239, p. 122445, 2022 | spa |
dc.relation.references | D. Burmester, R. Rayudu, W. Seah, and D. Akinyele, ‘‘A review of nanogrid topologies and technologies,’’ Renewable and Sustainable Energy Reviews, vol. 67, pp. 760--775, 2017. | spa |
dc.relation.references | A. S. Mundada, E. W. Prehoda, and J. M. Pearce, ‘‘U.S. market for solar photovoltaic plug-and-play systems,’’ Renewable Energy, vol. 103, pp. 255--264, 2017. | spa |
dc.relation.references | A. S. Mundada, Y. Nilsiam, and J. M. Pearce, ‘‘A review of technical requirements for plug-and-play solar photovoltaic microinverter systems in the United States,’’ Solar Energy, vol. 135, pp. 455--470, 2016. | spa |
dc.relation.references | A. Anzalchi and A. Sarwat, ‘‘Overview of technical specifications for grid-connected photovoltaic systems,’’ Energy Conversion and Management, vol. 152, no. September, pp. 312--327, 2017. | spa |
dc.relation.references | K. Alluhaybi and I. Batarseh, ‘‘Review and Comparison of Single-Phase Grid-Tied Photovoltaic Microinverters,’’ 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, vol. PP, no. d, pp. 7101--7108, 2018. | spa |
dc.relation.references | P. Hacke, S. Lokanath, P. Williams, A. Vasan, P. Sochor, G. S. TamizhMani, H. Shinohara, and S. Kurtz, ‘‘A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols,’’ Renewable and Sustainable Energy Reviews, vol. 82, no. July 2017, pp. 1097--1112, 2018. | spa |
dc.relation.references | K. Alluhaybi, I. Batarseh, H. Hu, and X. Chen, ‘‘Comprehensive Review and Comparison of Single-Phase Grid-Tied Photovoltaic Microinverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, no. d,pp. 1--1, 2019. | spa |
dc.relation.references | R. Hasan, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, ‘‘Grid-connected isolated PV microinverters: A review,’’ Renewable and Sustainable Energy Reviews, vol. 67, pp. 1065--1080, 2017. | spa |
dc.relation.references | O. Çelik, A. Teke, and A. Tan, ‘‘Overview of micro-inverters as a challenging technology in photovoltaic applications,’’ Renewable and Sustainable Energy Reviews, vol. 82, no. May 2017, pp. 3191--3206, 2018. | spa |
dc.relation.references | E. Ercelebi and A. A. Shikhan, ‘‘Implementation and Design of Advanced DC/AC Inverter for Renewable Energy,’’ International Journal of Electrical Energy, vol. 3, no. 1, pp. 32--36, 2015. | spa |
dc.relation.references | H. A. Sher and K. E. Addoweesh, ‘‘Micro-inverters - Promising solutions in solar photovoltaics,’’ Energy for Sustainable Development, vol. 16, no. 4, pp. 389--400, 2012. | spa |
dc.relation.references | K. Alluhaybi, I. Batarseh, and H. Hu, ‘‘Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1310--1329, 2019. | spa |
dc.relation.references | Y. Yang, K. A. Kim, F. Blaabjerg, and A. Sangwongwanich, Advances in grid-connected photovoltaic power conversion systems. Woodhead Publishing, 2018. | spa |
dc.relation.references | C. Abraham, A. Rajan, I. Issac, P. Paul, and A. Babu, ‘‘a Switched High Gain Push Pull Quadrupler Dc-Dc Converter,’’ TENCON 2018 - 2018 IEEE Region 10 Conference, no. October, pp. 399--403, 2018. | spa |
dc.relation.references | A. A. Khan, H. Cha, and J. S. J. Lai, ‘‘Cascaded Dual Buck Inverter with Reduced Number of Inductors,’’ IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 2847--2856, 2018. | spa |
dc.relation.references | S. Manna, D. K. Singh, A. K. Akella, H. Kotb, K. M. AboRas, H. M. Zawbaa, and S. Kamel, ‘‘Design and implementation of a new adaptive mppt controller for solar pv systems,’’ Energy Reports, vol. 9, pp. 1818--1829, 2023. | spa |
dc.relation.references | C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez-Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, ‘‘Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: A review,’’ Micromachines, vol. 12, no. 10, p. 1260, 2021. | spa |
dc.relation.references | S. A. Sarang, M. A. Raza, M. Panhwar, M. Khan, G. Abbas, E. Touti, A. Altamimi, and A. A. Wijaya, ‘‘Maximizing solar power generation through conventional and digital mppt techniques: A comparative analysis,’’ Scientific Reports, vol. 14, p. 8944, 2024. | spa |
dc.relation.references | T. Lodh, N. Pragallapati, and V. Agarwal, ‘‘An improved control scheme for interleaved flyback converter based micro-inverter to achieve high efficiency,’’ 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, pp. 1--6, 2017. | spa |
dc.relation.references | J. Kan, Y. Wu, Y. Tang, S. Xie, and L. Jiang, ‘‘Hybrid control scheme for photovoltaic microinverter with adaptive inductor,’’ IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8762--8774, 2019. | spa |
dc.relation.references | A. Allehyani and P. Enjeti, ‘‘A New Modular Micro-inverter with Sinusoidal Output Voltage Using GaN Switches for PV Modules,’’ 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2018, pp. 1--6, 2018. | spa |
dc.relation.references | M. Premkumar, K. Karthick, and R. Sowmya, ‘‘A review on solar PV based grid connected microinverter control schemes and topologies,’’ International Journal of Renewable Energy Development, vol. 7, no. 2, pp. 171--182, 2018. | spa |
dc.relation.references | D. Meneses, O. Garcia, P. Alou, J. A. Oliver, and J. A. Cobos, ‘‘Grid-connected forward microinverter with primary-parallel secondary-series transformer,’’ IEEE transactions on power electronics, vol. 30, no. 9, pp. 4819--4830, 2014. | spa |
dc.relation.references | Y. Levron and R. W. Erickson, ‘‘High weighted efficiency in single-phase solar inverters by a variable-frequency peak current controller,’’ IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 248--257, 2015. | spa |
dc.relation.references | M. Khoshlessan, B. Asaei, and B. Farhangi, ‘‘Analysis of fly-back pv micro-inverter and optimizing control system using finite gradient descent method,’’ in 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), pp. 287--292, IEEE, 2015. | spa |
dc.relation.references | R. Attanasio, F. Gennaro, and G. Scuderi, ‘‘A grid tie micro inverter with reactive power control capability,’’ AEIT Annual Conference 2013: Innovation and Scientific and Technical Culture for Development, AEIT 2013 - Selected Proceedings Papers, pp. 5--10, 2013. | spa |
dc.relation.references | M. Harfman-Todorovic, F. Tao, M. Agamy, D. Dong, X. Liu, L. Garces, R. Zhou, E. Delgado, D. Marabell, C. Stephens, and R. Steigerwald, ‘‘A high efficiency PV micro-inverter with grid support functions,’’ 2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014, pp. 4244--4250, 2014. | spa |
dc.relation.references | E. Fonkwe, J. Kirtley, and J. Elizondo, ‘‘Flyback micro-inverter with reactive power support capability,’’ 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics, COMPEL 2016, pp. 1--8, 2016. | spa |
dc.relation.references | G. H. Min, K. H. Lee, J. I. Ha, and M. H. Kim, ‘‘Design and Control of Single-Phase Grid-Connected Photovoltaic Microinverter with Reactive Power Support Capability,’’ 2018 International Power Electronics Conference, IPEC-Niigata - ECCE Asia 2018, pp. 2500--2504, 2018. | spa |
dc.relation.references | O. Gagrica, P. H. Nguyen, W. L. Kling, and T. Uhl, ‘‘Microinverter Curtailment Strategy for Increasing Photovoltaic Penetration in Low-Voltage Networks,’’ IEEE Transactions on Sustainable Energy, vol. 6, no. 2, pp. 369--379, 2015. | spa |
dc.relation.references | A. Elrayyah and Y. Sozer, ‘‘Low complexity structure and control for microinverters with reactive power support capability,’’ 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, pp. 4557--4562, 2015. | spa |
dc.relation.references | I. Ndiaye, X. Wu, and M. Agamy, ‘‘Impact of micro-inverter reactive power support capability in high penetration residential PV networks,’’ 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, pp. 1--6, 2015. | spa |
dc.relation.references | E. Hleihel, M. Fadel, and H. Y. Kanaan, ‘‘Simulation of an islanded dc microgrid using instantaneous and average modeling approaches,’’ in ELECTRIMACS 2019: Selected Papers-Volume 1, pp. 193--207, Springer, 2020. | spa |
dc.relation.references | E. P. Soares-Ramos, L. De Oliveira-Assís, R. Sarrias-Mena, P. García-Triviño, C. A. García-Vázquez, and L. M. Fernandez- Ramirez, ‘‘Averaged dynamic modeling and control of a quasi-z-source inverter for wind power applications,’’ IEEE Access, vol. 9, pp. 114348--114358, 2021. | spa |
dc.relation.references | P. S. Hosseinian, S. Ebrahimi, and J. Jatskevich, ‘‘Detailed parametric modeling of ac--dc converters for emt simulators,’’ IEEE Open Journal of Power Electronics, 2023. | spa |
dc.relation.references | A. Reindl, A. Lang, M. Niemetz, and H. Meier, ‘‘Switching and averaging models of a bidirectional, half-bridge based dc-dc converter with load distribution,’’ in Modelica Conferences, pp. 683--692, 2023. | spa |
dc.relation.references | D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, and G. C. Verghese, ‘‘Modeling and simulation of power electronic converters,’’ Proceedings of the IEEE, vol. 89, no. 6, pp. 898--912, 2001. | spa |
dc.relation.references | S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. Martinez, and A. Ramirez, ‘‘Definitions and applications of dynamic average models for analysis of power systems,’’ IEEE Transactions on power delivery, vol. 25, no. 4, pp. 2655--2669, 2010. | spa |
dc.relation.references | J. Aravena, D. Carrasco, M. Diaz, M. Uriarte, F. Rojas, R. Cardenas, and J. C. Travieso, ‘‘Design and implementation of a low-cost real-time control platform for power electronics applications,’’ Energies, vol. 13, no. 6, p. 1527, 2020. | spa |
dc.relation.references | STMicroelectronics, ‘‘Integrated development environment for stm32,’’ 2020. Octover,2024. | spa |
dc.relation.references | M. A. Mehiris, H. E. Mansour, B. Talbi, I. Messaoudene, and A. Krama, ‘‘Hil co-simulation of long-horizon finite control set model predictive control for lcl filtered grid-connected inverter using fpga,’’ in 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pp. 1--6, IEEE, 2024. | spa |
dc.relation.references | T. E. Rao and S. Elango, ‘‘Implementation of fpga based mppt techniques for grid-connected pv system.,’’ Intelligent Automation & Soft Computing, vol. 35, no. 2, 2023. | spa |
dc.relation.references | L. A. G. Rodriguez and J. C. Balda, ‘‘A comparison of isolated dc-dc converters for microinverter applications,’’ in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2084--2091, IEEE, 2013. | spa |
dc.relation.references | S. Chatterjee, P. Kumar, and S. Chatterjee, ‘‘A techno-commercial review on grid connected photovoltaic system,’’ Renewable and Sustainable Energy Reviews, vol. 81, no. March 2017, pp. 2371--2397, 2018. | spa |
dc.relation.references | R. Teodorescu, M. Liserre, and P. Rodriguez, ‘‘Grid Converters for Photovoltaic and Wind Power Systems Copyright Wiley 2011 Chapter 3 Chapter Grid Requirements for PV International Regulations,’’ 2011. | spa |
dc.relation.references | E. Fonkwe, J. Kirtley, and J. Elizondo, ‘‘Flyback Micro-inverter with Reactive Power Support Capability,’’ 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1--8, 2016. | spa |
dc.relation.references | D. W. Hart, Electrónica de Potencia. Prentice Hall, 1st ed., 2001. | spa |
dc.relation.references | Y. Zhou, J. Cao, and J. Zhao, ‘‘Small-signal oscillatory stability of a grid-connected pv power generation farm affected by the increasing number of inverters in daisy-chain connection,’’ Frontiers in Energy Research, vol. 10, p. 1022060, 2023. | spa |
dc.relation.references | J. Jana, H. Saha, and K. Das Bhattacharya, ‘‘A review of inverter topologies for single-phase grid-connected photovoltaic systems,’’ 5 2017. | spa |
dc.relation.references | M. A. Hannan, M. S. Lipu, P. J. Ker, R. A. Begum, V. G. Agelidis, and F. Blaabjerg, ‘‘Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations,’’ 10 2019. | spa |
dc.relation.references | W. Xiao, M. S. Moursi, O. Khan, and D. Infield, ‘‘Review of grid-tied converter topologies used in photovoltaic systems,’’ 2016. | spa |
dc.relation.references | R. Hasan, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, ‘‘Grid-connected isolated PV microinverters: A review,’’ 1 2017. | spa |
dc.relation.references | X. Zhao, L. Zhang, R. Born, and J. S. Lai, ‘‘A High-Efficiency Hybrid Resonant Converter with Wide-Input Regulation for Photovoltaic Applications,’’ IEEE Transactions on Industrial Electronics, vol. 64, pp. 3684--3695, 5 2017. | spa |
dc.relation.references | D. R. Nayanasiri, D. M. Vilathgamuwa, and D. L. Maskell, ‘‘Optimized switching control strategy for current-fed half-bridge converter,’’ in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, pp. 2023--2028, Institute of Electrical and Electronics Engineers Inc., 2014. | spa |
dc.relation.references | A. K. Rathore, ‘‘Current-fed DC/DC converters for high voltage gain and low voltage high current applications: An overview of topologies and modulation techniques,’’ in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1--6, 2016. | spa |
dc.relation.references | V. R. Vakacharla, K. Gnana, P. Xuewei, B. L. Narasimaharaju, M. Bhukya, A. Banerjee, R. Sharma, and A. K. Rathore, ‘‘State-of-the-art power electronics systems for solar-to-grid integration,’’ Solar Energy, vol. 210, pp. 128--148, 11 2020. | spa |
dc.relation.references | M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, ‘‘Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,’’ IEEE Transactions on Power Electronics, vol. 32, pp. 9143--9178, 12 2017. | spa |
dc.relation.references | A. Karafil, H. Ozbay, and S. Oncu, ‘‘Power control of resonant converter MPPT by pulse density modulation,’’ in 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), pp. 360--364, 2017. | spa |
dc.relation.references | A. Karafil, H. Ozbay, and S. Oncu, ‘‘Design and Analysis of Single-Phase Grid-Tied Inverter with PDM MPPT-Controlled Converter,’’ IEEE Transactions on Power Electronics, vol. 35, pp. 4756--4766, 5 2020. | spa |
dc.relation.references | O. Abdel-Rahim, N. Alamir, M. Orabi, and M. Ismeil, ‘‘Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters,’’ Journal of Power Electronics, vol. 20, pp. 279--291, 1 2020. | spa |
dc.relation.references | O. Abdel-Rahim, N. Alamir, M. Orabi, and M. Ismeil, ‘‘Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters,’’ Journal of Power Electronics, vol. 20, pp. 279--291, 1 2020. | spa |
dc.relation.references | O. Abdel-Rahim, N. Alamir, M. Abdelrahem, M. Orabi, R. Kennel, and M. A. Ismeil, ‘‘A phase-shift-modulated LLC-resonant micro-inverter based on fixed frequency predictive-MPPT,’’ Energies, vol. 13, no. 6, 2020. | spa |
dc.relation.references | A. S. Tan and S. Iqbal, ‘‘Implementation of INC MPPT and CV Charging Using LLC Resonant Converter for Solar Streetlight System,’’ Journal of Circuits, Systems and Computers, vol. 27, 3 2018. | spa |
dc.relation.references | Y. Zhuang, F. Liu, X. Zhang, X. Diao, J. Jiang, and J. Sun, ‘‘Direct Frequency Control Based MPPT Algorithm of LLC Resonant Converter for Photovoltaic System,’’ in 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, pp. 3402--3406, Institute of Electrical and Electronics Engineers Inc., 9 2019. | spa |
dc.relation.references | A. S. Ragab, N. H. Saad, and A. A. El-Sattar, ‘‘LLC resonant DC-DC converter for grid-connected PV system,’’ in Proceedings of ICCES 2017 12th International Conference on Computer Engineering and Systems, vol. 2018-January, pp. 279--285, Institute of Electrical and Electronics Engineers Inc., 1 2018. | spa |
dc.relation.references | S. Motahhir, A. El Hammoumi, and A. El Ghzizal, ‘‘The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm,’’ 2 2020. | spa |
dc.relation.references | M. H. Rashid, Power electronics handbook. Butterworth-Heinemann, 2017. | spa |
dc.relation.references | C. Alexander and M. Sadiku, Fundamentals of Electric Circuits. McGraw-Hill, fifth edit ed., 2012. | spa |
dc.relation.references | R. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, ‘‘Resonant Conversion,’’ in Fundamentals of Power Electronics, ch. Part VI, pp. 933--993, Cham, Switzerland: Springer International Publishing, third edit ed., 2020. | spa |
dc.relation.references | G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, Photovoltaic Sources Modeling. John Wiley & Sons, Ltd, 2 2017 | spa |
dc.relation.references | Y. Wei, Q. Luo, and A. Mantooth, ‘‘Overview of Modulation Strategies for LLC Resonant Converter,’’ IEEE Transactions on Power Electronics, vol. 35, pp. 10423--10443, 10 2020. | spa |
dc.relation.references | N. Dao, D. L. I. T. o. P. Electronics, and u. 2020, ‘‘High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles,’’ ieeexplore.ieee.org. | spa |
dc.relation.references | M. Salem, V. Ramachandaramurthy, A. J. I. . . . , and u. 2020, ‘‘Three-phase series resonant DC-DC boost converter with double LLC resonant tanks and variable frequency control,’’ ieeexplore.ieee.org. | spa |
dc.relation.references | Z. Yao, L. Xiao, and Y. Yan, ‘‘Dual-buck full-bridge inverter with hysteresis current control,’’ IEEE Transactions on Industrial Electronics, vol. 56, pp. 3153--3160, 2009. | spa |
dc.relation.references | A. Khan and F. Blaabjerg, ‘‘Modified transformerless dual buck inverter with improved lifetime for PV applications,’’ IEEE International Reliability Physics Symposium Proceedings, vol. 2018-March, no. Dm, pp. 21--6, 2018. | spa |
dc.relation.references | L. Zhou and F. Gao, ‘‘Dual buck inverter with series connected diodes and single inductor,’’ Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2016-May, no. c, pp. 2259--2263, 2016. | spa |
dc.relation.references | F. Akbar, H. Cha, H. F. Ahmed, and A. A. Khan, ‘‘A Family of Single-Stage High-Gain Dual-Buck Split-Source Inverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, no. c, pp. 1--1, 2019. | spa |
dc.relation.references | A. J. A Mirzaee, M Khosravi, ‘‘Design of a control system for dual buck inverters used in grid-connection applications,’’ International Conference on Knowledge-base engineering and innovation, 2015. | spa |
dc.relation.references | B. Wang, L. Z. Yi, W. Bin, and A. Working, ‘‘Control study of Dual-Buck grid-connected inverter based on least squares algorithm,’’ Asia-Pacific Power and Energy Engineering Conference, APPEEC, pp. 0--3, 2011 | spa |
dc.relation.references | S. K. Gudey and R. Gupta, ‘‘Sliding mode control of dual-buck full-bridge inverter,’’ India International Conference on Power Electronics, IICPE, no. 1, pp. 1--6, 2012 | spa |
dc.relation.references | L. Wang, Y. Li, Q. Yan, and W. Dou, ‘‘Dual buck grid-connected inverter based on GaN devices,’’ 2016 Asian Conference on Energy, Power and Transportation Electrification, ACEPT 2016, no. 2014, pp. 1--6, 2017. | spa |
dc.relation.references | M. BHARDWAJ and S. CHOUDHURY, ‘‘Digitally Controlled Solar Micro Inverter Design using C2000 Piccolo Microcontroller,’’ no. June, p. 56, 2014. | spa |
dc.relation.references | C. Wang, Y. Zhou, J. Liu, F. Hong, B. Ji, and J. Wang, ‘‘Single Inductor Dual Buck Full-Bridge Inverter,’’ IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869--4877, 2015. | spa |
dc.relation.references | M.-k. Yang, Y.-j. Kim, and W.-y. Choi, ‘‘High-Efficiency Dual-Buck Inverter Using Coupled Inductor,’’ vol. 24, no. 6, pp. 396--405, 2019. | spa |
dc.relation.references | C. N. M. Ho, V. S. P. Cheung, and H. S. H. Chung, ‘‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,’’ 2009 IEEE Energy Conversion Congress and Exposition, ECCE 2009, pp. 2949--2956, 2009. | spa |
dc.relation.references | D. González Montoya, P. A. Ortiz Valencia, and C. A. Ramos-Paja, ‘‘Fixed-frequency implementation of sliding-mode controllers for photovoltaic systems,’’ International Journal of Energy and Environmental Engineering, vol. 10, no. 3, pp. 287--305, 2019 | spa |
dc.relation.references | C. N. M. Ho, V. S. Cheung, and H. S. H. Chung, ‘‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,’’ IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2484--2495, 2009. | spa |
dc.relation.references | S. Gautam and R. Gupta, ‘‘Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters,’’ IET Power Electronics, vol. 6, no. 4, pp. 683--692, 2013. | spa |
dc.relation.references | X. Ruan, X. Wang Donghua Pan, D. Yang Weiwei Li, and C. Bao, CPSS Power Electronics Series Control Techniques for LCL-Type Grid-Connected Inverters. | spa |
dc.relation.references | I. Villanueva, N. Vázquez, J. Vaquero, C. Hernández, H. López, and R. Osorio, ‘‘L vs. LCL Filter for Photovoltaic Grid-Connected Inverter: A Reliability Study,’’ International Journal of Photoenergy, vol. 2020, 2020. | spa |
dc.relation.references | M. A. Bolaños, G. Osorio, J. D. Bastidas-Rodriguez, and E. Revelo-Fuelagan, ‘‘Computational Model of a Two-stage Microinverter With Flyback Active Clamp and Dual Buck,’’ 2019. | spa |
dc.relation.references | J. K. Singh and R. K. Behera, ‘‘Hysteresis Current Controllers for Grid Connected Inverter: Review and Experimental Implementation,’’ Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, no. December, pp. 1--6, 2018. | spa |
dc.relation.references | B. Sudhakar and G. V. E. S. Kumar, ‘‘A unipolar fixed hysteresis band based sliding mode control of Single Phase Grid Connected LCL Filtered Voltage Source Inverter,’’ IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2016, vol. 2016-Janua, pp. 1--5, 2017. | spa |
dc.relation.references | J. A. Suul, K. Ljøkelsøy, T. Midtsund, and T. Undeland, ‘‘Synchronous reference frame hysteresis current control for grid converter applications,’’ IEEE Transactions on Industry Applications, vol. 47, no. 5, pp. 2183--2194, 2011. | spa |
dc.relation.references | X. Dai and Q. Chao, ‘‘The research of photovoltaic grid-connected inverter based on adaptive current hysteresis band control scheme,’’ 1st International Conference on Sustainable Power Generation and Supply, SUPERGEN ’09, 2009. | spa |
dc.relation.references | Y. M. Alsmadi, V. Utkin, M. Haj-Ahmed, L. Xu, and A. Y. Abdelaziz, ‘‘Sliding-mode control of power converters: AC/DC converters & DC/AC inverters,’’ International Journal of Control, vol. 91, no. 11, pp. 2573--2587, 2018. | spa |
dc.relation.references | V. Utkin, ‘‘Design of feedback systems with uncertainties, based on equivalent control,’’ 27th Mediterranean Conference on Control and Automation, MED 2019 - Proceedings, pp. 100--105, 2019. | spa |
dc.relation.references | V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-mechanical systems, second edition. 2009 | spa |
dc.relation.references | Z. Yao and L. Xiao, ‘‘Two-switch dual-buck grid-connected inverter with hysteresis current control,’’ IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3310--3318, 2012. | spa |
dc.relation.references | M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, ‘‘A new single-phase PLL structure based on second order generalized integrator,’’ PESC Record - IEEE Annual Power Electronics Specialists Conference, pp. 1--6, 2006. | spa |
dc.relation.references | A. Mu, ‘‘Electric rule no.21,’’ Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689--1699, 2019 | spa |
dc.relation.references | E. Kabalci, ‘‘Review on novel single-phase grid-connected solar inverters: Circuits and control methods,’’ Solar Energy, vol. 196. | spa |
dc.relation.references | F. Hong, J. Liu, B. Ji, Y. Zhou, J. Wang, and C. Wang, ‘‘Single inductor dual buck full-bridge inverter,’’ IEEE Transactions on Industrial Electronics, vol. 62, pp. 4869--4877, 8 2015. | spa |
dc.relation.references | M. Y. A. Khan, H. Liu, Z. Yang, and X. Yuan, ‘‘A comprehensive review on grid connected photovoltaic inverters, their modulation techniques, and control strategies,’’ Energies, vol. 13, 8 2020. | spa |
dc.relation.references | T. Brinker, L. Hoffmann, and J. Friebe, ‘‘Comparison of modulation techniques for a single-phase full-bridge photovoltaic micro-inverter considering reactive power capability,’’ pp. 841--846, Institute of Electrical and Electronics Engineers Inc., 2021. | spa |
dc.relation.references | Y. Tang, C. Zhang, Y. Guo, H. Sun, and L. Jiang, ‘‘Optimization of Zero-Crossing Distortion for Unipolar BCM Grid-Tied Inverter,’’ IEEE J. Emerg. Sel. Top. Power Electron., vol. 2023, pp. 3680--3691. | spa |
dc.relation.references | T. F. Wu, C. L. Kuo, K. H. Sun, and H. C. Hsieh, ‘‘Combined unipolar and bipolar pwm for current distortion improvement during power compensation,’’ IEEE Transactions on Power Electronics, vol. 29, pp. 1702--1709, 2014. | spa |
dc.relation.references | Z. Tang, M. Su, Y. Sun, B. Cheng, Y. Yang, F. Blaabjerg, and L. Wang, ‘‘Hybrid up-pwm scheme for heric inverter to improve power quality and efficiency,’’ IEEE Transactions on Power Electronics, vol. 34, pp. 4292--4303, 5 2019. | spa |
dc.relation.references | B. Zeng, H. B. Xu, K. Chen, and J. G. Chen, ‘‘Suppression of zero-crossing distortion for single-phase grid-connected photovoltaic inverters with unipolar modulation,’’ Review of Scientific Instruments, vol. 84, 10 2013. | spa |
dc.relation.references | F. Wu, B. Sun, K. Zhao, and L. Sun, ‘‘Analysis and Solution of Current Zero-Crossing Distortion With Unipolar Hysteresis Current Control in Grid-Connected Inverter,’’ IEEE Trans. Ind. Electron., vol. 2013, pp. 4450--4457. | spa |
dc.relation.references | F. Wu, X. Li, and J. Duan, ‘‘Improved Elimination Scheme of Current Zero-Crossing Distortion in Unipolar Hysteresis Current Controlled Grid-Connected Inverter,’’ IEEE Trans. Ind. Inform., vol. 2015, pp. 1111--1118. | spa |
dc.relation.references | R. Xie, Q. Zeng, F. Yang, B. Lin, O. Xu, and Y. He, ‘‘Decoupled Unipolar Hysteresis Current Control for Single-Phase Grid-Tied Inverter Without Current Zero-Crossing Distortion,’’ IEEE Access, vol. 2024, pp. 21453--21463. | spa |
dc.relation.references | R. Shimada, C. Huang, T. Mannen, and T. Isobe, ‘‘Unipolar/Bipolar Mixed Modulation for Discontinuous Current Mode Single-Phase Grid-tied Inverter with Off-time Discrete Control,’’ in Proceedings of the 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 16--19 November 2021; IEEE: Piscataway, NJ, USA, 2021, pp. 1--6, 2021. | spa |
dc.relation.references | X. Chen and Q. Li, ‘‘Hybrid Modulation Method for Single Phase Full Bridge CRM Inverter to Improve Reactive Power Capability,’’ in Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25--29 February 2024; IEEE: Piscataway, NJ, USA, 2024, pp. 2314--2319, 2024. | spa |
dc.relation.references | J. C. T. Lai, S. C. R. Yeung, and H. S. H. Chung, ‘‘Achieving Fast Dynamic Response and Output Filter Condition Monitoring in Hybrid PWM Inverters Using a Low-Computational State Trajectory Prediction Algorithm Incorporating With Reduced-Order Switching Surfaces,’’ IEEE Trans. Power Electron., vol. 2024, pp. 6941--6960. | spa |
dc.relation.references | J. Chen, C. Wu, J. Li, Z. Shao, J. Wang, and Y. Wang, ‘‘A Low Distortion Collaborative Modulation for Zero-Crossing Distortion Pseudo DC Link Single-Stage Isolated Inverter,’’ IEEE Trans. Power Electron., vol. 2024, pp. 9132--9137. | spa |
dc.relation.references | R. Yao, C. Wei, and R. Li, ‘‘A Quasi-Trapezoidal Modulation Method with Zero-Voltage Switching for Single-Phase Inverters,’’ in Proceedings of the 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 10--13 November 2023; IEEE: Piscataway, NJ, USA, 2023, pp. 2088--2092, 2023. | spa |
dc.relation.references | L. Lin, J. Zhang, and S. Shao, ‘‘A Variable Switching Frequency Multimode Control Scheme for Single-Phase Grid-Tied Multilevel PV Microinverters,’’ IEEE Trans. Power Electron., vol. 2023, pp. 11543--11555. | spa |
dc.relation.references | H. Zhang, X. Li, S. Xiao, and R. S. Balog, ‘‘Hybrid hysteresis current control and low-frequency current harmonics mitigation based on proportional resonant in dc/ac inverter,’’ IET Power Electron., vol. 2018, pp. 2093--2101. | spa |
dc.relation.references | X. Li, Y. Liu, and H. Zhang, ‘‘Hybrid-Modulation Hysteresis Scheme Based Decoupled Power Control of Grid-Connected Inverter,’’ IEEE J. Emerg. Sel. Top. Power Electron., vol. 2023, pp. 276--287. | spa |
dc.relation.references | X. Zheng, L. Zhang, X. Liu, Y. He, J. Shi, and C. Wang, ‘‘Half-cycle control method of the bidirectional three-phase dual-buck inverter without zero-crossing distortion,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, pp. 2088--2097, 4 2021. | spa |
dc.relation.references | K. Sabi and D. Costinett, ‘‘Design and implementation of a bipolar-unipolar switched boundary current mode (BCM) Control GaN-Based single-phase inverter,’’ 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, pp. 6473--6480, 2019. | spa |
dc.relation.references | Y. Zhang, Y. Li, Y. Tian, and H. Zhao, ‘‘Optimization of boundary current mode control strategy for reducing zero-crossing distortion in a h-bridge inverter,’’ Institute of Electrical and Electronics Engineers Inc., 5 2021 | spa |
dc.relation.references | H. Kumar, S. Banerjee, and S. K. Mishra, ‘‘A Method to Compensate for the Distortion of the Output Voltage of an H-Bridge Inverter Under Sinusoidal Unipolar PWM,’’ in Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9--13 October 2022; IEEE: Piscataway, NJ, USA, 2022, pp. 1--7, 2022. | spa |
dc.relation.references | J. Haruna, N. Masubuchi, S. Iwase, and H. Funato, ‘‘Loss analysis and efficiency enhancing method for a unipolar hysteresis-controlled single-phase grid-connected inverter,’’ IEEJ Transactions on Electrical and Electronic Engineering, vol. 13, pp. 1182--1188, 8 2018. | spa |
dc.relation.references | M. A. Bolaños-Navarrete, J. D. Bastidas-Rodríguez, and G. A. Osorio, ‘‘Hysteresis control for a grid connected dual-buck inverter,’’ Revista UIS Ingenierías, vol. 20, no. 1, pp. 1--10, 2020. | spa |
dc.relation.references | IEEE Standards Association, ‘‘Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,’’ 2018. Accessed: 2025-03-24. | spa |
dc.relation.references | International Electrotechnical Commission, ‘‘Iec 61727: Photovoltaic (pv) systems - characteristics of the utility interface,’’ 2004. Accessed: 2025-03-24. | spa |
dc.relation.references | CENELEC, ‘‘En 50549: Requirements for generating plants to be connected in parallel with distribution networks,’’ 2019. Available via national standardization bodies. | spa |
dc.relation.references | IEEE Standards Association, ‘‘Ieee recommended practice and requirements for harmonic control in electric power systems,’’ 2014. Accessed: 2025-03-24. | spa |
dc.relation.references | International Electrotechnical Commission, ‘‘Iec 61000-3 series: Electromagnetic compatibility (emc) - limits,’’ various. Accessed: 2025-03-24. | spa |
dc.relation.references | IEEE Standards Association, ‘‘Ieee standard conformance test procedures for equipment interconnecting distributed resources with electric power systems,’’ 2020. Accessed: 2025-03-24. | spa |
dc.relation.references | International Electrotechnical Commission, ‘‘Iec 62116: Test procedure of islanding prevention measures for utilityinterconnected photovoltaic inverters,’’ 2014. Accessed: 2025-03-24. | spa |
dc.relation.references | VDE Association for Electrical, Electronic Information Technologies, ‘‘Vde-ar-n 4105:2018-11: Generators connected to the low-voltage distribution network - technical requirements for the connection to and parallel operation with low-voltage distribution networks,’’ 2018. Accessed: 2025-03-24. | spa |
dc.relation.references | Underwriters Laboratories, ‘‘Ul 1741: Inverters, converters, controllers and interconnection system equipment for use with distributed energy resources,’’ 2021. Available at: https://www.shopulstandards.com. | spa |
dc.relation.references | S. Roy, P. K. Sahu, S. Jena, and A. K. Acharya, ‘‘Modeling and control of dc/ac converters for photovoltaic grid-tie micro-inverter application,’’ Materials Today: Proceedings, vol. 39, pp. 2027--2036, 2021. | spa |
dc.relation.references | G. Spiazzi, P. Mattavelli, A. Costabeber, and S. Member, ‘‘High Step-Up Ratio Flyback Converter With Active Clamp and Voltage Multiplier,’’ IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3205--3214, 2011. | spa |
dc.relation.references | P. D. Assis, S. Jr, M. G. V. D, P. G. Barbosa, H. Antônio, C. Braga, J. R. G. D, E. R. D, A. A. Ferreira, P. De Assis Sobreira, M. G. Villalva, P. G. Barbosa, H. A. C. Braga, J. R. Gazoli, E. Ruppert, and A. A. Ferreira, ‘‘Comparative analysis of current and voltage-controlled photovoltaic Maximum Power Point tracking,’’ COBEP 2011 - 11th Brazilian Power Electronics Conference, pp. 858--863, 2011. | spa |
dc.relation.references | Z. Yao, ‘‘Review of dual-buck-type single-phase grid-connected inverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4533--4545, 2020. | spa |
dc.relation.references | D. S. Burbano-Benavides, O. D. Ortiz-Sotelo, J. Revelo-Fuelagán, and J. E. Candelo-Becerra, ‘‘Design of an on-grid microinverter control technique for managing active and reactive power in a microgrid,’’ Applied Sciences, vol. 11, no. 11, p. 4765, 2021. | spa |
dc.relation.references | S. Han and Y. Cho, ‘‘Performance improvement of dual-buck inverter with mitigating reverse recovery characteristics and supporting reactive power,’’ IEEE Access, vol. 10, pp. 36802--36812, 2022. | spa |
dc.relation.references | A. Bidram and A. Davoudi, ‘‘Hierarchical structure of microgrids control system,’’ IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963--1976, 2012. | spa |
dc.relation.references | M. A. Hossain, H. R. Pota, W. Issa, and M. J. Hossain, ‘‘Overview of ac microgrid controls with inverter-interfaced generations,’’ Energies, vol. 10, no. 9, p. 1300, 2017. | spa |
dc.relation.references | Z. Ahmad and S. Singh, ‘‘Improved modulation strategy for single phase grid connected transformerless pv inverter topologies with reactive power generation capability,’’ Solar Energy, vol. 163, pp. 356--375, 2018. | spa |
dc.relation.references | H. Yin, T. Lang, X. Li, S. Du, and H. Hu, ‘‘A hybrid boundary conduction modulation for a single-phase h-bridge inverter to alleviate zero-crossing distortion and enable reactive power capability,’’ IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8311--8323, 2020. | spa |
dc.relation.references | M. A. Bolaños-Navarrete, J. D. Bastidas-Rodríguez, and G. Osorio, ‘‘A hybrid commutation technique for reducing zero-crossing distortion in a sliding mode controller for single-phase grid-tied full-bridge inverters,’’ Energies, vol. 17, no. 15, p. 3671, 2024. | spa |
dc.relation.references | A. Ramos-Paja, A. J. Saavedra-Montes, and J. D. Bastidas-Rodríguez, ‘‘Control en cuatro cuadrantes de un inversor de puente completo conectado a la red eléctrica,’’ Revista UIS Ingenierías, vol. 19, no. 1, pp. 117--129, 2020. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.proposal | Microinverter | eng |
dc.subject.proposal | Photovoltaic | eng |
dc.subject.proposal | Grid support | eng |
dc.subject.proposal | Reactive power injection | eng |
dc.subject.proposal | Microinversor | spa |
dc.subject.proposal | Fotovoltaico | spa |
dc.subject.proposal | Soporte a red | spa |
dc.subject.proposal | Inyección de energía reactiva | spa |
dc.title | Design of a photovoltaic microinverter for active and reactive power injection | eng |
dc.title.translated | Diseño de microinversores fotovoltaicos para inyección de potencia activa y reactiva | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1088651128.2025.pdf
- Tamaño:
- 32.7 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Automática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: