Variación de las concentraciones séricas de alfa-fetoproteína en yeguas criollas colombianas durante el último tercio de la gestación

dc.contributor.advisorLozano Marquez, Harvey
dc.contributor.authorReina Rueda, Karen Johanna
dc.contributor.researchgroupReproducción Animal y Salud de Hatospa
dc.date.accessioned2023-02-01T21:49:21Z
dc.date.available2023-02-01T21:49:21Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa evaluación de la gestación por medio de biomarcadores y ultrasonografía para detectar patologías fetales y placentarias son herramientas importantes para el diagnóstico oportuno de patologías del feto y la placenta. La Alfafetoproteína (AFP) es una glicoproteína producida por el hígado fetal y a través de la placenta llega a sangre periférica de la madre durante la gestación. Este biomarcador ha sido utilizado en medicina humana para detectar patologías fetales y placentarias. Los objetivos del estudio fueron determinar la variación de la concentración de Alfafetoproteína en yeguas de grupo racial criollo colombiano en la Sabana de Bogotá durante el último tercio de la gestación y asociar la variación sérica de Alfafetoproteína con los cambios ultrasonográficos de la placenta y feto, el tipo de parto y la sobrevivencia neonatal. Dentro de los materiales y métodos se utilizó una población de 21 yeguas gestantes a las cuales se les tomaron muestras de sangre de la vena yugular y un examen ultrasonográfico rectal y transabdominal, para evaluar la unión útero placentaria, la frecuencia cardiaca del feto, órbita fetal y el diámetro de la arteria aorta fetal a partir del séptimo mes de gestación hasta el parto. La concentración de Alfafetoproteína fue medida por un ensayo de ELISA para AFP especie: Equus caballus de USBiologycal®. Se analizaron los datos por medio de medidas repetidas en el tiempo, para evaluar los cambios mes a mes. La concentración de Alfafetoproteína presentó un aumento a medida que avanzó la gestación. No se encontraron diferencias estadísticamente significativas en su concentración en los meses de gestación evaluados, como tampoco una relación con los parámetros ultrasonográficos de feto y placenta. Los parámetros de viabilidad, el grosor útero placentario transabdominal y transrectal, el diámetro de la aorta y la órbita fetal aumentan a medida que avanza la gestación, a excepción de la frecuencia cardiaca la cual disminuye con el avance de la gestación. Se encontró un diámetro aórtico menor al reportado en razas de mayor tamaño, no se observó un efecto de la edad, el peso de la yegua, el sexo de la cría y el método de reproducción sobre los parámetros de viabilidad. Esto con el fin de brindar una nueva herramienta para la evaluación de viabilidad fetal y patologías de la placenta en el último tercio de la gestación. Estos parámetros de viabilidad fetal tomados de yeguas con gestaciones normales sirven de guía para evaluar clínicamente el desarrollo de la gestación en yeguas criollas colombianas. (Texto tomado de la fuente)spa
dc.description.abstractThe evaluation of pregnancy through biomarkers and ultrasonography to detect fetal and placental pathologies are important tools for the early diagnosis of fetal and placental pathologies in horses. Alphafetoprotein (AFP) is a glycoprotein produced by the fetal liver and reaches the mother's peripheral blood through the placenta during pregnancy. This biomarker has been used in human medicine to detect fetal and placental pathologies. The objectives of the study are to determine the variation of the concentration of AFP in mares of the Colombian Creole racial group in the Bogota savanna during the last third of gestation and associate the serum variation of AFP with the ultrasound changes of the placenta and fetus, type of delivery and neonatal survival. A population of n=21 pregnant mares was used, from which blood samples were taken from the jugular vein, and a rectal and transabdominal ultrasonographic examination, this was used to evaluate the uteroplacental union, fetal heart rate, fetal orbit, and the diameter of the fetal aortic artery from the seventh month of gestation until delivery; AFP concentration was measured by an ELISA assay for AFP species: Equus caballus from USBiologycal®; the data was analyzed using repeated measures over time to assess month to month changes. Although AFP concentration showed an increase as gestation progressed, no statistically significant differences were found in its concentration in the gestational months evaluated, and there was no relationship with the ultrasonographic parameters of the fetus and placenta. Furthermore, it was found that viability parameters increase as gestation progresses, except for heart rate, which decreases with advancing gestation. An aortic diameter smaller than reported in larger breeds was found. No effect of age, the weight of the mare, the sex of the foal and the method of reproduction was observed. This study seeks to provide a new tool for the evaluation of fetal viability and pathologies of the placenta in the last third of gestation and serve as a guide to clinically evaluate the development of pregnancy in Colombian Creole mareseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.methodsestudio prospectivo de investigaciónspa
dc.description.researchareaReproducción animalspa
dc.format.extentxv, 68 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83231
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAbd-Elnaeim, M., Leiser, R., Wilsher, S., & Allen, W. (2006). Structural and Haemovascular Aspects of Placental Growth Throughout Gestation in Young and Aged Mares. Placenta, 27(11–12), 1103–1113. https://doi.org/10.1016/j.placenta.2005.11.005spa
dc.relation.referencesAbdelwahid, Hind., Wahab, Babiker., Mahmoud, Mustafa., Abukonna, A., & Saeed Taha, E. A. (2018). Effects of gestational hypertension in the pulsatility index of the middle cerebral and umbilical artery, cerebro-placental ratio, and associated adverse perinatal outcomes. Journal of Radiation Research and Applied Sciences, 11(3), 195–203. https://doi.org/10.1016/j.jrras.2018.02.001spa
dc.relation.referencesAbraham, M., & Bauquier, J. (2021). Causes of equine perinatal mortality. Veterinary Journal, 273, 105675. https://doi.org/10.1016/j.tvjl.2021.105675spa
dc.relation.referencesAgerholm, J. S., Klas, E. M., Damborg, P., Borel, N., Pedersen, H. G., & Christoffersen, M. (2021). A Diagnostic Survey of Aborted Equine Fetuses and Stillborn Premature Foals in Denmark. Frontiers in Veterinary Science, 8, 1–12. https://doi.org/10.3389/fvets.2021.740621spa
dc.relation.referencesAggarwal, B. (2000). Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB. Annals of the Rheumatic Diseases, 59(SUPPL. 1), 6–16. https://doi.org/10.1136/ard.59.suppl_1.i6spa
dc.relation.referencesAntczak, D. F. (2020). Immunological memory and tolerance at the maternal-fetal interface: Implications for reproductive management of mares. Theriogenology, 150, 432–436. https://doi.org/10.1016/j.theriogenology.2020.02.043spa
dc.relation.referencesAntczak, M., Cañete, P. F., Chen, Z., Belle, C., & Yu, D. (2022). Evolution of γ chain cytokines : mechanisms , methods and applications. https://doi.org/10.1016/j.csbj.2022.08.050spa
dc.relation.referencesBailey, C., Heitzman, J., Buchanan, C., Bare, C., Sper, R., Borst, L., Macpherson, M., Archibald, K., & Whitacre, M. (2012). B-mode and Doppler ultrasonography in pony mares with experimentally induced ascending placentitis. Equine Veterinary Journal, 43, 88–94. https://doi.org/10.1111/j.2042-3306.2012.00658spa
dc.relation.referencesBartkute, K., Balsyte, D., Wisser, J., & Kurmanavicius, J. (2017). Pregnancy outcomes regarding maternal serum AFP value in second trimester screening. Journal of Perinatal Medicine, 45(7), 817–820. https://doi.org/10.1515/jpm-2016-0101spa
dc.relation.referencesBazzano, M., Marchegiani, A., Troisi, A., McLean, A., & Laus, F. (2022). Serum Amyloid A as a Promising Biomarker in Domestic Animals’ Reproduction: Current Knowledge and Future Perspective. Animals, 12(5). https://doi.org/10.3390/ani12050589spa
dc.relation.referencesBeachler, T., Gracz, H., Long, N. M., Borst, L., Morgan, D., Nebel, A., Andrews, N., Koipillai, J., Frable, S., Bembenek, S., Ellis, K., Dollen, K. Von, Lyle, S., Gadsby, J., & Scott, C. (2019). Allantoic Metabolites , Progesterone , and Estradiol-17 b Remain Unchanged After Infection in an Experimental Model of Equine Ascending Placentitis. Journal of Equine Veterinary Science, 73, 95–105. https://doi.org/10.1016/j.jevs.2018.11.014spa
dc.relation.referencesBecsek, A., Tzanidakis, N., Blanco, M., & Bollwein, H. (2019). Transrectal three-dimensional fetal volumetry and crown-rump length measurement during early gestation in mares: Intra- and inter-observer reliability and agreement. Theriogenology, 126, 266–271. https://doi.org/10.1016/j.theriogenology.2018.11.012spa
dc.relation.referencesBergstrand, C. G., & Czar, B. (1956). Demonstration of a new protein fraction in serum from the human fetus. Scandinavian Journal of Clinical and Laboratory Investigation, 8(2), 174. https://doi.org/10.3109/00365515609049266spa
dc.relation.referencesBremme, K., & Eneroth, P. (1983). Fetal sex dependent hormone levels in early pregnant women with elevated maternal serum alphafetoprotein. International Journal of Gynaecology and Obstetrics, 21, 451–457.spa
dc.relation.referencesBreukelman, S., Mulder, E. J. H., Oord, R. Van, Jonker, H., Van Der Weijden, B. C., & Taverne, M. A. M. (2006). Continuous fetal heart rate monitoring during late gestation in cattle by means of Doppler ultrasonography: Reference values obtained by computer-assisted analysis. Theriogenology, 65(3), 486–498. https://doi.org/10.1016/j.theriogenology.2005.05.046spa
dc.relation.referencesBucca, S. (2006). Diagnosis of the Compromised Equine Pregnancy. Veterinary Clinics Equine, 22, 749–761. https://doi.org/10.1016/j.cveq.2006.07.006spa
dc.relation.referencesBucca, S., Carli, A., & Fogarty, U. (2007). How to assess equine fetal viability by transrectal ultrasound evaluation of fetal peripheral pulses. AAEP Proceedings, 53, 335–338.spa
dc.relation.referencesBucca, S., de Oliveira, I., Cunanan, J., Vinardell, T., & Troedsson, M. (2020). Doppler indices of the equine fetal carotid artery throughout gestation. Theriogenology, 156, 196–204. https://doi.org/10.1016/j.theriogenology.2020.07.009spa
dc.relation.referencesBucca, S., Fogarty, U., Collins, A., & Small, V. (2005a). Assessment of feto-placental well-being in the mare from mid-gestation to term: Transrectal and transabdominal ultrasonographic features. Theriogenology, 64(3), 542–557. https://doi.org/10.1016/j.theriogenology.2005.05.011spa
dc.relation.referencesBuhimschi, I. A., & Buhimschi, C. S. (2012). Proteomics/diagnosis of chorioamnionitis and of relationships with the fetal exposome. Seminars in Fetal and Neonatal Medicine, 17(1), 36–45. https://doi.org/10.1016/j.siny.2011.10.002spa
dc.relation.referencesCampos, I. S., Souza, G. N. De, Pinna, A. E., & Ferreira, A. M. R. (2017). Theriogenology Transrectal ultrasonography for measuring of combined utero- placental thickness in pregnant Mangalarga Marchador mares. Theriogenology, 96, 142–144. https://doi.org/10.1016/j.theriogenology.2017.04.013spa
dc.relation.referencesCanisso, I., Ball, B., Cray, C., Squires, E., & Troedsson, M. (2015). Use of a qualitative horse-side test to measure serum amyloid a in mares with experimentally induced ascending placentitis. Journal of Equine Veterinary Science, 35(1), 54–59. https://doi.org/10.1016/j.jevs.2014.11.007spa
dc.relation.referencesCanisso, I., Ball, B., Cray, C., Williams, N., Scoggin, K., Davolli, G., Squires, E., & Troedsson, M. (2014). Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration. American Journal of Reproductive Immunology, 72(4), 376–385. https://doi.org/10.1111/aji.12278spa
dc.relation.referencesCanisso, I., Ball, B., Esteller-Vico, A., Williams, N., Squires, E., & Troedsson, M. (2017). Changes in maternal androgens and oestrogens in mares with experimentally-induced ascending placentitis. Equine Veterinary Journal, 49(2), 244–249. https://doi.org/10.1111/evj.12556spa
dc.relation.referencesCanisso, I., Ball, B., Scogging, K., Squires, E., Williams, N., & Troedsson, M. (2015). Alpha-fetoprotein is present in the fetal fluids and is increased in plasma of mares with experimentally induced ascending placentitis. Animal Reproduction, 154, 48–55. https://doi.org/10.7868/s0016794016050059spa
dc.relation.referencesCanisso, I., Loux, S., & Lima, F. (2020). Biomarkers for placental disease in mares. Theriogenology, 150, 302–307. https://doi.org/10.1016/j.theriogenology.2020.01.073spa
dc.relation.referencesCapobianchi, M. R., Uleri, E., Caglioti, C., & Dolei, A. (2015). Type I IFN family members: Similarity, differences and interaction. Cytokine and Growth Factor Reviews, 26(2), 103–111. https://doi.org/10.1016/j.cytogfr.2014.10.011spa
dc.relation.referencesCarricka, J. B., Beggb, A. P., Perkinsc, N., & O’Meara, D. (2010). Ultrasonographic monitoring and treatment of pregnant mares at risk for placentitis. Animal Reproduction Science, 121(1–2), 331–333. https://doi.org/10.1016/j.anireprosci.2010.04.152spa
dc.relation.referencesChallis, J., Matthews, S., Gibb, W., & Lye, S. (2000). Endocrine and paracrine regulation of birth at term and preterm. Endocrine Reviews, 21(5), 514–550. https://doi.org/10.1210/er.21.5.514spa
dc.relation.referencesChavatte-Palmer, P., Derisoud, E., & Robles, M. (2022). Pregnancy and placental development in horses: an update. Domestic Animal Endocrinology, 79, 106692. https://doi.org/10.1016/j.domaniend.2021.106692spa
dc.relation.referencesChen, R., Lin, Y., & Huang, S. (1994). Fetal sex and maternal alpha‐fetoprotein concentration at late normal singleton pregnancies. Acta Obstetricia et Gynecologica Scandinavica, 73(3), 192–194. https://doi.org/10.3109/00016349409023437spa
dc.relation.referencesChenier, T. S., & Whitehead, A. E. (2009). Foaling rates and risk factors for abortion in pregnant mares presented for medical or surgical treatment of colic: 153 cases (1993-2005). Canadian Veterinary Journal, 50(5), 481–485.spa
dc.relation.referencesClaes, A., & Stout, T. A. E. (2022). Success rate in a clinical equine in vitro embryo production program. Theriogenology, 187, 215–218. https://doi.org/10.1016/j.theriogenology.2022.04.019spa
dc.relation.referencesClothier, J., Hinch, G., Brown, W., & Small, A. (2017). Equine gestational length and location: is there more that the research could be telling us? Australian Veterinary Journal, 95(12), 454–461. https://doi.org/10.1111/avj.12653spa
dc.relation.referencesCohen, N. D., Carey, V. J., Donahue, J. G., Seahorn, J. L., & Harrison, L. R. (2003). Descriptive epidemiology of late-term abortions associated with the mare reproductive loss syndrome in central Kentucky. Journal of Veterinary Diagnostic Investigation, 15(3), 295–297. https://doi.org/10.1177/104063870301500315spa
dc.relation.referencesConley, A. J. (2016). Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology, 86(1), 355–365. https://doi.org/10.1016/J.THERIOGENOLOGY.2016.04.049spa
dc.relation.referencesCoutinho da Silva, M. A., Canisso, I. F., Macpherson, M. L., Johnson, A. E. M., & Divers, T. J. (2013). Serum amyloid A concentration in healthy periparturient mares and mares with ascending placentitis. Equine Veterinary Journal, 45(5), 619–624. https://doi.org/10.1111/evj.12034spa
dc.relation.referencesCurcio, B. R., Canisso, I. F., Pazinato, F. M., Borba, L. A., Feijó, L. S., Muller, V., Finger, I. S., Toribio, R. E., & Nogueira, C. E. W. (2017). Estradiol cypionate aided treatment for experimentally induced ascending placentitis in mares. Theriogenology, 102, 98–107. https://doi.org/10.1016/j.theriogenology.2017.03.010spa
dc.relation.referencesCurran, S., & Ginther O.J. (1995). M- Mode Ultrasonic Assessment of Equine Heart Rate. Theriogenology, 44, 609–617.spa
dc.relation.referencesDe Lange, V., Chiers, K., Lefère, L., Cools, M., Ververs, C., Govaere, J., Ducatelle, R., Hoogewijs, M., De Schauwer, C., de Kruif, A., Brito, L. F. C., Engiles, J. B., Turner, R. M., Getman, L. M., Ebling, A., Weiermayer, P., Richter, B., Farjanikish, G., Sayari, M., … Brinsko, S. P. (2009). Testicular teratoma in a unilateral right-sided abdominal cryptorchid horse. Reproduction in Domestic Animals, 47(3), 7.9-7.e18. https://doi.org/10.1016/S0749-0739(17)30184-0spa
dc.relation.referencesDe Luca, R., Dattoma, T., Forzoni, L., Bamber, J., Palchetti, P., & Gubbini, A. (2018). Diagnostic ultrasound probes: A typology and overview of technologies. Current Directions in Biomedical Engineering, 4(1), 49–53. https://doi.org/10.1515/cdbme-2018-0013spa
dc.relation.referencesDeVore, G. R. (2015). The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. American Journal of Obstetrics and Gynecology, 213(1), 5–15. https://doi.org/10.1016/j.ajog.2015.05.024spa
dc.relation.referencesDinglas, C., Afsar, N., Cochrane, E., Davis, J., Kim, S., Akerman, M., Wells, M., Chavez, M., Herrera, K., Heo, H., & Vintzileos, A. (2020). First-trimester maternal serum alpha fetoprotein is associated with ischemic placental disease. American Journal of Obstetrics and Gynecology, 222(5), 499.e1-499.e6. https://doi.org/10.1016/j.ajog.2019.11.1264spa
dc.relation.referencesDonahue, J. M., & Williams, N. M. (2000). Emergent causes of placentitis and abortion. The Veterinary Clinics of North America. Equine Practice, 16(3), 443–456, viii. https://doi.org/10.1016/S0749-0739(17)30088-3spa
dc.relation.referencesDonnelly, L. (2019). Functions of the placenta. Anaesthesia and Intensive Care Medicine, 20(7), 392–396. https://doi.org/10.1016/j.mpaic.2019.04.004spa
dc.relation.referencesEckersall, P. D., & Bell, R. (2010). Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Veterinary Journal, 185(1), 23–27. https://doi.org/10.1016/j.tvjl.2010.04.009spa
dc.relation.referencesEndoh, C., Matsuda, K., Okamoto, M., Tsunoda, N., & Taniyama, H. (2017). Morphometric changes in the aortic arch with advancing age in fetal to mature thoroughbred horses. Journal of Veterinary Medical Science, 79(3), 661–669. https://doi.org/10.1292/jvms.16-0600spa
dc.relation.referencesFedorka, C. E., Ball, B. A., Walker, O. F., McCormick, M. E., Scoggin, K. E., Kennedy, L. A., Squires, E. L., & Troedsson, M. H. T. (2021). Alterations of Circulating Biomarkers During Late Term Pregnancy Complications in the Horse Part I: Cytokines. Journal of Equine Veterinary Science, 99, 103425. https://doi.org/10.1016/j.jevs.2021.103425spa
dc.relation.referencesFedorka, C. E., Ball, B. A., Wynn, M. A. A., McCormick, M. E., Scoggin, K. E., Esteller-Vico, A., Curry, T. E., Kennedy, L. A., Squires, E. L., & Troedsson, M. H. T. (2021a). Alterations of Circulating Biomarkers During Late Term Pregnancy Complications in the Horse Part II: Steroid Hormones and alpha-fetoprotein. Journal of Equine Veterinary Science, 103395. https://doi.org/10.1016/j.jevs.2021.103395spa
dc.relation.referencesFedorka, C. E., Ball, B. A., Wynn, M. A. A., McCormick, M. E., Scoggin, K. E., Esteller-Vico, A., Curry, T. E., Kennedy, L. A., Squires, E. L., & Troedsson, M. H. T. (2021b). Alterations of Circulating Biomarkers During Late Term Pregnancy Complications in the Horse Part II: Steroid Hormones and Alpha-Fetoprotein. Journal of Equine Veterinary Science, 99, 1–7. https://doi.org/10.1016/j.jevs.2021.103395spa
dc.relation.referencesFedorka, C. E., Scoggin, K. E., El-Sheikh Ali, H., Loux, S. C., Dini, P., Troedsson, M. H. T., & Ball, B. A. (2021). Interleukin-6 pathobiology in equine placental infection. American Journal of Reproductive Immunology, 85(5), 1–11. https://doi.org/10.1111/aji.13363spa
dc.relation.referencesForhead, A. J., Broughton Pipkin, F., Taylor, P. M., Baker, K., Balouzet, V., Giussani, D. A., & Fowden, A. L. (2000). Developmental changes in blood pressure and the renin-angiotensin system in pony fetuses during the second half of gestation. Journal of Reproduction and Fertility. Supplement, 56, 693–703.spa
dc.relation.referencesFowden, A. L., Giussani, D. A., & Forhead, A. J. (2020). Physiological development of the equine fetus during late gestation. Equine Veterinary Journal, 52(2), 165–173. https://doi.org/10.1111/evj.13206spa
dc.relation.referencesFrazer, G. S., Perkins, N. R., Blanchard, T. L., Orsini, J., & Threlfall, W. R. (1997). Prevalence of fetal maldispositions in equine referral hospital dystocias. Equine Veterinary Journal, 29(2), 111–116. https://doi.org/10.1111/j.2042-3306.1997.tb01651.spa
dc.relation.referencesGaccioli, F., Aye, I. L. M. H., Sovio, U., Charnock-Jones, D. S., & Smith, G. C. S. (2018). Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. American Journal of Obstetrics and Gynecology, 218(2), S725–S737. https://doi.org/10.1016/j.ajog.2017.12.002spa
dc.relation.referencesGaccioli, F., Lager, S., Sovio, U., Charnock-Jones, D. S., & Smith, G. C. S. (2017). The pregnancy outcome prediction (POP) study: Investigating the relationship between serial prenatal ultrasonography, biomarkers, placental phenotype and adverse pregnancy outcomes. Placenta, 59, S17–S25. https://doi.org/10.1016/j.placenta.2016.10.011spa
dc.relation.referencesGalvin, N. P., & Corley, K. T. T. (2010). Causes of disease and death from birth to 12 months of age in the Thoroughbred horse in Ireland. Irish Veterinary Journal, 63(1), 37–43. https://doi.org/10.1186/2046-0481-63-1-37spa
dc.relation.referencesGammill, H. S., Fraer, L. M., & Simhan, H. N. (2003). Racial Disparity in Midtrimester Maternal Serum Alfafetoprotein (MSAFP) as a Marker for Spontaneous Preterm Birth. American Journal of Obstetrics and Gynecology, 189(6), 392. https://doi.org/https://doi.org/10.1016/j.ajog.2003.10.394spa
dc.relation.referencesGinther, O. J. (2007). Ultrasonic imaging and animal reproduction colors doppler ultrasonography. Equisevices Publishing.spa
dc.relation.referencesGinther, O. J. (2014). How ultrasound technologies have expanded and revolutionized research in reproduction in large animals. Theriogenology, 81(1), 112–125. https://doi.org/10.1016/j.theriogenology.2013.09.007spa
dc.relation.referencesGinther, O. J. (2021). Equine embryo mobility. A game changer. Theriogenology, 174, 131–138. https://doi.org/10.1016/j.theriogenology.2021.08.006spa
dc.relation.referencesGirard, S., Tremblay, L., Lepage, M., & Alerts, E. (2022). IL-1 Receptor Antagonist Protects against Placental and Neurodevelopmental Defects Induced by Maternal Inflammation. https://doi.org/10.4049/jimmunol.0903349spa
dc.relation.referencesGrandjean, P. (1995). Biomarkers in Epidemiology. European Beckman Coference, 41(12), 1800–1803.spa
dc.relation.referencesH El-Sheikh Ali, E L Legack, K E Scoggin, S C Loux, P Dini, A Esteller-Vico, A J Conley, S. D. S. and B. A. B. (2020). Steroid synthesis and metabolism in the equine placenta during placentitis. Society for Reproduction and Fertility, 159, 289–302. https://doi.org/10.1530/REP-11-0286spa
dc.relation.referencesHaneda, S., Dini, P., Esteller-Vico, A., Scoggin, K. E., Squires, E. L., Troedsson, M. H., Daels, P., Nambo, Y., & Ball, B. A. (2021). Estrogens regulate placental angiogenesis in horses. International Journal of Molecular Sciences, 22(22), 1–17. https://doi.org/10.3390/ijms222212116spa
dc.relation.referencesHartwig, F. P., Antunez, L., Dos Santos, R. S., Lisboa, F. P., Pfeifer, L. F. M., Nogueira, C. E. W., & Curcio, B. da R. (2013). Determining the gestational age of crioulo mares based on a fetal ocular measure. Journal of Equine Veterinary Science, 33(7), 557–560. https://doi.org/10.1016/j.jevs.2012.08.203spa
dc.relation.referencesHendriks, W. K., Colenbrander, B., van der Weijden, G. C., & Stout, T. A. E. (2009). Maternal age and parity influence ultrasonographic measurements of fetal growth in Dutch Warmblood mares. Animal Reproduction Science, 115(1–4), 110–123. https://doi.org/10.1016/j.anireprosci.2008.12.014spa
dc.relation.referencesHenry Barton, M. (2011). Understanding abdominal ultrasonography in horses: which way is up? Compendium (Yardley, PA), 33(9).spa
dc.relation.referencesHong, C. B., Donahue, J. M., Giles, R. C., Petrites-Murphy, M. B., Poonacha, K. B., Roberts, A. W., Smith, B. J., Tramontin, R. R., Tuttle, P. A., & Swerczek, T. W. (1993). Equine abortion and stillbirth in central Kentucky during 1988 and 1989 foaling seasons. Journal of Veterinary Diagnostic Investigation, 5(4), 560–566. https://doi.org/10.1177/104063879300500410spa
dc.relation.referencesHong C.B, Donahue, J. M., Giles, R. C., Poonacha, K. B., Roberts, A. W., Smith, B. J., Tramontin, R. R., Tuttle, P. A., & Swerczek, T. W. (1993). Etiology and pathology of equine placentitis. Journal of Veterinary Diagnostic Investigation, 5(1), 56–63.spa
dc.relation.referencesHu, J., Zhang, J., Chan, Y., & Zhu, B. (2019). A rat model of placental inflammation explains the unexplained elevated maternal serum alpha-fetoprotein associated with adverse pregnancy outcomes. Journal of Obstetrics and Gynaecology Research, 45(10), 1980–1988. https://doi.org/10.1111/jog.14085spa
dc.relation.referencesHuerta-Enochian, G., Katz, V., & Erfurth, S. (2001). The association of abnormal α-fetoprotein and adverse pregnancy outcome: Does increased fetal surveillance affect pregnancy outcome? American Journal of Obstetrics and Gynecology, 184(7), 1549–1555. https://doi.org/10.1067/mob.2001.114864spa
dc.relation.referencesHughes, A. E., Sovio, U., Gaccioli, F., Cook, E., Charnock-Jones, D. S., & Smith, G. C. S. (2019). The association between first trimester AFP to PAPP-A ratio and placentally-related adverse pregnancy outcome. Placenta, 81(April), 25–31. https://doi.org/10.1016/j.placenta.2019.04.005spa
dc.relation.referencesHughes, C. E., & Nibbs, R. J. B. (2018). A guide to chemokines and their receptors. FEBS Journal, 285(16), 2944–2971. https://doi.org/10.1111/febs.14466spa
dc.relation.referencesIncze, B. B. A., Aska, F. B., & Zenci, O. S. (2015). Fetal heart rate and fetal heart rate variability in Lipizzaner broodmares. Acta Veterinaria Hungarica, 63(1), 89–99. https://doi.org/10.1556/AVet.2015.007spa
dc.relation.referencesIsani, G., Ferlizza, E., Cuoghi, A., Bellei, E., Monari, E., Bianchin Butina, B., & Castagnetti, C. (2016). Identification of the most abundant proteins in equine amniotic fluid by a proteomic approach. Animal Reproduction Science, 174, 150–160. https://doi.org/10.1016/j.anireprosci.2016.10.003spa
dc.relation.referencesJacobsen, S., & Andersen, P. H. (2007). The acute phase protein serum amyloid a (SAA) as a marker of inflammation in horses. Equine Veterinary Education, 19(1), 38–46. https://doi.org/10.2746/095777307X177235spa
dc.relation.referencesKamata, S., Akahoshi, N., & Ishii, I. (2015). 2D DIGE proteomic analysis highlights delayed postnatal repression of α-fetoprotein expression in homocystinuria model mice. FEBS Open Bio, 5, 535–541. https://doi.org/10.1016/j.fob.2015.06.008spa
dc.relation.referencesKasahara, Y., Yoshida, C., Saito, M., & Kimura, Y. (2021). Assessments of Heart Rate and Sympathetic and Parasympathetic Nervous Activities of Normal Mouse Fetuses at Different Stages of Fetal Development Using Fetal Electrocardiography. Frontiers in Physiology, 12(April), 1–7. https://doi.org/10.3389/fphys.2021.652828spa
dc.relation.referencesKelleman, A. (2014). Equine Pregnancy and Clinical Applied Physiology. 59th Annual Convention of the American Association of Equine Practitioners - AAEP, 59, 350–358.spa
dc.relation.referencesKimura, Y., Haneda, S., Aoki, T., Furuoka, H., Miki, W., Fukumoto, N., Matsui, M., & Nambo, Y. (2018). Combined thickness of the uterus and placenta and ultrasonographic examinations of uteroplacental tissues in normal pregnancy, placentitis, and abnormal parturitions in heavy draft horses. Journal of Equine Science, 29(1), 1–8. https://doi.org/10.1294/jes.29.1spa
dc.relation.referencesKlein, C. (2016). Theriogenology The role of relaxin in mare reproductive physiology : A comparative review with other species. Theriogenology, 86(1), 451–456. https://doi.org/10.1016/j.theriogenology.2016.04.061spa
dc.relation.referencesKotoyori, Y., Yokoo, N., Ito, K., Murase, H., Sato, F., Korosue, K., & Nambo, Y. (2012). Three-dimensional ultrasound imaging of the equine fetus. Theriogenology, 77(7), 1480–1486. https://doi.org/10.1016/j.theriogenology.2011.10.020spa
dc.relation.referencesKrakowski, L., Brodzki, P., Krakowska, I., Opielak, G., Marczuk, J., & Piech, T. (2020). The Level of Prolactin, Serum Amyloid A, and Selected Biochemical Markers in Mares Before and After Parturition and Foal Heat. Journal of Equine Veterinary Science, 84, 102854. https://doi.org/10.1016/j.jevs.2019.102854spa
dc.relation.referencesKuhl, J., Stock, K. F., Wulf, M., & Aurich, C. (2015). Maternal lineage of Warmblood mares contributes to variation of gestation length and bias of foal sex ratio. PLoS ONE, 10(10), 1–12. https://doi.org/10.1371/journal.pone.0139358spa
dc.relation.referencesLanci, A., Castagnetti, C., Ranciati, S., Sergio, C., & Mariella, J. (2019). A regression model including fetal orbit measurements to predict parturition in Standardbred mares with normal pregnancy. Theriogenology, 126, 153–158. https://doi.org/10.1016/j.theriogenology.2018.12.020spa
dc.relation.referencesLaugier, C., Foucher, N., Sevin, C., Leon, A., & Jakcie, T. (2011). A 24-Year Retrospective Study of Equine Abortion in Normandy (France ). Journal of Equine Veterinary Science, 31(3), 116–123. https://doi.org/10.1016/j.jevs.2010.12.012spa
dc.relation.referencesLee, W., & Roh, Y. (2017). Ultrasonic transducers for medical diagnostic imaging. Biomedical Engineering Letters, 7(2), 91–97. https://doi.org/10.1007/s13534-017-0021-8spa
dc.relation.referencesLegacki, E. L., Corbin, C. J., Ball, B. A., Wynn, M., Loux, S., Stanley, S. D., & Conley, A. J. (2016). Progestin withdrawal at parturition in the mare. Reproduction, 152(4), 323–331. https://doi.org/10.1530/rep-16-0227spa
dc.relation.referencesLegacki, E. L., Scholtz, E. L., Ball, B. A., Esteller-Vico, A., Stanley, S. D., & Conley, A. J. (2019). Concentrations of sulphated estrone, estradiol and dehydroepiandrosterone measured by mass spectrometry in pregnant mares. Equine Veterinary Journal, 51(6), 802–808. https://doi.org/10.1111/evj.13109spa
dc.relation.referencesLöf, H., Gregory, J. W., Neves, A. P., Jobim, M. I. M., Gregory, R. M., & Mottos, R. C. (2014). Combined thickness of the uterus and placenta (CTUP) as indicator of placentitis in Thoroughbred mares. Pferdeheilkunde, 30(1), 37–41. https://doi.org/10.21836/pem20140105spa
dc.relation.referencesMacLaren, G., Kluger, R., Prior, D., Royse, A., & Royse, C. (2006). Tissue Doppler, Strain, and Strain Rate Echocardiography: Principles and Potential Perioperative Applications. Journal of Cardiothoracic and Vascular Anesthesia, 20(4), 583–593. https://doi.org/10.1053/j.jvca.2006.02.034spa
dc.relation.referencesMacpherson, M. L. (2006). Diagnosis and Treatment of Equine Placentitis. Veterinary Clinics of North America - Equine Practice, 22(3), 763–776. https://doi.org/10.1016/j.cveq.2006.08.005spa
dc.relation.referencesMaserati, M., & Mutto, A. (2016). In Vitro Production of Equine Embryos and Cloning: Today’s Status. Journal of Equine Veterinary Science, 41, 42–50. https://doi.org/10.1016/j.jevs.2016.04.004spa
dc.relation.referencesMatsui, K., Sugano, S., Masuyama, I., Akio, A., & KANO, Y. (1984). Alterations in the heart rate of thoroughbred Horse, Pony and Holstein Cow through Pre amd Post Natal Stages. Japan Journal of Veterinary Science, 46(4), 505–510.spa
dc.relation.referencesMayeux, R. (2004). Biomarkers: Potential Uses and Limitations. The Journal of the American Society for Experimental NeuroTherapeutics, 1(2), 182–188. https://doi.org/10.1602/neurorx.1.2.182spa
dc.relation.referencesMcKinnon, A., Squires, E. L., Vaala, W. E., & Varner, D. (2011). Equine Reproduction (2nd ed., Vol. 1). Blackwell.spa
dc.relation.referencesMcGladeery A., O. J. (2016). Vascular Impedance Of The Umbilical Cord Artery During Equine Pregnancy. Equine Veterinary Journal, 48, 10–11.spa
dc.relation.referencesMette, C., Camilla Dooleweerdt, B., Stine, J., Anders Miki, B., Morten Roenn, P., & Henrik, L. J. (2010). Evaluation of the systemic acute phase response and endometrial gene expression of serum amyloid A and pro- and anti-inflammatory cytokines in mares with experimentally induced endometritis. Veterinary Immunology and Immunopathology, 138(1–2), 95–105. https://doi.org/10.1016/j.vetimm.2010.07.011spa
dc.relation.referencesMizejewski, G. J. (2001). Alpha-fetoprotein structure and function: Relevance to isoforms, epitopes, and conformational variants. In Experimental Biology and Medicine (Vol. 226, Issue 5, pp. 377–408). https://doi.org/10.1177/153537020122600503spa
dc.relation.referencesMorel, M. C. G. D. (2016). Equine Reproductive Physiology , Breeding and Stud Management (Issue July).spa
dc.relation.referencesMorris, S., Kelleman, A. A., Stawicki, R. J., Hansen, P. J., Sheerin, P. C., Sheerin, B. R., Paccamonti, D. L., & LeBlanc, M. M. (2007). Transrectal ultrasonography and plasma progestin profiles identifies feto-placental compromise in mares with experimentally induced placentitis. Theriogenology, 67(4), 681–691. https://doi.org/10.1016/j.theriogenology.2006.05.021spa
dc.relation.referencesMurase, H., Endo, Y., Tsuchiya, T., Kotoyori, Y., & Shikichi, M. (2014). Ultrasonographic Evaluation of Equine Fetal Growth Throughout Gestation in Normal Mares Using a Convex Transducer Ultrasonographic Evaluation of Equine Fetal Growth Throughout Gestation in Normal Mares Using a Convex Transducer. Journal of Veterinary Medical Science, 76(7), 947–953. https://doi.org/10.1292/jvms.13-0259spa
dc.relation.referencesNagel, C., Aurich, J., & Aurich, C. (2010). Determination of heart rate and heart rate variability in the equine fetus by fetomaternal electrocardiography. Theriogenology, 73(7), 973–983. https://doi.org/10.1016/j.theriogenology.2009.11.026spa
dc.relation.referencesNagel, C., Aurich, J., Palm, F., & Aurich, C. (2011). Heart rate and heart rate variability in pregnant warmblood and Shetland mares as well as their fetuses. Animal Reproduction Science, 127(3–4), 183–187. https://doi.org/10.1016/j.anireprosci.2011.07.021spa
dc.relation.referencesNagel, C., Erber, R., Ille, N., von Lewinski, M., Aurich, J., Möstl, E., & Aurich, C. (2014). Parturition in horses is dominated by parasympathetic activity of the autonomous nervous system. Theriogenology, 82(1), 160–168. https://doi.org/10.1016/j.theriogenology.2014.03.015spa
dc.relation.referencesNewby, D., Dalgliesh, G., Lyall, F., & Aitken, D. A. (2005). Alphafetoprotein and alphafetoprotein receptor expression in the normal human placenta at term. Placenta, 26(2–3), 190–200. https://doi.org/10.1016/j.placenta.2004.06.005spa
dc.relation.referencesOusey, J. C. (2006). Hormone Profiles and Treatments in the Late Pregnant Mare. Veterinary Clinics of North America - Equine Practice, 22(3), 727–747. https://doi.org/10.1016/j.cveq.2006.08.004spa
dc.relation.referencesPazinato, F. M., Curcio, B. R., Fernandes, C. G., Feijó, L. S., Schmith, R. A., & Nogueira, C. E. W. (2016). Histological features of the placenta and their relation to the gross and data from Thoroughbred mares. Pesquisa Veterinaria Brasileira, 36(7), 665–670. https://doi.org/10.1590/S0100-736X2016000700018spa
dc.relation.referencesPlatt, H. (1978). Growth and maturity in the equine fetus. Journal of the Royal Society of Medicine, 71(9), 658–661. https://doi.org/10.1177/014107687807100906spa
dc.relation.referencesPozor, M. A., Sheppard, B., Hinrichs, K., Kelleman, A. A., Macpherson, M. L., Runcan, E., Choi, Y. H., Diaw, M., & Mathews, P. M. (2016). Placental abnormalities in equine pregnancies generated by SCNT from one donor horse. Theriogenology, 86(6), 1573–1582. https://doi.org/10.1016/j.theriogenology.2016.05.017spa
dc.relation.referencesRaś, A., & Raś-Noryńska, M. (2021). A retrospective study of twin pregnancy management in mares. Theriogenology, 176, 183–187. https://doi.org/10.1016/j.theriogenology.2021.09.018spa
dc.relation.referencesRazquin-Echeverriarza, P., McCue, P. M., Cappella-Flores, P., Vargas-Leitón, B., & Estrada-König, S. (2019). Ultrasonographic measurement of the equine fetal vitreous body length for predicting days to parturition in Pura Raza Española horses. Ciencias Veterinarias, 37(2), 1–10. https://doi.org/10.15359/rcv.37-2.1spa
dc.relation.referencesReef, V. B., Vaala, W. E., Worth, L. T., Spencer, P. A., & Hammett, B. (1995). Ultrasonographic Evaluation of the Fetus and Intrauterine Environment in Healthy Mares During Late Gestation. Veterinary Radiology & Ultrasound, 36(6), 533–541. https://doi.org/10.1111/j.1740-8261.1995.tb00308spa
dc.relation.referencesReef, V., Vaala, W., Worth, L., Sertich, P., & Pamela, A. (1996). Ultrasonographic assessment of fetal well-being during late gestation : development of an equine biophysical profile. Equine Veterinary Journal, 28, 200–208.spa
dc.relation.referencesRenaudin, C., Gillis, C. L., Tarantal, A. F., & Coleman, D. A. (2000). Evaluation of equine fetal growth from day 100 of gestation to parturition by ultrasonography. Journal of Reproduction and Fertility. Supplement, 56, 651–660.spa
dc.relation.referencesRenaudin, C., Liu, I. K. M., Troedsson, M. H. T., & Schrenzel, M. D. (1999). Transrectal ultrasonographic diagnosis of ascending placentitis in the mare: A report of two cases. Equine Veterinary Education, 11(2), 69–74. https://doi.org/10.1111/j.2042-3292.1999.tb00924spa
dc.relation.referencesRenaudin, CD., Troedsson, M. H. T., Gillis, C. L., King, V. L., & Bodena, A. (1997). Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare. Theriogenology, 47, 559–573.spa
dc.relation.referencesRequena, F. D., Agüera, E. I., Requena, F., & Pérez-marín, C. C. (2017). Transrectal ultrasonographic measurements of the combined thickness of the uterus and placenta in Spanish Purebred mares. Animal Reproduction, 14, 1278–1284. https://doi.org/10.21451/1984-3143-AR0029spa
dc.relation.referencesRizzo, A., Galgano, M., Mutinati, M., & Sciorsci, R. L. (2019). Alpha-fetoprotein in animal reproduction. Research in Veterinary Science, 123(October 2018), 281–285. https://doi.org/10.1016/j.rvsc.2019.01.028spa
dc.relation.referencesRobertson, H. A., Saunders, N. R., & Lorscheider, F. L. (1984). Distribution of alpha-fetoprotein in fetal plasma and in amniotic and allantoic fluids of the pig. Journals of Reproduction & Fertility, 70, 605–607.spa
dc.relation.referencesRobles, M., Dubois, C., Gautier, C., Dahirel, M., Guenon, I., & Bouraima-lelong, H. (2018). Theriogenology Maternal parity affects placental development , growth and metabolism of foals until 1 year and a half. Theriogenology, 108, 321–330. https://doi.org/10.1016/j.theriogenology.2017.12.019spa
dc.relation.referencesRosenstreich, D. L., & Wahl, S. M. (1979). Cellular Sources of Lymphokines. In Biology of the Lymphokines. ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-178250-4.50013-1spa
dc.relation.referencesRoss, J., Palmer, J. E., & Wilkins, P. A. (2008). Body wall tears during late pregnancy in mares: 13 cases (1995-2006). Journal of the American Veterinary Medical Association, 232(2), 257–261. https://doi.org/10.2460/javma.232.2.257spa
dc.relation.referencesSaini, N. S., Mohindroo, J., Mahajan, S. K., Raghunath, M., Kumar, A., Sangwan, V., Singh, T., Singh, N., Singh, S. S., Anand, A., & Singh, K. (2013). Surgical Correction of Uterine Torsion and Mare-Foal Survival in Advance Pregnant Equine Patients. Journal of Equine Veterinary Science, 33(1), 31–34. https://doi.org/10.1016/j.jevs.2012.04.012spa
dc.relation.referencesSalameh, M., Lee, J., Palomaki, G., Eklund, E., Curran, P., Suarez, J. A. R., Lambert-Messerlian, G., & Bourjeily, G. (2018). Snoring and markers of fetal and placental wellbeing. Clinica Chimica Acta, 485, 139–143. https://doi.org/10.1016/j.cca.2018.06.039spa
dc.relation.referencesSatué, K., Felipe, M., Mota, J., & Muñoz, A. (2011). Factors influencing gestational length in mares: A review. Livestock Science, 136(2–3), 287–294. https://doi.org/10.1016/j.livsci.2010.09.011spa
dc.relation.referencesSandra, N., & Wilsher, A. (2009). Studies in Equine Reproduction. In University of Bedfordshire. University of Bedfordshire.spa
dc.relation.referencesSatué, K., Marcilla, M., Medica, P., Ferlazzo, A., & Fazio, E. (2018). Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare. Theriogenology, 115, 77–83. https://doi.org/10.1016/j.theriogenology.2018.04.033spa
dc.relation.referencesSchieving, J. H., De Vries, M., Van Vugt, J. M. G., Weemaes, C., Van Deuren, M., Nicolai, J., Wevers, R. A., & Willemsen, M. A. (2014). Alpha-fetoprotein, a fascinating protein and biomarker in neurology. European Journal of Paediatric Neurology, 18(3), 243–248. https://doi.org/10.1016/j.ejpn.2013.09.003spa
dc.relation.referencesShikichi, M., Iwata, K., Ito, K., Miyakoshi, D., Murase, H., Sato, F., Korosue, K., Nagata, S., & Nambo, Y. (2017). Abnormal pregnancies associated with deviation in progestin and estrogen profiles in late pregnant mares: A diagnostic aid. Theriogenology, 98, 75–81. https://doi.org/10.1016/j.theriogenology.2017.04.024spa
dc.relation.referencesSilva, E. S. M. da, Pantoja, J. C. de F., Puoli, J. N. P., & Meira, C. (2015). Ultrasonography of the conceptus development from days 15 to 60 of pregnancy in non-cyclic recipient mares. Ciência Rural, 45(3), 512–518. https://doi.org/10.1590/0103-8478cr20140517spa
dc.relation.referencesSmith, K., Lai, P. C. W., Robertson, H. A., Church, R. B., & Lorscheider, F. L. (1979). allantoic fluid, amniotic fluid and maternal plasma of Distribution of alpha1-fetoprotein in fetal plasma of cows. Journal of Reproduction and Fertility, 57, 235–238.spa
dc.relation.referencesSnider, T. A. (2015). Reproductive Disorders in Horses. Veterinary Clinics of North America - Equine Practice, 31(2), 389–405. https://doi.org/10.1016/j.cveq.2015.04.011spa
dc.relation.referencesSouza, A. M., Winter, G. H. Z., Garbade, P., Wolf, C. A., Jobim, M. I. M., Gregory, R. M., & Mattos, R. C. (2010). Ultrasonographic evaluation of the Criollo mare placenta. Animal Reproduction Science, 121(1–2), 320–321. https://doi.org/10.1016/j.anireprosci.2010.04.131spa
dc.relation.referencesStolla, R., Bollwein, H., Weber, F., & Wosche, I. (2004). Transrectal Doppler sonography of uterine and umbilical blood flow during pregnancy in mares. Theriogenology, 61, 499–509. https://doi.org/10.1016/S0093-691X(03)00225-5spa
dc.relation.referencesTan, C., Murai, Y., Liu, W., Tasaka, Y., Dong, F., & Takeda, Y. (2021). Ultrasonic Doppler Technique for Application to Multiphase Flows: A Review. International Journal of Multiphase Flow, 144(January), 103811. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103811spa
dc.relation.referencesTang, S., Yuan, K., & Chen, L. (2022). Molecular biomarkers, network biomarkers, and dynamic network biomarkers for diagnosis and prediction of rare diseases. Fundamental Research, xxxx. https://doi.org/10.1016/j.fmre.2022.07.011spa
dc.relation.referencesTroedsson, M. H. T. (2007). High risk pregnant mare. Acta Veterinaria Scandinavica, 49(SUPPL. 1), 1–8. https://doi.org/10.1186/1751-0147-49-S1-S9spa
dc.relation.referencesTurner, R. M., McDonnell, S. M., Feit, E. M., Grogan, E. H., & Foglia, R. (2006). Real-time ultrasound measure of the fetal eye (vitreous body) for prediction of parturition date in small ponies. Theriogenology, 66(2), 331–337. https://doi.org/10.1016/j.theriogenology.2005.11.019spa
dc.relation.referencesVega, F. E. (2012). Caracterización ultrasonográfica de la unidad útero-placentaria y del feto en yeguas criollas colombianas con gestaciones normales. Universidad Nacional de Colombia, 5(11), 76.spa
dc.relation.referencesVega, F. E. (2013). Medidas ultrasonográficas del espesor conjunto de la unión útero-placentaria en yeguas criollas colombianas. Acta Agronomica, 62(2), 148–154.spa
dc.relation.referencesVietri, L., Fui, A., Bergantini, L., d’Alessandro, M., Cameli, P., Sestini, P., Rottoli, P., & Bargagli, E. (2020). Serum amyloid A: A potential biomarker of lung disorders. Respiratory Investigation, 58(1), 21–27. https://doi.org/10.1016/j.resinv.2019.09.005spa
dc.relation.referencesVilaregut, L., Lores, M., & Wilsher, S. (2021). The Yolk Sac of the Equine Placenta. Its Remnant and Potential Problems. Journal of Equine Veterinary Science, 96, 103322. https://doi.org/10.1016/j.jevs.2020.103322spa
dc.relation.referencesVincze, B., Baska, F., Papp, M., & Szenci, O. (2019). Introduction of a new fetal examination protocol for on-field and clinical equine practice. Theriogenology, 125, 210–215. https://doi.org/10.1016/j.theriogenology.2018.11.004spa
dc.relation.referencesVincze, B., Gáspárdy, A., Kulcsár, M., Baska, F., Bálint, Á., Hegedus, G. T., & Szenci, O. (2015). Equine alpha-fetoprotein levels in Lipizzaner mares with normal pregnancies and with pregnancy loss. Theriogenology, 84(9), 1581–1586. https://doi.org/10.1016/j.theriogenology.2015.08.006spa
dc.relation.referencesVincze, B., Solymosi, N., Debnár, V., Kútvölgyi, G., Krikó, E., Wölfling, A., & Szenci, O. (2018). Assessment of equine alpha-fetoprotein levels in mares and newborn foals in the periparturient period. Theriogenology, 122, 53–60. https://doi.org/10.1016/j.theriogenology.2018.08.026spa
dc.relation.referencesWald, N. J., & Bestwick, J. P. (2016). Prenatal reflex DNA screening for Down syndrome: Enhancing the screening performance of the initial first trimester test. Prenatal Diagnosis, 36(4), 328–331. https://doi.org/10.1002/pd.4784spa
dc.relation.referencesWilkins, P. A. (2003). Monitoring the pregnant mare in the ICU. Clinical Techniques in Equine Practice, 2(2), 212–219. https://doi.org/10.1016/S1534-7516(03)00002-7spa
dc.relation.referencesWitters I, Coumans A, Gyselaers W, F. J. (2013). Echographic diagnosis of lumbosacralspina bifida Neural. Tijdschrift Voor Geneeskunde, 69(9), 453–455.spa
dc.relation.referencesWynn, M. A. A., Ball, B. A., May, J., Esteller-Vico, A., Canisso, I., Squires, E., & Troedsson, M. (2018). Changes in maternal pregnane concentrations in mares with experimentally-induced, ascending placentitis. Theriogenology, 122, 130–136. https://doi.org/10.1016/j.theriogenology.2018.09.001spa
dc.relation.referencesWynn, M. A. A., Esteller-Vico, A., Legacki, E. L., Conley, A. J., Loux, S. C., Stanley, S. D., Curry, T. E., Squires, E. L., Troedsson, M. H., & Ball, B. A. (2018). A comparison of progesterone assays for determination of peripheral pregnane concentrations in the late pregnant mare. Theriogenology, 106, 127–133. https://doi.org/10.1016/j.theriogenology.2017.10.002spa
dc.relation.referencesZhang, J.-M., & An, J. (2007). Cytokines, Inflammation and Pain. International Anesthesiology Clinics, 45(2), 27–37. https://doi.org/10.1097/AIA.0b013e318034194spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocDesarrollo embrionariospa
dc.subject.agrovocPeriodo de Gestaciónspa
dc.subject.agrovocEmbriologíaspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembEtapas del desarrollo animalspa
dc.subject.lembAnimal developmental stageseng
dc.subject.proposalAlfafetoproteínaspa
dc.subject.proposalPlacentaspa
dc.subject.proposalEquinosspa
dc.subject.proposalGestaciónspa
dc.subject.proposalFetospa
dc.subject.proposalAlphafetoproteineng
dc.subject.proposalPlacentaeng
dc.subject.proposalEquineeng
dc.subject.proposalGestationeng
dc.subject.proposalFetuseng
dc.subject.unescoEnfermedad animalspa
dc.subject.unescoAnimal diseaseseng
dc.titleVariación de las concentraciones séricas de alfa-fetoproteína en yeguas criollas colombianas durante el último tercio de la gestaciónspa
dc.title.translatedVariation in serum concentrations of alpha-fetoprotein in criollo mares Colombians during the last third of the gestationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDescripción de parámetros biométricos fetales y concentración de alfafetoproteína en yeguas de grupo racial criollo colombiano en el último tercio de la gestaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
531775772022.2022.pdf
Tamaño:
856.49 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: