Design of a photovoltaic microinverter for active and reactive power injection

dc.contributor.advisorOsorio Londoño, Gustavo Adolfo
dc.contributor.advisorBastidas Rodriguez, Juan David
dc.contributor.authorBolaños Navarrete, Mario Andrés
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)spa
dc.date.accessioned2025-07-16T20:03:56Z
dc.date.available2025-07-16T20:03:56Z
dc.date.issued2025
dc.descriptiongraficas, tablasspa
dc.description.abstractThe integration of photovoltaic (PV) systems into the power grid marks a significant stride towards renewable energy adoption, necessitating advancements in power conversion technologies. An important technology to this development are microinverters, which facilitate DC to AC conversion directly at the PV panel level. This dissertation explores the design, modeling in small and large signal, and implementation of photovoltaic microinverters with a focus on their capabilities for active and reactive power injection, a feature that enhances grid stability and efficiency. Microinverters offer a multitude of advantages over traditional centralized inverter systems. By optimizing the performance of individual solar panels, they mitigate issues such as shading and ensure a more reliable and efficient energy production. The ability of microinverters to inject reactive power into the grid is particularly beneficial, as it aids in voltage regulation and grid stability. The dissertation presents an state-of-the-art review of inverter technologies capable of reactive power control, including a detailed examination of a commercial inverter and its computational modeling. This groundwork helps for understanding the current landscape of inverter technology. The exploration of power converters for DC-DC conversion, such as the Flyback converter and a resonant converter variant, highlight the objectives of this dissertation in improving the efficiency of PV systems. A novel nonlinear averaged model for the Flyback converter, developed as part of this research, facilitates the simulations of power systems in extended time without increment the computational complexity. The detailed analysis of the resonant converter highlights its suitability for optimizing PV system performance through Maximum Power Point Tracking (MPPT) algorithms while maintain high efficiency. Further, the dissertation introduces two inverter (DC-AC) designs: the Dual Buck (DB) and the Full Bridge (FB) inverters. These designs are analyzed due to its extended use and increased efficiency when operated with unipolar commutation. Also, an innovative commutation technique for the FB to address zero-crossing distortion is presented, exemplifiying the potential of this inverter technologies to maintain the benefits of the Dual Buck design while enhancing grid stability and power quality. The analysis also shows the advantages of FB over DB in terms of grid support functionalities. Integrating the DC-DC and DC-AC stages, the dissertation culminates in a comprehensive microinverter design. This integration, detailed through control techniques and four-quadrant switching analysis for reactive power injection, confirms the microinverter’s capability to support grid stability. The theoretical models and control strategies proposed are substantiated through simulation results and experimental setups, validating the practical applicability of the research findings. In this way, this dissertation contributes to the field of renewable energy by advancing the understanding and capabilities of microinverters, not only as efficient power converters but also as key components for ensuring the stability and reliability of energy networks. The research also presents a design and control concepts that contribute to the construction of robust microinvertes based in power converters (Texto tomado de la fuente).eng
dc.description.abstractLa integración de los sistemas fotovoltaicos (PV) en la red eléctrica representa un avance significativo hacia la adopción de energías renovables, lo que requiere avances en las tecnologías de conversión de energía. Una tecnología importante para este desarrollo son los microinversores, que facilitan la conversión de corriente continua (DC) a corriente alterna (AC) directamente a nivel del panel fotovoltaico. Esta disertación explora el diseño, modelado en pequeña y gran señal, e implementación de microinversores fotovoltaicos, con un enfoque en sus capacidades para la inyección de potencia activa y reactiva, una característica que mejora la estabilidad y eficiencia de la red. Los microinversores ofrecen múltiples ventajas sobre los sistemas de inversores centralizados tradicionales. Al optimizar el rendimiento de los paneles solares individuales, mitigan problemas como el sombreado y garantizan una producción de energía más confiable y eficiente. La capacidad de los microinversores para inyectar potencia reactiva a la red es especialmente beneficiosa, ya que contribuye a la regulación de voltaje y a la estabilidad de la red. La disertación presenta una revisión del estado del arte de las tecnologías de inversores capaces de controlar potencia reactiva, incluyendo un análisis detallado de un inversor comercial y su modelado computacional. Esta base ayuda a comprender el panorama actual de la tecnología de inversores. La exploración de convertidores de potencia para la conversión DC-DC, como el convertidor Flyback y una variante de convertidor resonante, resalta los objetivos de esta disertación para mejorar la eficiencia de los sistemas fotovoltaicos. Un nuevo modelo promediado no lineal del convertidor Flyback, desarrollado como parte de esta investigación, facilita las simulaciones de los sistemas de potencia en tiempos extendidos sin incrementar la complejidad computacional. El análisis detallado del convertidor resonante destaca su idoneidad para optimizar el rendimiento del sistema fotovoltaico a través de algoritmos de Seguimiento del Punto de Máxima Potencia (MPPT) mientras se mantiene una alta eficiencia. Además, la disertación presenta dos diseños de inversores (DC-AC): el inversor Dual Buck (DB) y el inversor Full Bridge (FB). Estos diseños se analizan debido a su uso extendido y a su alta eficiencia cuando operan con conmutación unipolar. También se propone una técnica de conmutación innovadora para el inversor FB que aborda el problema de la distorsión en el cruce por cero, ejemplificando el potencial de estas tecnologías de inversores para mantener los beneficios del diseño Dual Buck mientras se mejora la estabilidad de la red y la calidad de la energía. El análisis también muestra las ventajas del inversor FB sobre el DB en cuanto a las funcionalidades de soporte a la red. Integrando las etapas DC-DC y DC-AC, la disertación culmina en un diseño integral de microinversor. Esta integración, detallada a través de técnicas de control y un análisis de conmutación en cuatro cuadrantes para la inyección de potencia reactiva, confirma la capacidad del microinversor para respaldar la estabilidad de la red. Los modelos teóricos y las estrategias de control propuestas son validadas a través de resultados de simulación y configuraciones experimentales, lo que confirma la aplicabilidad práctica de los hallazgos de la investigación. De este modo, esta disertación contribuye al campo de la energía renovable al avanzar en la comprensión y las capacidades de los microinversores, no solo como convertidores de energía eficientes, sino también como componentes clave para garantizar la estabilidad y la fiabilidad de las redes energéticas. La investigación también presenta conceptos de diseño y control que contribuyen a la construcción de microinversores robustos basados en convertidores de potencia.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaElectrónica de potenciaspa
dc.description.sponsorshipEl proyecto de investigación fue financiado por la Beca de Doctorados Nacionales 785, otorgada por Minciencias (Ministerio de Ciencia, Tecnología e Innovación de Colombia), en el marco de la convocatoria nacional para formación de alto nivel.spa
dc.format.extentxiv, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88350
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesQ. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, ‘‘The renewable energy role in the global energy transformations,’’ Renewable Energy Focus, vol. 48, p. 100545, 2024.spa
dc.relation.referencesS. Tabassum, T. Rahman, A. U. Islam, S. Rahman, D. R. Dipta, S. Roy, N. Mohammad, N. Nawar, and E. Hossain, ‘‘Solar energy in the united states: Development, challenges and future prospects,’’ Energies, vol. 14, no. 23, p. 8142, 2021.spa
dc.relation.referencesI. Mehedi, Z. Salam, M. Ramli, V. Chin, H. Bassi, M. Rawa, and M. Abdullah, ‘‘Critical evaluation and review of partial shading mitigation methods for grid-connected pv system using hardware solutions: The module-level and array-level approaches,’’ Renewable and Sustainable Energy Reviews, vol. 146, p. 111138, 2021.spa
dc.relation.referencesS. Tabet, R. Ihaddadene, B. Guerira, and N. Ihaddadene, ‘‘Impact of dust and degradation on the electrical properties of pv panels,’’ Journal of Renewable Energy and Environment, vol. 10, no. 4, pp. 78--88, 2023.spa
dc.relation.referencesE. Pulli, E. Rozzi, and F. Bella, ‘‘Transparent photovoltaic technologies: Current trends towards upscaling,’’ Energy Conversion and Management, vol. 219, p. 112982, 2020.spa
dc.relation.referencesO. Almora, D. Baran, G. Bazan, C. Berger, C. I. Cabrera, K. Catchpole, S. Erten-Ela, F. Guo, J. Hauch, A. Ho-baillie, T. Jacobsson, R. A. J. Janssen, T. Kirchartz, N. Kopidakis, Y. Li, M. Loi, R. Lunt, X. Mathew, M. McGehee, J. Min, D. Mitzi, M. Nazeeruddin, J. Nelson, A. Nogueira, U. Paetzold, N. Park, B. P. Rand, U. Rau, H. Snaith, E. Unger, L. Vaillant-Roca, H. Yip, and C. Brabec, ‘‘Device performance of emerging photovoltaic materials (version 1),’’ Advanced Energy Materials, vol. 11, 2020.spa
dc.relation.referencesS. B. Kang, B. Salimzhanov, W. Park, M. H. Jeong, J. Kim, and K. Choi, ‘‘Flexible and colorful transparent silicon photovoltaics with unprecedented flexibility,’’ Advanced Functional Materials, vol. 32, 2021.spa
dc.relation.referencesM. Afzal, J. Li, W. Amin, Q. Huang, K. Umer, S. A. Ahmad, F. Ahmad, and A. Raza, ‘‘Role of blockchain technology in transactive energy market: A review,’’ Sustainable Energy Technologies and Assessments, vol. 53, p. 102646, 2022.spa
dc.relation.referencesF. Obeidat, ‘‘A comprehensive review of future photovoltaic systems,’’ Solar Energy, vol. 163, no. July 2017, pp. 545--551, 2018.spa
dc.relation.referencesM. Obi and R. Bass, ‘‘Trends and challenges of grid-connected photovoltaic systems – A review,’’ Renewable and Sustainable Energy Reviews, vol. 58, pp. 1082--1094, 5 2016.spa
dc.relation.referencesR. Maltione, V. G. Marcos Dos Reis, D. I. Narvaez, M. G. Villalva, L. C. Kretly, M. V. G. Reis, D. I. Narvaez, M. G. Villalva, and L. C. Kretly, ‘‘Small size inverters: Development challenges for PV, renewable energy applications, as Well IoT, EMC, lightning and robustness tradeoffs,’’ 2018 13th IEEE International Conference on Industry Applications, INDUSCON 2018 - Proceedings, pp. 1150--1157, 2019.spa
dc.relation.referencesW. Zhang, PhD Thesis Control of Grid Connected Power Converters with Grid Support Functionalities Weiyi Zhang. PhD thesis, 2017.spa
dc.relation.referencesB. Liu, M. Su, J. Yang, D. Song, D. He, and S. Song, ‘‘Combined reactive power injection modulation and grid current distortion improvement approach for h6 transformer-less photovoltaic inverter,’’ IEEE Transactions on Energy Conversion, vol. 32, pp. 1456--1467, 12 2017.spa
dc.relation.referencesA. Águila Téllez, G. López, I. Isaac, and J. W. González, ‘‘Optimal reactive power compensation in electrical distribution systems with distributed resources. Review.,’’ Heliyon, vol. 4, p. e00746, 8 2018.spa
dc.relation.referencesM. G. Alves, G. A. Melo, C. A. Canesin, and M. A. De Brito, ‘‘Photovoltaic micro-grid for GD with active and reactive power injection control for connected and islanded operation,’’ SBSE 2018 - 7th Brazilian Electrical Systems Symposium, pp. 1--6, 2018spa
dc.relation.referencesP. Monica and M. Kowsalya, ‘‘Control strategies of parallel operated inverters in renewable energy application: A review,’’ Renewable and Sustainable Energy Reviews, vol. 65, pp. 885--901, 2016.spa
dc.relation.referencesU. Tamrakar, D. Shrestha, M. Maharjan, B. Bhattarai, T. Hansen, and R. Tonkoski, ‘‘Virtual Inertia: Current Trends and Future Directions,’’ Applied Sciences, vol. 7, no. 7, p. 654, 2017.spa
dc.relation.referencesH. P. Ikkurti and S. Saha, ‘‘A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV),’’ Renewable and Sustainable Energy Reviews, vol. 47, pp. 997--1006, 2015.spa
dc.relation.referencesR. Dogga and M. K. Pathak, ‘‘Recent trends in solar PV inverter topologies,’’ Solar Energy, vol. 183, pp. 57--73, 5 2019.spa
dc.relation.referencesD. Kolantla, S. Mikkili, S. R. Pendem, and A. A. Desai, ‘‘Critical review on various inverter topologies for pv system architectures,’’ IET Renewable Power Generation, vol. 14, no. 17, pp. 3418--3438, 2020.spa
dc.relation.referencesI. Vairavasundaram, V. Varadarajan, P. J. Pavankumar, R. K. Kanagavel, L. Ravi, and S. Vairavasundaram, ‘‘A review on small power rating pv inverter topologies and smart pv inverters,’’ Electronics, vol. 10, no. 11, p. 1296, 2021.spa
dc.relation.referencesJ. L. de Souza Silva, H. S. Moreira, M. V. G. dos Reis, T. A. dos Santos Barros, and M. G. Villalva, ‘‘Theoretical andbehavioral analysis of power optimizers for grid-connected photovoltaic systems,’’ Energy Reports, vol. 8, pp. 10154--10167, 2022.spa
dc.relation.referencesY. S. Kim and R. Winston, ‘‘Power conversion in concentrating photovoltaic systems: central, string, and micro-inverters,’’ Progress in Photovoltaics: Research and Applications, vol. 22, no. 9, pp. 984--992, 2014.spa
dc.relation.referencesK. A. Horowitz, G. Nielson, A. Ramdas, D. W. Cunningham, Z. Majumdar, D. Feldman, R. Fu, and B. Sigrin, ‘‘The effect of photovoltaic module efficiency on installed system costs and markets in residential rooftop installations in the united states,’’ tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States); Nielson . . . , 2020.spa
dc.relation.referencesM. Afridi, S. Tatapudi, J. Flicker, D. Srinivasan, and G. Tamizhmani, ‘‘Reliability of microinverters for photovoltaic systems: High-temperature accelerated testing with fixed and cyclic power stresses,’’ Energies, vol. 16, no. 18, p. 6511, 2023.spa
dc.relation.referencesR. Panigrahi, S. K. Mishra, S. C. Srivastava, A. K. Srivastava, and N. N. Schulz, ‘‘Grid integration of small-scale photovoltaic systems in secondary distribution network—a review,’’ IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 3178--3195, 2020.spa
dc.relation.referencesM. Kühnbach, A. Bekk, and A. Weidlich, ‘‘Towards improved prosumer participation: Electricity trading in local markets,’’ Energy, vol. 239, p. 122445, 2022spa
dc.relation.referencesD. Burmester, R. Rayudu, W. Seah, and D. Akinyele, ‘‘A review of nanogrid topologies and technologies,’’ Renewable and Sustainable Energy Reviews, vol. 67, pp. 760--775, 2017.spa
dc.relation.referencesA. S. Mundada, E. W. Prehoda, and J. M. Pearce, ‘‘U.S. market for solar photovoltaic plug-and-play systems,’’ Renewable Energy, vol. 103, pp. 255--264, 2017.spa
dc.relation.referencesA. S. Mundada, Y. Nilsiam, and J. M. Pearce, ‘‘A review of technical requirements for plug-and-play solar photovoltaic microinverter systems in the United States,’’ Solar Energy, vol. 135, pp. 455--470, 2016.spa
dc.relation.referencesA. Anzalchi and A. Sarwat, ‘‘Overview of technical specifications for grid-connected photovoltaic systems,’’ Energy Conversion and Management, vol. 152, no. September, pp. 312--327, 2017.spa
dc.relation.referencesK. Alluhaybi and I. Batarseh, ‘‘Review and Comparison of Single-Phase Grid-Tied Photovoltaic Microinverters,’’ 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, vol. PP, no. d, pp. 7101--7108, 2018.spa
dc.relation.referencesP. Hacke, S. Lokanath, P. Williams, A. Vasan, P. Sochor, G. S. TamizhMani, H. Shinohara, and S. Kurtz, ‘‘A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols,’’ Renewable and Sustainable Energy Reviews, vol. 82, no. July 2017, pp. 1097--1112, 2018.spa
dc.relation.referencesK. Alluhaybi, I. Batarseh, H. Hu, and X. Chen, ‘‘Comprehensive Review and Comparison of Single-Phase Grid-Tied Photovoltaic Microinverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, no. d,pp. 1--1, 2019.spa
dc.relation.referencesR. Hasan, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, ‘‘Grid-connected isolated PV microinverters: A review,’’ Renewable and Sustainable Energy Reviews, vol. 67, pp. 1065--1080, 2017.spa
dc.relation.referencesO. Çelik, A. Teke, and A. Tan, ‘‘Overview of micro-inverters as a challenging technology in photovoltaic applications,’’ Renewable and Sustainable Energy Reviews, vol. 82, no. May 2017, pp. 3191--3206, 2018.spa
dc.relation.referencesE. Ercelebi and A. A. Shikhan, ‘‘Implementation and Design of Advanced DC/AC Inverter for Renewable Energy,’’ International Journal of Electrical Energy, vol. 3, no. 1, pp. 32--36, 2015.spa
dc.relation.referencesH. A. Sher and K. E. Addoweesh, ‘‘Micro-inverters - Promising solutions in solar photovoltaics,’’ Energy for Sustainable Development, vol. 16, no. 4, pp. 389--400, 2012.spa
dc.relation.referencesK. Alluhaybi, I. Batarseh, and H. Hu, ‘‘Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1310--1329, 2019.spa
dc.relation.referencesY. Yang, K. A. Kim, F. Blaabjerg, and A. Sangwongwanich, Advances in grid-connected photovoltaic power conversion systems. Woodhead Publishing, 2018.spa
dc.relation.referencesC. Abraham, A. Rajan, I. Issac, P. Paul, and A. Babu, ‘‘a Switched High Gain Push Pull Quadrupler Dc-Dc Converter,’’ TENCON 2018 - 2018 IEEE Region 10 Conference, no. October, pp. 399--403, 2018.spa
dc.relation.referencesA. A. Khan, H. Cha, and J. S. J. Lai, ‘‘Cascaded Dual Buck Inverter with Reduced Number of Inductors,’’ IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 2847--2856, 2018.spa
dc.relation.referencesS. Manna, D. K. Singh, A. K. Akella, H. Kotb, K. M. AboRas, H. M. Zawbaa, and S. Kamel, ‘‘Design and implementation of a new adaptive mppt controller for solar pv systems,’’ Energy Reports, vol. 9, pp. 1818--1829, 2023.spa
dc.relation.referencesC. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez-Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, ‘‘Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: A review,’’ Micromachines, vol. 12, no. 10, p. 1260, 2021.spa
dc.relation.referencesS. A. Sarang, M. A. Raza, M. Panhwar, M. Khan, G. Abbas, E. Touti, A. Altamimi, and A. A. Wijaya, ‘‘Maximizing solar power generation through conventional and digital mppt techniques: A comparative analysis,’’ Scientific Reports, vol. 14, p. 8944, 2024.spa
dc.relation.referencesT. Lodh, N. Pragallapati, and V. Agarwal, ‘‘An improved control scheme for interleaved flyback converter based micro-inverter to achieve high efficiency,’’ 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, pp. 1--6, 2017.spa
dc.relation.referencesJ. Kan, Y. Wu, Y. Tang, S. Xie, and L. Jiang, ‘‘Hybrid control scheme for photovoltaic microinverter with adaptive inductor,’’ IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8762--8774, 2019.spa
dc.relation.referencesA. Allehyani and P. Enjeti, ‘‘A New Modular Micro-inverter with Sinusoidal Output Voltage Using GaN Switches for PV Modules,’’ 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2018, pp. 1--6, 2018.spa
dc.relation.referencesM. Premkumar, K. Karthick, and R. Sowmya, ‘‘A review on solar PV based grid connected microinverter control schemes and topologies,’’ International Journal of Renewable Energy Development, vol. 7, no. 2, pp. 171--182, 2018.spa
dc.relation.referencesD. Meneses, O. Garcia, P. Alou, J. A. Oliver, and J. A. Cobos, ‘‘Grid-connected forward microinverter with primary-parallel secondary-series transformer,’’ IEEE transactions on power electronics, vol. 30, no. 9, pp. 4819--4830, 2014.spa
dc.relation.referencesY. Levron and R. W. Erickson, ‘‘High weighted efficiency in single-phase solar inverters by a variable-frequency peak current controller,’’ IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 248--257, 2015.spa
dc.relation.referencesM. Khoshlessan, B. Asaei, and B. Farhangi, ‘‘Analysis of fly-back pv micro-inverter and optimizing control system using finite gradient descent method,’’ in 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), pp. 287--292, IEEE, 2015.spa
dc.relation.referencesR. Attanasio, F. Gennaro, and G. Scuderi, ‘‘A grid tie micro inverter with reactive power control capability,’’ AEIT Annual Conference 2013: Innovation and Scientific and Technical Culture for Development, AEIT 2013 - Selected Proceedings Papers, pp. 5--10, 2013.spa
dc.relation.referencesM. Harfman-Todorovic, F. Tao, M. Agamy, D. Dong, X. Liu, L. Garces, R. Zhou, E. Delgado, D. Marabell, C. Stephens, and R. Steigerwald, ‘‘A high efficiency PV micro-inverter with grid support functions,’’ 2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014, pp. 4244--4250, 2014.spa
dc.relation.referencesE. Fonkwe, J. Kirtley, and J. Elizondo, ‘‘Flyback micro-inverter with reactive power support capability,’’ 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics, COMPEL 2016, pp. 1--8, 2016.spa
dc.relation.referencesG. H. Min, K. H. Lee, J. I. Ha, and M. H. Kim, ‘‘Design and Control of Single-Phase Grid-Connected Photovoltaic Microinverter with Reactive Power Support Capability,’’ 2018 International Power Electronics Conference, IPEC-Niigata - ECCE Asia 2018, pp. 2500--2504, 2018.spa
dc.relation.referencesO. Gagrica, P. H. Nguyen, W. L. Kling, and T. Uhl, ‘‘Microinverter Curtailment Strategy for Increasing Photovoltaic Penetration in Low-Voltage Networks,’’ IEEE Transactions on Sustainable Energy, vol. 6, no. 2, pp. 369--379, 2015.spa
dc.relation.referencesA. Elrayyah and Y. Sozer, ‘‘Low complexity structure and control for microinverters with reactive power support capability,’’ 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, pp. 4557--4562, 2015.spa
dc.relation.referencesI. Ndiaye, X. Wu, and M. Agamy, ‘‘Impact of micro-inverter reactive power support capability in high penetration residential PV networks,’’ 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, pp. 1--6, 2015.spa
dc.relation.referencesE. Hleihel, M. Fadel, and H. Y. Kanaan, ‘‘Simulation of an islanded dc microgrid using instantaneous and average modeling approaches,’’ in ELECTRIMACS 2019: Selected Papers-Volume 1, pp. 193--207, Springer, 2020.spa
dc.relation.referencesE. P. Soares-Ramos, L. De Oliveira-Assís, R. Sarrias-Mena, P. García-Triviño, C. A. García-Vázquez, and L. M. Fernandez- Ramirez, ‘‘Averaged dynamic modeling and control of a quasi-z-source inverter for wind power applications,’’ IEEE Access, vol. 9, pp. 114348--114358, 2021.spa
dc.relation.referencesP. S. Hosseinian, S. Ebrahimi, and J. Jatskevich, ‘‘Detailed parametric modeling of ac--dc converters for emt simulators,’’ IEEE Open Journal of Power Electronics, 2023.spa
dc.relation.referencesA. Reindl, A. Lang, M. Niemetz, and H. Meier, ‘‘Switching and averaging models of a bidirectional, half-bridge based dc-dc converter with load distribution,’’ in Modelica Conferences, pp. 683--692, 2023.spa
dc.relation.referencesD. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, and G. C. Verghese, ‘‘Modeling and simulation of power electronic converters,’’ Proceedings of the IEEE, vol. 89, no. 6, pp. 898--912, 2001.spa
dc.relation.referencesS. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. Martinez, and A. Ramirez, ‘‘Definitions and applications of dynamic average models for analysis of power systems,’’ IEEE Transactions on power delivery, vol. 25, no. 4, pp. 2655--2669, 2010.spa
dc.relation.referencesJ. Aravena, D. Carrasco, M. Diaz, M. Uriarte, F. Rojas, R. Cardenas, and J. C. Travieso, ‘‘Design and implementation of a low-cost real-time control platform for power electronics applications,’’ Energies, vol. 13, no. 6, p. 1527, 2020.spa
dc.relation.referencesSTMicroelectronics, ‘‘Integrated development environment for stm32,’’ 2020. Octover,2024.spa
dc.relation.referencesM. A. Mehiris, H. E. Mansour, B. Talbi, I. Messaoudene, and A. Krama, ‘‘Hil co-simulation of long-horizon finite control set model predictive control for lcl filtered grid-connected inverter using fpga,’’ in 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pp. 1--6, IEEE, 2024.spa
dc.relation.referencesT. E. Rao and S. Elango, ‘‘Implementation of fpga based mppt techniques for grid-connected pv system.,’’ Intelligent Automation & Soft Computing, vol. 35, no. 2, 2023.spa
dc.relation.referencesL. A. G. Rodriguez and J. C. Balda, ‘‘A comparison of isolated dc-dc converters for microinverter applications,’’ in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2084--2091, IEEE, 2013.spa
dc.relation.referencesS. Chatterjee, P. Kumar, and S. Chatterjee, ‘‘A techno-commercial review on grid connected photovoltaic system,’’ Renewable and Sustainable Energy Reviews, vol. 81, no. March 2017, pp. 2371--2397, 2018.spa
dc.relation.referencesR. Teodorescu, M. Liserre, and P. Rodriguez, ‘‘Grid Converters for Photovoltaic and Wind Power Systems Copyright Wiley 2011 Chapter 3 Chapter Grid Requirements for PV International Regulations,’’ 2011.spa
dc.relation.referencesE. Fonkwe, J. Kirtley, and J. Elizondo, ‘‘Flyback Micro-inverter with Reactive Power Support Capability,’’ 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1--8, 2016.spa
dc.relation.referencesD. W. Hart, Electrónica de Potencia. Prentice Hall, 1st ed., 2001.spa
dc.relation.referencesY. Zhou, J. Cao, and J. Zhao, ‘‘Small-signal oscillatory stability of a grid-connected pv power generation farm affected by the increasing number of inverters in daisy-chain connection,’’ Frontiers in Energy Research, vol. 10, p. 1022060, 2023.spa
dc.relation.referencesJ. Jana, H. Saha, and K. Das Bhattacharya, ‘‘A review of inverter topologies for single-phase grid-connected photovoltaic systems,’’ 5 2017.spa
dc.relation.referencesM. A. Hannan, M. S. Lipu, P. J. Ker, R. A. Begum, V. G. Agelidis, and F. Blaabjerg, ‘‘Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations,’’ 10 2019.spa
dc.relation.referencesW. Xiao, M. S. Moursi, O. Khan, and D. Infield, ‘‘Review of grid-tied converter topologies used in photovoltaic systems,’’ 2016.spa
dc.relation.referencesR. Hasan, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, ‘‘Grid-connected isolated PV microinverters: A review,’’ 1 2017.spa
dc.relation.referencesX. Zhao, L. Zhang, R. Born, and J. S. Lai, ‘‘A High-Efficiency Hybrid Resonant Converter with Wide-Input Regulation for Photovoltaic Applications,’’ IEEE Transactions on Industrial Electronics, vol. 64, pp. 3684--3695, 5 2017.spa
dc.relation.referencesD. R. Nayanasiri, D. M. Vilathgamuwa, and D. L. Maskell, ‘‘Optimized switching control strategy for current-fed half-bridge converter,’’ in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, pp. 2023--2028, Institute of Electrical and Electronics Engineers Inc., 2014.spa
dc.relation.referencesA. K. Rathore, ‘‘Current-fed DC/DC converters for high voltage gain and low voltage high current applications: An overview of topologies and modulation techniques,’’ in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1--6, 2016.spa
dc.relation.referencesV. R. Vakacharla, K. Gnana, P. Xuewei, B. L. Narasimaharaju, M. Bhukya, A. Banerjee, R. Sharma, and A. K. Rathore, ‘‘State-of-the-art power electronics systems for solar-to-grid integration,’’ Solar Energy, vol. 210, pp. 128--148, 11 2020.spa
dc.relation.referencesM. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, ‘‘Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,’’ IEEE Transactions on Power Electronics, vol. 32, pp. 9143--9178, 12 2017.spa
dc.relation.referencesA. Karafil, H. Ozbay, and S. Oncu, ‘‘Power control of resonant converter MPPT by pulse density modulation,’’ in 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), pp. 360--364, 2017.spa
dc.relation.referencesA. Karafil, H. Ozbay, and S. Oncu, ‘‘Design and Analysis of Single-Phase Grid-Tied Inverter with PDM MPPT-Controlled Converter,’’ IEEE Transactions on Power Electronics, vol. 35, pp. 4756--4766, 5 2020.spa
dc.relation.referencesO. Abdel-Rahim, N. Alamir, M. Orabi, and M. Ismeil, ‘‘Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters,’’ Journal of Power Electronics, vol. 20, pp. 279--291, 1 2020.spa
dc.relation.referencesO. Abdel-Rahim, N. Alamir, M. Orabi, and M. Ismeil, ‘‘Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters,’’ Journal of Power Electronics, vol. 20, pp. 279--291, 1 2020.spa
dc.relation.referencesO. Abdel-Rahim, N. Alamir, M. Abdelrahem, M. Orabi, R. Kennel, and M. A. Ismeil, ‘‘A phase-shift-modulated LLC-resonant micro-inverter based on fixed frequency predictive-MPPT,’’ Energies, vol. 13, no. 6, 2020.spa
dc.relation.referencesA. S. Tan and S. Iqbal, ‘‘Implementation of INC MPPT and CV Charging Using LLC Resonant Converter for Solar Streetlight System,’’ Journal of Circuits, Systems and Computers, vol. 27, 3 2018.spa
dc.relation.referencesY. Zhuang, F. Liu, X. Zhang, X. Diao, J. Jiang, and J. Sun, ‘‘Direct Frequency Control Based MPPT Algorithm of LLC Resonant Converter for Photovoltaic System,’’ in 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, pp. 3402--3406, Institute of Electrical and Electronics Engineers Inc., 9 2019.spa
dc.relation.referencesA. S. Ragab, N. H. Saad, and A. A. El-Sattar, ‘‘LLC resonant DC-DC converter for grid-connected PV system,’’ in Proceedings of ICCES 2017 12th International Conference on Computer Engineering and Systems, vol. 2018-January, pp. 279--285, Institute of Electrical and Electronics Engineers Inc., 1 2018.spa
dc.relation.referencesS. Motahhir, A. El Hammoumi, and A. El Ghzizal, ‘‘The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm,’’ 2 2020.spa
dc.relation.referencesM. H. Rashid, Power electronics handbook. Butterworth-Heinemann, 2017.spa
dc.relation.referencesC. Alexander and M. Sadiku, Fundamentals of Electric Circuits. McGraw-Hill, fifth edit ed., 2012.spa
dc.relation.referencesR. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, ‘‘Resonant Conversion,’’ in Fundamentals of Power Electronics, ch. Part VI, pp. 933--993, Cham, Switzerland: Springer International Publishing, third edit ed., 2020.spa
dc.relation.referencesG. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, Photovoltaic Sources Modeling. John Wiley & Sons, Ltd, 2 2017spa
dc.relation.referencesY. Wei, Q. Luo, and A. Mantooth, ‘‘Overview of Modulation Strategies for LLC Resonant Converter,’’ IEEE Transactions on Power Electronics, vol. 35, pp. 10423--10443, 10 2020.spa
dc.relation.referencesN. Dao, D. L. I. T. o. P. Electronics, and u. 2020, ‘‘High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles,’’ ieeexplore.ieee.org.spa
dc.relation.referencesM. Salem, V. Ramachandaramurthy, A. J. I. . . . , and u. 2020, ‘‘Three-phase series resonant DC-DC boost converter with double LLC resonant tanks and variable frequency control,’’ ieeexplore.ieee.org.spa
dc.relation.referencesZ. Yao, L. Xiao, and Y. Yan, ‘‘Dual-buck full-bridge inverter with hysteresis current control,’’ IEEE Transactions on Industrial Electronics, vol. 56, pp. 3153--3160, 2009.spa
dc.relation.referencesA. Khan and F. Blaabjerg, ‘‘Modified transformerless dual buck inverter with improved lifetime for PV applications,’’ IEEE International Reliability Physics Symposium Proceedings, vol. 2018-March, no. Dm, pp. 21--6, 2018.spa
dc.relation.referencesL. Zhou and F. Gao, ‘‘Dual buck inverter with series connected diodes and single inductor,’’ Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2016-May, no. c, pp. 2259--2263, 2016.spa
dc.relation.referencesF. Akbar, H. Cha, H. F. Ahmed, and A. A. Khan, ‘‘A Family of Single-Stage High-Gain Dual-Buck Split-Source Inverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, no. c, pp. 1--1, 2019.spa
dc.relation.referencesA. J. A Mirzaee, M Khosravi, ‘‘Design of a control system for dual buck inverters used in grid-connection applications,’’ International Conference on Knowledge-base engineering and innovation, 2015.spa
dc.relation.referencesB. Wang, L. Z. Yi, W. Bin, and A. Working, ‘‘Control study of Dual-Buck grid-connected inverter based on least squares algorithm,’’ Asia-Pacific Power and Energy Engineering Conference, APPEEC, pp. 0--3, 2011spa
dc.relation.referencesS. K. Gudey and R. Gupta, ‘‘Sliding mode control of dual-buck full-bridge inverter,’’ India International Conference on Power Electronics, IICPE, no. 1, pp. 1--6, 2012spa
dc.relation.referencesL. Wang, Y. Li, Q. Yan, and W. Dou, ‘‘Dual buck grid-connected inverter based on GaN devices,’’ 2016 Asian Conference on Energy, Power and Transportation Electrification, ACEPT 2016, no. 2014, pp. 1--6, 2017.spa
dc.relation.referencesM. BHARDWAJ and S. CHOUDHURY, ‘‘Digitally Controlled Solar Micro Inverter Design using C2000 Piccolo Microcontroller,’’ no. June, p. 56, 2014.spa
dc.relation.referencesC. Wang, Y. Zhou, J. Liu, F. Hong, B. Ji, and J. Wang, ‘‘Single Inductor Dual Buck Full-Bridge Inverter,’’ IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869--4877, 2015.spa
dc.relation.referencesM.-k. Yang, Y.-j. Kim, and W.-y. Choi, ‘‘High-Efficiency Dual-Buck Inverter Using Coupled Inductor,’’ vol. 24, no. 6, pp. 396--405, 2019.spa
dc.relation.referencesC. N. M. Ho, V. S. P. Cheung, and H. S. H. Chung, ‘‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,’’ 2009 IEEE Energy Conversion Congress and Exposition, ECCE 2009, pp. 2949--2956, 2009.spa
dc.relation.referencesD. González Montoya, P. A. Ortiz Valencia, and C. A. Ramos-Paja, ‘‘Fixed-frequency implementation of sliding-mode controllers for photovoltaic systems,’’ International Journal of Energy and Environmental Engineering, vol. 10, no. 3, pp. 287--305, 2019spa
dc.relation.referencesC. N. M. Ho, V. S. Cheung, and H. S. H. Chung, ‘‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,’’ IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2484--2495, 2009.spa
dc.relation.referencesS. Gautam and R. Gupta, ‘‘Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters,’’ IET Power Electronics, vol. 6, no. 4, pp. 683--692, 2013.spa
dc.relation.referencesX. Ruan, X. Wang Donghua Pan, D. Yang Weiwei Li, and C. Bao, CPSS Power Electronics Series Control Techniques for LCL-Type Grid-Connected Inverters.spa
dc.relation.referencesI. Villanueva, N. Vázquez, J. Vaquero, C. Hernández, H. López, and R. Osorio, ‘‘L vs. LCL Filter for Photovoltaic Grid-Connected Inverter: A Reliability Study,’’ International Journal of Photoenergy, vol. 2020, 2020.spa
dc.relation.referencesM. A. Bolaños, G. Osorio, J. D. Bastidas-Rodriguez, and E. Revelo-Fuelagan, ‘‘Computational Model of a Two-stage Microinverter With Flyback Active Clamp and Dual Buck,’’ 2019.spa
dc.relation.referencesJ. K. Singh and R. K. Behera, ‘‘Hysteresis Current Controllers for Grid Connected Inverter: Review and Experimental Implementation,’’ Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, no. December, pp. 1--6, 2018.spa
dc.relation.referencesB. Sudhakar and G. V. E. S. Kumar, ‘‘A unipolar fixed hysteresis band based sliding mode control of Single Phase Grid Connected LCL Filtered Voltage Source Inverter,’’ IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2016, vol. 2016-Janua, pp. 1--5, 2017.spa
dc.relation.referencesJ. A. Suul, K. Ljøkelsøy, T. Midtsund, and T. Undeland, ‘‘Synchronous reference frame hysteresis current control for grid converter applications,’’ IEEE Transactions on Industry Applications, vol. 47, no. 5, pp. 2183--2194, 2011.spa
dc.relation.referencesX. Dai and Q. Chao, ‘‘The research of photovoltaic grid-connected inverter based on adaptive current hysteresis band control scheme,’’ 1st International Conference on Sustainable Power Generation and Supply, SUPERGEN ’09, 2009.spa
dc.relation.referencesY. M. Alsmadi, V. Utkin, M. Haj-Ahmed, L. Xu, and A. Y. Abdelaziz, ‘‘Sliding-mode control of power converters: AC/DC converters & DC/AC inverters,’’ International Journal of Control, vol. 91, no. 11, pp. 2573--2587, 2018.spa
dc.relation.referencesV. Utkin, ‘‘Design of feedback systems with uncertainties, based on equivalent control,’’ 27th Mediterranean Conference on Control and Automation, MED 2019 - Proceedings, pp. 100--105, 2019.spa
dc.relation.referencesV. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-mechanical systems, second edition. 2009spa
dc.relation.referencesZ. Yao and L. Xiao, ‘‘Two-switch dual-buck grid-connected inverter with hysteresis current control,’’ IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3310--3318, 2012.spa
dc.relation.referencesM. Ciobotaru, R. Teodorescu, and F. Blaabjerg, ‘‘A new single-phase PLL structure based on second order generalized integrator,’’ PESC Record - IEEE Annual Power Electronics Specialists Conference, pp. 1--6, 2006.spa
dc.relation.referencesA. Mu, ‘‘Electric rule no.21,’’ Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689--1699, 2019spa
dc.relation.referencesE. Kabalci, ‘‘Review on novel single-phase grid-connected solar inverters: Circuits and control methods,’’ Solar Energy, vol. 196.spa
dc.relation.referencesF. Hong, J. Liu, B. Ji, Y. Zhou, J. Wang, and C. Wang, ‘‘Single inductor dual buck full-bridge inverter,’’ IEEE Transactions on Industrial Electronics, vol. 62, pp. 4869--4877, 8 2015.spa
dc.relation.referencesM. Y. A. Khan, H. Liu, Z. Yang, and X. Yuan, ‘‘A comprehensive review on grid connected photovoltaic inverters, their modulation techniques, and control strategies,’’ Energies, vol. 13, 8 2020.spa
dc.relation.referencesT. Brinker, L. Hoffmann, and J. Friebe, ‘‘Comparison of modulation techniques for a single-phase full-bridge photovoltaic micro-inverter considering reactive power capability,’’ pp. 841--846, Institute of Electrical and Electronics Engineers Inc., 2021.spa
dc.relation.referencesY. Tang, C. Zhang, Y. Guo, H. Sun, and L. Jiang, ‘‘Optimization of Zero-Crossing Distortion for Unipolar BCM Grid-Tied Inverter,’’ IEEE J. Emerg. Sel. Top. Power Electron., vol. 2023, pp. 3680--3691.spa
dc.relation.referencesT. F. Wu, C. L. Kuo, K. H. Sun, and H. C. Hsieh, ‘‘Combined unipolar and bipolar pwm for current distortion improvement during power compensation,’’ IEEE Transactions on Power Electronics, vol. 29, pp. 1702--1709, 2014.spa
dc.relation.referencesZ. Tang, M. Su, Y. Sun, B. Cheng, Y. Yang, F. Blaabjerg, and L. Wang, ‘‘Hybrid up-pwm scheme for heric inverter to improve power quality and efficiency,’’ IEEE Transactions on Power Electronics, vol. 34, pp. 4292--4303, 5 2019.spa
dc.relation.referencesB. Zeng, H. B. Xu, K. Chen, and J. G. Chen, ‘‘Suppression of zero-crossing distortion for single-phase grid-connected photovoltaic inverters with unipolar modulation,’’ Review of Scientific Instruments, vol. 84, 10 2013.spa
dc.relation.referencesF. Wu, B. Sun, K. Zhao, and L. Sun, ‘‘Analysis and Solution of Current Zero-Crossing Distortion With Unipolar Hysteresis Current Control in Grid-Connected Inverter,’’ IEEE Trans. Ind. Electron., vol. 2013, pp. 4450--4457.spa
dc.relation.referencesF. Wu, X. Li, and J. Duan, ‘‘Improved Elimination Scheme of Current Zero-Crossing Distortion in Unipolar Hysteresis Current Controlled Grid-Connected Inverter,’’ IEEE Trans. Ind. Inform., vol. 2015, pp. 1111--1118.spa
dc.relation.referencesR. Xie, Q. Zeng, F. Yang, B. Lin, O. Xu, and Y. He, ‘‘Decoupled Unipolar Hysteresis Current Control for Single-Phase Grid-Tied Inverter Without Current Zero-Crossing Distortion,’’ IEEE Access, vol. 2024, pp. 21453--21463.spa
dc.relation.referencesR. Shimada, C. Huang, T. Mannen, and T. Isobe, ‘‘Unipolar/Bipolar Mixed Modulation for Discontinuous Current Mode Single-Phase Grid-tied Inverter with Off-time Discrete Control,’’ in Proceedings of the 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 16--19 November 2021; IEEE: Piscataway, NJ, USA, 2021, pp. 1--6, 2021.spa
dc.relation.referencesX. Chen and Q. Li, ‘‘Hybrid Modulation Method for Single Phase Full Bridge CRM Inverter to Improve Reactive Power Capability,’’ in Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25--29 February 2024; IEEE: Piscataway, NJ, USA, 2024, pp. 2314--2319, 2024.spa
dc.relation.referencesJ. C. T. Lai, S. C. R. Yeung, and H. S. H. Chung, ‘‘Achieving Fast Dynamic Response and Output Filter Condition Monitoring in Hybrid PWM Inverters Using a Low-Computational State Trajectory Prediction Algorithm Incorporating With Reduced-Order Switching Surfaces,’’ IEEE Trans. Power Electron., vol. 2024, pp. 6941--6960.spa
dc.relation.referencesJ. Chen, C. Wu, J. Li, Z. Shao, J. Wang, and Y. Wang, ‘‘A Low Distortion Collaborative Modulation for Zero-Crossing Distortion Pseudo DC Link Single-Stage Isolated Inverter,’’ IEEE Trans. Power Electron., vol. 2024, pp. 9132--9137.spa
dc.relation.referencesR. Yao, C. Wei, and R. Li, ‘‘A Quasi-Trapezoidal Modulation Method with Zero-Voltage Switching for Single-Phase Inverters,’’ in Proceedings of the 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 10--13 November 2023; IEEE: Piscataway, NJ, USA, 2023, pp. 2088--2092, 2023.spa
dc.relation.referencesL. Lin, J. Zhang, and S. Shao, ‘‘A Variable Switching Frequency Multimode Control Scheme for Single-Phase Grid-Tied Multilevel PV Microinverters,’’ IEEE Trans. Power Electron., vol. 2023, pp. 11543--11555.spa
dc.relation.referencesH. Zhang, X. Li, S. Xiao, and R. S. Balog, ‘‘Hybrid hysteresis current control and low-frequency current harmonics mitigation based on proportional resonant in dc/ac inverter,’’ IET Power Electron., vol. 2018, pp. 2093--2101.spa
dc.relation.referencesX. Li, Y. Liu, and H. Zhang, ‘‘Hybrid-Modulation Hysteresis Scheme Based Decoupled Power Control of Grid-Connected Inverter,’’ IEEE J. Emerg. Sel. Top. Power Electron., vol. 2023, pp. 276--287.spa
dc.relation.referencesX. Zheng, L. Zhang, X. Liu, Y. He, J. Shi, and C. Wang, ‘‘Half-cycle control method of the bidirectional three-phase dual-buck inverter without zero-crossing distortion,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, pp. 2088--2097, 4 2021.spa
dc.relation.referencesK. Sabi and D. Costinett, ‘‘Design and implementation of a bipolar-unipolar switched boundary current mode (BCM) Control GaN-Based single-phase inverter,’’ 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, pp. 6473--6480, 2019.spa
dc.relation.referencesY. Zhang, Y. Li, Y. Tian, and H. Zhao, ‘‘Optimization of boundary current mode control strategy for reducing zero-crossing distortion in a h-bridge inverter,’’ Institute of Electrical and Electronics Engineers Inc., 5 2021spa
dc.relation.referencesH. Kumar, S. Banerjee, and S. K. Mishra, ‘‘A Method to Compensate for the Distortion of the Output Voltage of an H-Bridge Inverter Under Sinusoidal Unipolar PWM,’’ in Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9--13 October 2022; IEEE: Piscataway, NJ, USA, 2022, pp. 1--7, 2022.spa
dc.relation.referencesJ. Haruna, N. Masubuchi, S. Iwase, and H. Funato, ‘‘Loss analysis and efficiency enhancing method for a unipolar hysteresis-controlled single-phase grid-connected inverter,’’ IEEJ Transactions on Electrical and Electronic Engineering, vol. 13, pp. 1182--1188, 8 2018.spa
dc.relation.referencesM. A. Bolaños-Navarrete, J. D. Bastidas-Rodríguez, and G. A. Osorio, ‘‘Hysteresis control for a grid connected dual-buck inverter,’’ Revista UIS Ingenierías, vol. 20, no. 1, pp. 1--10, 2020.spa
dc.relation.referencesIEEE Standards Association, ‘‘Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,’’ 2018. Accessed: 2025-03-24.spa
dc.relation.referencesInternational Electrotechnical Commission, ‘‘Iec 61727: Photovoltaic (pv) systems - characteristics of the utility interface,’’ 2004. Accessed: 2025-03-24.spa
dc.relation.referencesCENELEC, ‘‘En 50549: Requirements for generating plants to be connected in parallel with distribution networks,’’ 2019. Available via national standardization bodies.spa
dc.relation.referencesIEEE Standards Association, ‘‘Ieee recommended practice and requirements for harmonic control in electric power systems,’’ 2014. Accessed: 2025-03-24.spa
dc.relation.referencesInternational Electrotechnical Commission, ‘‘Iec 61000-3 series: Electromagnetic compatibility (emc) - limits,’’ various. Accessed: 2025-03-24.spa
dc.relation.referencesIEEE Standards Association, ‘‘Ieee standard conformance test procedures for equipment interconnecting distributed resources with electric power systems,’’ 2020. Accessed: 2025-03-24.spa
dc.relation.referencesInternational Electrotechnical Commission, ‘‘Iec 62116: Test procedure of islanding prevention measures for utilityinterconnected photovoltaic inverters,’’ 2014. Accessed: 2025-03-24.spa
dc.relation.referencesVDE Association for Electrical, Electronic Information Technologies, ‘‘Vde-ar-n 4105:2018-11: Generators connected to the low-voltage distribution network - technical requirements for the connection to and parallel operation with low-voltage distribution networks,’’ 2018. Accessed: 2025-03-24.spa
dc.relation.referencesUnderwriters Laboratories, ‘‘Ul 1741: Inverters, converters, controllers and interconnection system equipment for use with distributed energy resources,’’ 2021. Available at: https://www.shopulstandards.com.spa
dc.relation.referencesS. Roy, P. K. Sahu, S. Jena, and A. K. Acharya, ‘‘Modeling and control of dc/ac converters for photovoltaic grid-tie micro-inverter application,’’ Materials Today: Proceedings, vol. 39, pp. 2027--2036, 2021.spa
dc.relation.referencesG. Spiazzi, P. Mattavelli, A. Costabeber, and S. Member, ‘‘High Step-Up Ratio Flyback Converter With Active Clamp and Voltage Multiplier,’’ IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3205--3214, 2011.spa
dc.relation.referencesP. D. Assis, S. Jr, M. G. V. D, P. G. Barbosa, H. Antônio, C. Braga, J. R. G. D, E. R. D, A. A. Ferreira, P. De Assis Sobreira, M. G. Villalva, P. G. Barbosa, H. A. C. Braga, J. R. Gazoli, E. Ruppert, and A. A. Ferreira, ‘‘Comparative analysis of current and voltage-controlled photovoltaic Maximum Power Point tracking,’’ COBEP 2011 - 11th Brazilian Power Electronics Conference, pp. 858--863, 2011.spa
dc.relation.referencesZ. Yao, ‘‘Review of dual-buck-type single-phase grid-connected inverters,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4533--4545, 2020.spa
dc.relation.referencesD. S. Burbano-Benavides, O. D. Ortiz-Sotelo, J. Revelo-Fuelagán, and J. E. Candelo-Becerra, ‘‘Design of an on-grid microinverter control technique for managing active and reactive power in a microgrid,’’ Applied Sciences, vol. 11, no. 11, p. 4765, 2021.spa
dc.relation.referencesS. Han and Y. Cho, ‘‘Performance improvement of dual-buck inverter with mitigating reverse recovery characteristics and supporting reactive power,’’ IEEE Access, vol. 10, pp. 36802--36812, 2022.spa
dc.relation.referencesA. Bidram and A. Davoudi, ‘‘Hierarchical structure of microgrids control system,’’ IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963--1976, 2012.spa
dc.relation.referencesM. A. Hossain, H. R. Pota, W. Issa, and M. J. Hossain, ‘‘Overview of ac microgrid controls with inverter-interfaced generations,’’ Energies, vol. 10, no. 9, p. 1300, 2017.spa
dc.relation.referencesZ. Ahmad and S. Singh, ‘‘Improved modulation strategy for single phase grid connected transformerless pv inverter topologies with reactive power generation capability,’’ Solar Energy, vol. 163, pp. 356--375, 2018.spa
dc.relation.referencesH. Yin, T. Lang, X. Li, S. Du, and H. Hu, ‘‘A hybrid boundary conduction modulation for a single-phase h-bridge inverter to alleviate zero-crossing distortion and enable reactive power capability,’’ IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8311--8323, 2020.spa
dc.relation.referencesM. A. Bolaños-Navarrete, J. D. Bastidas-Rodríguez, and G. Osorio, ‘‘A hybrid commutation technique for reducing zero-crossing distortion in a sliding mode controller for single-phase grid-tied full-bridge inverters,’’ Energies, vol. 17, no. 15, p. 3671, 2024.spa
dc.relation.referencesA. Ramos-Paja, A. J. Saavedra-Montes, and J. D. Bastidas-Rodríguez, ‘‘Control en cuatro cuadrantes de un inversor de puente completo conectado a la red eléctrica,’’ Revista UIS Ingenierías, vol. 19, no. 1, pp. 117--129, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.proposalMicroinvertereng
dc.subject.proposalPhotovoltaiceng
dc.subject.proposalGrid supporteng
dc.subject.proposalReactive power injectioneng
dc.subject.proposalMicroinversorspa
dc.subject.proposalFotovoltaicospa
dc.subject.proposalSoporte a redspa
dc.subject.proposalInyección de energía reactivaspa
dc.titleDesign of a photovoltaic microinverter for active and reactive power injectioneng
dc.title.translatedDiseño de microinversores fotovoltaicos para inyección de potencia activa y reactivaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088651128.2025.pdf
Tamaño:
32.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: