Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD)
dc.contributor.advisor | Arboleda Bustos, Gonzalo Humberto | |
dc.contributor.author | Pérez Silva, Ana Milena | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001676218 | spa |
dc.contributor.researchgroup | Muerte Celular y Neurociencias | spa |
dc.date.accessioned | 2023-06-07T14:12:33Z | |
dc.date.available | 2023-06-07T14:12:33Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, fotografías principalmente a blanco y negro | spa |
dc.description.abstract | Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD) La enfermedad de Alzheimer (EA) es un trastorno neurodegenerativo caracterizado por un deterioro cognitivo asociado patológicamente por la formación de placas amiloides y ovillos neurofibrilares. La hipótesis amiloide postula que el origen de la enfermedad comienza por la acumulación de péptidos Aβ, que desencadena procesos de neuroinflamación, desregulación de quinasas, incremento de especies reactivas de oxígeno, pérdida de espinas dendríticas y muerte neuronal. Estudios preliminares han demostrado que el extracto vegetal de Zanthoxylum martinicense presenta actividad agonista LXR, y la activación de estos receptores se relaciona con la modulación de biomarcadores de la EA (tales como la homeóstasis de colesterol, la agregación de depósitos amiloides y la neuroinflamación) para prevenir el desarrollo de la patología. Por tal motivo, se plantea como objetivo, evaluar el potencial terapéutico del extracto vegetal de Zanthoxylum martinicense con actividad agonista LXR en el modelo murino 3xTg-AD. Método: Se administró vía oral el extracto vegetal de raíz de Zanthoxylum martinicense durante 90 días, con dosis de 50mg/kg/día y 100mg/kg/día en ratones 3xTg-AD de 15 meses de edad, con el fin de evaluar: (1) cambios cognitivos a nivel comportamental empleando el laberinto acuático de Morris, (2) su efecto sobre la carga Aβ y la expresión de τ, GFAP e Iba-1 y (3) cambios en el nivel de expresión de proteína APOE y ABCA1 en lisados de hipocampo y corteza cerebral de ratones 3xTg-AD. Resultados: Se observó que el tratamiento con el extracto vegetal de Zanthoxylum martinicense redujo drásticamente el inmunomarcaje de la patología amiloide de manera dosis dependiente (p = 0.0002), tendió a disminuir el área de inmunoreactividad positiva de τ (p = 0.1619), generó una reversión en los procesos de neuroinflamación tanto a nivel morfológico como inmunohistoquímico para GFAP (p = 0.0857) e Iba-1 (p = 0.0286) y aumentó el nivel de expresión de algunos blancos transcripcionales de LXR: APOE y ABCA1 (p < 0.0001) en el hipocampo y corteza cerebral de ratones 3xTg-AD en comparación con los animales 3xTg-AD tratados con el vehículo (3xTg-AD VH), lo cual está asociado con una mejora en el proceso de consolidación de la memoria espacial y de aprendizaje de ratones 3xTg-AD, asemejando el comportamiento en el laberinto acuático de Morris a niveles similares del grupo control C57, el cual no presentó ningún tipo de daño cognoscitivo. Por tal motivo, la actividad agonista LXR presente en el extracto vegetal de Zanthoxylum martinicense ha demostrado tener un potencial terapéutico prometedor en modelos murinos con el fenotipo de la EA la cual ha sido asociada con una mejora a nivel cognitivo como resultado de una disminución en el inmunomarcaje de los principales biomarcadores histopatológicos de la enfermedad y un incremento en el nivel de expresión de sus blancos transcripcionales: APOE y ABCA1. Palabras clave: Alzheimer, Zanthoxylum martinicense, Aβ, τ, GFAP, Iba-1, APOE, ABCA1. (Texto tomado de la fuente) | |
dc.description.abstract | Evaluation of the therapeutic potential of plant extract from Zanthoxylum martinicense associated with agonist activity of LXR in the murine model of Alzheimer's disease (3xTg-AD) Alzheimer's disease is a neurodegenerative disorder characterized by a cognitive impairment pathologically associated by the formation of amyloid plaques and neurofibrillary tangles. The amyloid hypothesis postulates that the origin of the disease begins with the accumulation of Aβ peptides, which trigger processes of neuroinflammation, deregulation of kinases, reactive oxygen species increase, loss of dendritic spines, and neuronal death. Preliminary studies have shown that the plant extract Zanthoxylum martinicense presents LXR agonist activity, and the activation of these receptors is related to the modulation of biomarkers of Alzheimer's disease (such as cholesterol homeostasis, the aggregation of amyloid deposits and neuroinflammation) to prevent the development of the pathology. Therefore, the objective is to evaluate the therapeutic potential of the plant extract Zanthoxylum martinicense with LXR agonist activity in the 3xTg-AD murine model. Method: The plant extract Zanthoxylum martinicense was administered orally for 90 days, with doses of 50mg/kg/day and 100mg/kg/day in 3xTg-AD mice of 15 months of age, in order to evaluate: (1) cognitive changes at the behavioral level using the Morris water maze, (2) its effect on Aβ load and the expression of τ, GFAP and Iba-1 and (3) changes in the level of expression of APOE and ABCA1 protein in the hippocampus and cerebral cortex of 3xTg-AD mice. Results: It was shown that the treatment with the plant extract Zanthoxylum martinicense reduced the immunolabeling of the amyloid pathology in a dose-dependent manner (p = 0.0002), it tended to decrease the area of positive immunoreactivity of τ (p = 0.1619), followed by a reversion in neuroinflammation processes at a morphological and immunohistochemical level for GFAP (p = 0.0857) and Iba-1 (p = 0.0286) and increased the expression level of some LXR transcriptional targets: APOE and ABCA1 (p < 0 0001) in the hippocampus and cerebral cortex of 3xTg-AD mice compared to 3xTg-AD animals treated with the vehicle (3xTg-AD VH), which it is associated with an improvement in the consolidation process of spatial memory and learning of 3xTg-AD mice, resembling this behavior to C57 control group in the Morris water maze, which did not present any type of cognitive damage. For this reason, the LXR agonist activity in the Zanthoxylum martinicense plant extract has shown promising therapeutic potential in murine models with the Alzheimer's disease phenotype, which has been associated with an improvement at a cognitive level as a result of a decrease in the immunolabeling of the main histopathological biomarkers of the disease and an increase in the level of expression of its transcriptional targets: APOE and ABCA1. Keywords: Alzheimer´s disease, Zanthoxylum martinicense, Aβ, τ, GFAP, Iba-1, APOE, ABCA1 | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
dc.description.researcharea | Enfermedades neurodegenerativas | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83985 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.references | Abildayeva, K., Jansen, P. J., Hirsch-Reinshagen, V., Bloks, V. W., Bakker, A. H. F., Ramaekers, F. C. S., de Vente, J., Groen, A. K., Wellington, C. L., Kuipers, F., & Mulder, M. (2006). 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. Journal of Biological Chemistry, 281(18), 12799–12808. https://doi.org/10.1074/jbc.M601019200 | spa |
dc.relation.references | Allaman, I., Bélanger, M., & Magistretti, P. J. (2011). Astrocyte-neuron metabolic relationships: For better and for worse. Trends in Neurosciences, 34(2), 76–87. https://doi.org/10.1016/j.tins.2010.12.001 | spa |
dc.relation.references | Bales, K. R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., Hansen, J. C., Sullivan, P. M., & Paul, S. M. (2009). Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. Journal of Neuroscience, 29(21), 6771–6779. https://doi.org/10.1523/JNEUROSCI.0887-09.2009 | spa |
dc.relation.references | Bamberger, M. E., Harris, M. E., Mcdonald, D. R., Husemann, J., & Landreth, G. E. (2003). A cell surface receptor complex for fibrillar-amyloid mediates microglial activation. The Journal of Neuroscience, 23(7), 2665–2674. | spa |
dc.relation.references | Bejanin, A., Schonhaut, D. R., la Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., Ayakta, N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J. P., Gorno-Tempini, M. L., Miller, Z. A., Rosen, H. J., Miller, B. L., Jagust, W. J., & Rabinovici, G. D. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain, 140(12), 3286–3300. https://doi.org/10.1093/brain/awx243 | spa |
dc.relation.references | Berislav, Z., Rashid, D., Jan, S., Nienwen, C., & Miano, J. (2005). Neurovascular pathways and Alzheimer amyloid beta-peptide. National Library of Medicine, 15(1), 78–83. https://doi.org/10.1111/j.1750-3639.2005.tb00103.x | spa |
dc.relation.references | Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45(5), 675–688. https://doi.org/10.1016/j.neuron.2005.01.040 | spa |
dc.relation.references | Braak, H., & Braak, E. (1994). Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiology of Aging, 15(3), 355–356. | spa |
dc.relation.references | Braak, H., Braak, E., Grundke-Iqbal, I., & Iqbal, K. (1986). Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neuroscience Letters, 65, 351–355. https://doi.org/10.1016/0304-3940(86)90288-0 | spa |
dc.relation.references | Bradley, H., & Duyckaerts, C. (2012). Connections, cognition and Alzheimer’s disease. Springer Science & Business Media, 12, 0–254. | spa |
dc.relation.references | Brich, J., Shie, F.-S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L.-W., Mumby, M., Churchill, G., Herz, J., & Cooper, J. A. (2002). Genetic modulation of Tau phosphorylation in the mouse. The Journal of Neuroscience, 23(1), 187–192. www.informatics.jax.org/mgihome/ | spa |
dc.relation.references | Bustos, A., & Sandoval, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. | spa |
dc.relation.references | Caicedo Díaz, J. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. Universidad Nacional de Colombia. | spa |
dc.relation.references | Cameron, B., & Landreth, G. E. (2010). Inflammation, microglia, and alzheimer’s disease. Neurobiology of Disease, 37(3), 503–509. https://doi.org/10.1016/j.nbd.2009.10.006 | spa |
dc.relation.references | Chen, J., Li, Q., Wang, J., & Frieden, C. (2011). Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. National Library of Medicine (NIH), 108(36), 14813–14818. https://doi.org/10.1073/pnas.1106420108/-/DCSupplemental | spa |
dc.relation.references | Choi, J., Gao, J., Kim, J., Hong, C., Kim, J., & Peter Tontonoz, †. (2015). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Ab amyloidosis. National Library of Medicine. https://doi.org/10.1126/scitranslmed.aad1904 | spa |
dc.relation.references | Courtney, R., & Landreth, G. E. (2016). LXR regulation of brain cholesterol: from development to disease. Trends in Endocrinology and Metabolism, 27(6), 404–414. https://doi.org/10.1016/j.tem.2016.03.018 | spa |
dc.relation.references | Craig-Schapiro, R., Perrin, R. J., Roe, C. M., Xiong, C., Carter, D., Cairns, N. J., Mintun, M. A., Peskind, E. R., Li, G., Galasko, D. R., Clark, C. M., Quinn, J. F., D’Angelo, G., Malone, J. P., Townsend, R. R., Morris, J. C., Fagan, A. M., & Holtzman, D. M. (2010). YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biological Psychiatry, 68(10), 903–912. https://doi.org/10.1016/j.biopsych.2010.08.025 | spa |
dc.relation.references | Cramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y. D., Karlo, J. C., Zinn, A. E., Casali, B. T., Restivo, J. L., Goebel, W. D., James, M. J., Brunden, K. R., Wilson, D. A., & Landreth, G. E. (2012). ApoE-Directed Therapeutics Rapidly Clear b-Amyloid and Reverse Deficits in AD Mouse Models. www.sciencemag.org | spa |
dc.relation.references | Cruts, M., Hendriks, L., & Broeckhoven, C. van. (1996). The presenilin genes: a new gene family involved in Alzheimer disease pathology. Human Molecular Genetics, 5. http://hmg.oxfordjournals.org/ | spa |
dc.relation.references | Cui, W., Sun, Y., Wang, Z., Xu, C., Xu, L., Wang, F., Chen, Z., Peng, Y., & Li, R. (2011). Activation of liver x receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels. Neurochemical Research, 36(10), 1910–1921. https://doi.org/10.1007/s11064-011-0513-3 | spa |
dc.relation.references | D Scheuner, C Eckman, M Jensen, X. S., M Citron, N. S., T D Bird, J Hardy, M Hutton, W Kukull, E Larson, E Levy-Lahad, M Viitanen, E Peskind, P Poorkaj, G Schellenberg, R Tanzi, W Wasco, L Lannfelt, D Selkoe, & S Younkin. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. National Library of Medicine, 2(8), 864–870. https://doi.org/10.1038/nm0896-864 | spa |
dc.relation.references | Deane, R., Wu, Z., & Zlokovic, B. v. (2004). RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke, 35(11 SUPPL. 1), 2628–2631. https://doi.org/10.1161/01.STR.0000143452.85382.d1 | spa |
dc.relation.references | Demattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’dell, M. A., Taylor, J. W., Harmony, J. A. K., Aronow, B. J., Bales, K. R., & Paul, S. M. (2004). ApoE and clusterin cooperatively suppress a levels and deposition: Evidence that ApoE regulates extracellular a metabolism in vivo. Neuron, 41, 193–202. | spa |
dc.relation.references | Don&, L.-M., Wilson, C., Wardellsii, M. R., Simmons+, T., Mahleys $+so, R. W., Weisgrabers $$, K. H., & Agardo, D. A. (1994). Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. National Library of Medicine, 269(35), 22358–22365. | spa |
dc.relation.references | Donkin, J. J., Stukas, S., Hirsch-Reinshagen, V., Namjoshi, D., Wilkinson, A., May, S., Chan, J., Fan, J., Collins, J., & Wellington, C. L. (2010). ATP-binding Cassette Transporter A1 Mediates the Beneficial Effects of the Liver X Receptor Agonist GW3965 on Object Recognition Memory and Amyloid Burden in Amyloid Precursor Protein/Presenilin 1 Mice*. Journal of Biological Chemistry, 285(44), 34144–34154. https://doi.org/10.1074/jbc.M110.108100 | spa |
dc.relation.references | Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., Thomas, R. G., Aisen, P. S., Siemers, E., Sethuraman, G., & Mohs, R. (2013). A Phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/nejmoa1210951 | spa |
dc.relation.references | Elshourbagy, N., Liao, W., Mahley, R., & Taylor, J. (1985). Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A, 82(1), 7–203. https://doi.org/10.1073/pnas.82.1.203 | spa |
dc.relation.references | Fagan, A. M., Bu, G., Sun, Y., Daugherty, A., & Holtzman, D. M. (1996). Apolipoprotein E-containing high-density lipoprotein promotes neurite outgrowth and is a ligand for the low-density lipoprotein receptor-related protein. The Journal of Biological Chemistry, 271(47), 30121–30125. http://www-jbc.stanford.edu/jbc/ | spa |
dc.relation.references | Fan, Z., Brooks, D. J., Okello, A., & Edison, P. (2017). An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain, 140(3), 792–803. https://doi.org/10.1093/brain/aww349 | spa |
dc.relation.references | Fisher, C. A., & Ryan, R. O. (1999). Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. Journal of Lipid Research, 40(1), 93–99. https://doi.org/10.1016/s0022-2275(20)33343-5 | spa |
dc.relation.references | Fitz, N. F., Cronican, A. A., Lefterov, I., & Koldamova, R. (2013). Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.” Science, 340(6135). https://doi.org/10.1126/science.1235809 | spa |
dc.relation.references | Fraser, D. A., Pisalyaput, K., & Tenner, A. J. (2010). C1q enhances microglial clearance of apoptotic neurons and neuronal blebs and modulates subsequent inflammatory cytokine production. Journal of Neurochemistry, 112(3), 733–743. https://doi.org/10.1111/j.1471-4159.2009.06494.x | spa |
dc.relation.references | Fuller, S., Münch, G., & Steele, M. (2009). Activated astrocytes: A therapeutic target in Alzheimer’s disease? Expert Review of Neurotherapeutics, 9(11), 1585–1594. https://doi.org/10.1586/ern.09.111 | spa |
dc.relation.references | Genis, L., Chen, Y., Shohami, E., & Michaelson, D. M. (2000). Tau hyperphosphorylation in Apolipoprotein E-deficient and control mice after closed head injury. J. Neurosci. Res, 60, 559–564. | spa |
dc.relation.references | Giri, R. K., Selvaraj, S. K., & Kalra, V. K. (2003). Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. The Journal of Immunology, 170(10), 5281–5294. https://doi.org/10.4049/jimmunol.170.10.5281 | spa |
dc.relation.references | Glass, C. K., & Saijo, K. (2010). Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Reviews Immunology, 10(5), 365–376. https://doi.org/10.1038/nri2748 | spa |
dc.relation.references | Gueguen, Y., Bertrand, P., Ferrari, L., Batt, A.-M., & Siest, G. (2001). Control of apolipoprotein E secretion by 25-hydroxycholesterol and proinflammatory cytokines in the human astrocytoma cell line CCF-STTG1. Cell Biology and Toxicology, 17(1), 191–199. | spa |
dc.relation.references | Halassa, M. M., & Haydon, P. G. (2009). Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annual Review of Physiology, 72, 335–355. https://doi.org/10.1146/annurev-physiol-021909-135843 | spa |
dc.relation.references | Hoe, H. S., Freeman, J., & Rebeck, G. W. (2006). Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Molecular Neurodegeneration, 1(1). https://doi.org/10.1186/1750-1326-1-18 | spa |
dc.relation.references | Hutton, M., Lilly, E., & Talbot, C. J. (1996). The role of presenilin 1 in the genetics of Alzheimer’s disease. Article in Cold Spring Harbor Symposia on Quantitative Biology. www.uia.ac.be/ADMutations/ | spa |
dc.relation.references | Iqbal, K., Liu, F., Gong, C.-X., & Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, 7, 656–664. | spa |
dc.relation.references | Jack, C. R., & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron, 80(6), 1347–1358. https://doi.org/10.1016/j.neuron.2013.12.003 | spa |
dc.relation.references | Jerrett, J. T., & Lansbury, P. T. (1993). Seeding one-dimensional minireview crystallization of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1059. | spa |
dc.relation.references | Jiang, Q., Lee, C. Y. D., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T. M., Collins, J. L., Richardson, J. C., Smith, J. D., Comery, T. A., Riddell, D., Holtzman, D. M., Tontonoz, P., & Landreth, G. E. (2008). ApoE promotes the proteolytic degradation of Aβ. Neuron, 58(5), 681–693. https://doi.org/10.1016/j.neuron.2008.04.010 | spa |
dc.relation.references | Johnson-Wood, K., Lee, M., Motter, R., Hu, K., Gordon, G., Barbour, R., Khan, K., Gordon, M., Tan, H., Games, D., Lieberburg, I., Schenk, D., Seubert, P., & Mcconlogue, L. (1997). Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease (PDAPP mouse-peptideamyloidogenesis). National Library of Medicine, 94, 1550–1555. www.pnas.org. | spa |
dc.relation.references | Johnston, H., Boutin, H., & Allan, S. M. (2011). Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochemical Society Transactions, 39(4), 886–890. https://doi.org/10.1042/BST0390886 | spa |
dc.relation.references | Joseph, S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J., & Tontonoz, P. (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Medicine, 9(2), 213–219. https://doi.org/10.1038/nm820 | spa |
dc.relation.references | K Duff, C Eckman, C Zehr, X Yu, C M Prada, J Perez-tur, M Hutton, L Buee, Y Harigaya, D Yager, D Morgan, M Gordon, L Holcomb, L Refolo, B Zenk, J Hardy, & S Younkin. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Springer Science and Business Media LLC. | spa |
dc.relation.references | Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J. A., Jansen, A. H. P., Verveer, M., de Groot, L. R., Smith, V. D., Rangarajan, S., Rodríguez, J. J., Orre, M., & Hol, E. M. (2012). GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042823 | spa |
dc.relation.references | Kamphuis, W., Orre, M., Kooijman, L., Dahmen, M., & Hol, E. M. (2012). Differential cell proliferation in the cortex of the APPswe PS1dE9 Alzheimer’s disease mouse model. GLIA, 60(4), 615–629. https://doi.org/10.1002/glia.22295 | spa |
dc.relation.references | Kanekiyo, T., Xu, H., & Bu, G. (2014). ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron, 81(4), 740–754. https://doi.org/10.1016/j.neuron.2014.01.045 | spa |
dc.relation.references | Kim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 7(12), 1013–1030. https://doi.org/10.1038/nrd2755 | spa |
dc.relation.references | Kojro, E., Gimpl, G., Lammich, S., Mä Rz ‡, W., & Fahrenholz, F. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the-secretase ADAM 10. PNAS May, 8(10), 5815–5820. www.pnas.orgcgidoi10.1073pnas.081612998 | spa |
dc.relation.references | Koldamova, R. (2014). Improvement of memory deficits and amyloid-β clearance in aged APP23 mice treated with a combination of anti-amyloid-β antibody and LXR agonist. Journal of Alzheimer’s Disease : JAD, 41(2), 535–549. https://doi.org/10.3233/JAD-132789 | spa |
dc.relation.references | Koldamova, R. P., Lefterov, I. M., Ikonomovic, M. D., Skoko, J., Lefterov, P. I., Isanski, B. A., DeKosky, S. T., & Lazo, J. S. (2003). 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. Journal of Biological Chemistry, 278(15), 13244–13256. https://doi.org/10.1074/jbc.M300044200 | spa |
dc.relation.references | Koldamova, R. P., Lefterov, I. M., Staufenbiel, M., Wolfe, D., Huang, S., Glorioso, J. C., Walter, M., Roth, M. G., & Lazo, J. S. (2005). The liver X receptor ligaun T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer’s disease. Journal of Biological Chemistry, 280(6), 4079–4088. https://doi.org/10.1074/jbc.M411420200 | spa |
dc.relation.references | Koldamova, R., Staufenbiel, M., & Lefterov, I. (2005). Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. Journal of Biological Chemistry, 280(52), 43224–43235. https://doi.org/10.1074/jbc.M504513200 | spa |
dc.relation.references | Kung, H. F. (2012). The β-amyloid hypothesis in Alzheimer’s disease: Seeing is believing. ACS Medicinal Chemistry Letters, 3(4), 265–267. https://doi.org/10.1021/ml300058m | spa |
dc.relation.references | Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-y | spa |
dc.relation.references | Lewandowski, C. T., Laham, M. S., & Thatcher, G. R. J. (2022). Remembering your A, B, C’s: Alzheimer’s disease and ABCA1. Acta Pharmaceutica Sinica B, 12(3), 995–1018. https://doi.org/10.1016/j.apsb.2022.01.011 | spa |
dc.relation.references | Liao, F., Yoon, H., & Kim, J. (2017). Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Current Opinion in Lipidology, 28(1), 60–67. https://doi.org/10.1097/MOL.0000000000000383 | spa |
dc.relation.references | Loane, D. J., Washington, P. M., Vardanian, L., Pocivavsek, A., Hoe, H. S., Duff, K. E., Cernak, I., Rebeck, G. W., Faden, A. I., & Burns, M. P. (2011). Modulation of ABCA1 by an LXR agonist reduces beta-amyloid levels and improves outcome after traumatic brain injury. Journal of Neurotrauma, 28(2), 225–236. https://doi.org/10.1089/neu.2010.1595 | spa |
dc.relation.references | MacLennan, D. H., Brandl, C. J., Korczak, B., Green, N. M., Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., & Price, D. L. (1983). Evidence that JLS-amyloid protein in Alzheimer’s disease is not derived by normal processing. Euir. J. Biochem, 209, 1617. http://about.jstor.org/terms | spa |
dc.relation.references | Mahley, R. W. (1988). Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. National Library of Medicine (NIH), 240(4852), 622–630. https://doi.org/10.1126/science.3283935 | spa |
dc.relation.references | Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2009). Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. Journal of Lipid Research, 50(SUPPL.). https://doi.org/10.1194/jlr.R800069-JLR200 | spa |
dc.relation.references | Mandrekar, S., & Landreth, G. E. (2010). Microglia and inflammation in Alzheimer’s disease. National Library of Medicine, 9(2), 156–167. https://doi.org/10.2174/187152710791012071 | spa |
dc.relation.references | Mandrekar-Colucci, S., & Landreth, G. E. (2011). Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opinion on Therapeutic Targets, 15(9), 1085–1097. https://doi.org/10.1517/14728222.2011.594043 | spa |
dc.relation.references | Muñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223578 | spa |
dc.relation.references | Nawashiro, H., Brenner, M., Fukui, S., & Shima, K. (2000). High susceptibility to cerebral ischemia in GFAP-null mice. Journal of Cerebral Blood Flow Alld Metabolism, 20, 1040–1044. | spa |
dc.relation.references | Okagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum species: A comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules, 26(13). https://doi.org/10.3390/molecules26134023 | spa |
dc.relation.references | Oram, J. F. (2003). HDL apolipoproteins and ABCA1 partners in the removal of excess cellular cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(5), 720–727. https://doi.org/10.1161/01.ATV.0000054662.44688.9A | spa |
dc.relation.references | Rashid, D., Shi Du, Y., Submamaryan, K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Chang Lin, Jin Yu, Hong Zhu, Ghiso, J., Frangione, B., Stern, A., Schmidt, A., Armstrong, D., Bernd, A., Liliensiek, B., Nawroth, P., … Zlokovic, B. (2003). RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 9, 907–913. https://doi.org/https://doi.org/10.1038/nm890 | spa |
dc.relation.references | Rebeck, C. W., Reiter, J. S., Strickland, D. K., & Hyman, B. 1. (1993). Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron, 11, 575–580. | spa |
dc.relation.references | Remaley, A. T., Stonik, J. A., Demosky, S. J., Neufeld, E. B., Vishnyakova, T. G., Patterson, A. P., Santamarina-Fojo, S., Brewer, H. B., Bocharov, A. v., Eggerman, T. L., & Duverger, N. J. (2001). Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochemical and Biophysical Research Communications, 280(3), 818–823. https://doi.org/10.1006/bbrc.2000.4219 | spa |
dc.relation.references | Riddell, D. R., Zhou, H., Comery, T. A., Kouranova, E., Lo, C. F., Warwick, H. K., Ring, R. H., Kirksey, Y., Aschmies, S., Xu, J., Kubek, K., Hirst, W. D., Gonzales, C., Chen, Y., Murphy, E., Leonard, S., Vasylyev, D., Oganesian, A., Martone, R. L., … Jacobsen, J. S. (2007). The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Molecular and Cellular Neuroscience, 34(4), 621–628. https://doi.org/10.1016/j.mcn.2007.01.011 | spa |
dc.relation.references | Romanoski, C. E., Link, V. M., Heinz, S., & Glass, C. K. (2015). Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends in Immunology, 36(9), 507–518. https://doi.org/10.1016/j.it.2015.07.006 | spa |
dc.relation.references | Ruiz González, J. C. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer. Universidad Nacional de Colombia. | spa |
dc.relation.references | Sandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 10(12), e0145467. https://doi.org/10.1371/journal.pone.0145467 | spa |
dc.relation.references | Sandoval-Hernández, A. G., Hernández, H. G., Restrepo, A., Muñoz, J. I., Bayon, G. F., Fernández, A. F., Fraga, M. F., Cardona-Gómez, G. P., Arboleda, H., & Arboleda, G. H. (2016). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Journal of Molecular Neuroscience, 58(2), 243–253. https://doi.org/10.1007/s12031-015-0665-8 | spa |
dc.relation.references | Schweinzer, C., Kober, A., Lang, I., Etschmaier, K., Scholler, M., Kresse, A., Sattler, W., & Panzenboeck, U. (2011). Processing of endogenous AβPP in blood-brain barrier endothelial cells is modulated by liver-x receptor agonists and altered cellular cholesterol homeostasis. Journal of Alzheimer’s Disease, 27(2), 341–360. https://doi.org/10.3233/JAD-2011-110854 | spa |
dc.relation.references | Selkoe, D. J. (1994). Normal and abnormal biology of the beta-amyloid precursor protein. National Library of Medicine, 17(1), 489–517. https://doi.org/10.1146/annurev.ne.17.030194.002421 | spa |
dc.relation.references | Simpson, J. E., Ince, P. G., Lace, G., Forster, G., Shaw, P. J., Matthews, F., Savva, G., Brayne, C., & Wharton, S. B. (2010). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31(4), 578–590. https://doi.org/10.1016/j.neurobiolaging.2008.05.015 | spa |
dc.relation.references | Skerrett, R., Malm, T., & Landreth, G. (2014). Nuclear receptors in neurodegenerative diseases. Neurobiology of Disease, 72(Part A), 104–116. https://doi.org/10.1016/j.nbd.2014.05.019 | spa |
dc.relation.references | Skovronsky, D. M., Doms, R. W., & M-Y Lee, V. (1998). Detection of a novel intraneuronal pool of insoluble amyloid protein that accumulates with time in culture. The Journal of Cell Biology, 141(4), 1031–1039. http://www.jcb.org | spa |
dc.relation.references | Sodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45–51. https://doi.org/10.1016/j.phrs.2013.03.008 | spa |
dc.relation.references | Suárez‐Calvet, M., Kleinberger, G., Araque Caballero, M. Á., Brendel, M., Rominger, A., Alcolea, D., Fortea, J., Lleó, A., Blesa, R., Gispert, J. D., Sánchez‐Valle, R., Antonell, A., Rami, L., Molinuevo, J. L., Brosseron, F., Traschütz, A., Heneka, M. T., Struyfs, H., Engelborghs, S., … Haass, C. (2016). sTREM 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer’s disease and associate with neuronal injury markers . EMBO Molecular Medicine, 8(5), 466–476. https://doi.org/10.15252/emmm.201506123 | spa |
dc.relation.references | Thromb, A., & Biol, V. (2016). Central nervous system lipoproteins ApoE and regulation of cholesterol metabolism. Aha Journal, 26(11), 0–11. http://ahajournals.org | spa |
dc.relation.references | van Broeckhoven, C., Haan, J., Bakke1r, E., Hardy, J. A., van Hul, W., Wehnert, A., Vegter-Van Der Vlis, M., & Roost, R. A. C. (1990). Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). National Library of Medicine, 248(4959), 1120–1122. https://doi.org/10.1126/science.1971458 | spa |
dc.relation.references | Vanmierlo, T., Rutten, K., Dederen, J., Bloks, V. W., van Vark-van der Zee, L. C., Kuipers, F., Kiliaan, A., Blokland, A., Sijbrands, E. J. G., Steinbusch, H., Prickaerts, J., Lütjohann, D., & Mulder, M. (2011). Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiology of Aging, 32(7), 1262–1272. https://doi.org/10.1016/j.neurobiolaging.2009.07.005 | spa |
dc.relation.references | Venkateswaran, A., Laffitte, B. A., Joseph, S. B., Mak, P. A., Wilpitz, D. C., Edwards, P. A., & Tontonoz, P. (2000). Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR. PNAS, 97(22), 12097–12102. www.pnas.orgcgidoi10.1073pnas.200367697 | spa |
dc.relation.references | Villamizar, M., Suárez, C., & Jiménez, K. (2007). Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Duazary, 4(2), 140–159. https://doi.org/https://doi.org/10.21676/2389783X.655 | spa |
dc.relation.references | Vitali, C., Wellington, C., Calabresi, L., & Paoletti, E. G. (2014). HDL and cholesterol handling in the brain. National Library of Medicine (NIH), 103(3). https://doi.org/10.1093/cvr/cvu148 | spa |
dc.relation.references | von Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E. M., & Mandelkow, E. (2001). Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. Journal of Biological Chemistry, 276(51), 48165–48174. https://doi.org/10.1074/jbc.M105196200 | spa |
dc.relation.references | Wahrle, S. E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J. D., Kowalewski, T., & Holtzman, D. M. (2004). ABCA1 is required for normal central nervous system apoE levels and for lipidation of astrocyte-secreted apoE. Journal of Biological Chemistry, 279(39), 40987–40993. https://doi.org/10.1074/jbc.M407963200 | spa |
dc.relation.references | Wang, J.-Z., Grundke-Iqbal, I., & Iqbal, K. (1996). Restoration of biological activity of Alzheimer abnormally phosphorylated τ by dephosphorylation with protein phosphatase-2A, −2B and −1. Molecular Brain Research, 38, 200–208. https://doi.org/https://doi.org/10.1016/0169-328X(95)00316-K | spa |
dc.relation.references | Wang, L., Schuster, G. U., Hultenby, K., Zhang, Q., Andersson, S., Gustafsson, J.-Å., Förster, C., Mäkela, S., Wärri, A., Kietz, S., Becker, D., Warner, M., & Gustafs, J.-Å. (2002). Inactivation of liver X receptor leads to adult-onset motor neuron degeneration in male mice. Proceedings of the National Academy of Sciences, 21, 15578–15583. www.pnas.orgcgidoi10.1073pnas.0500634102 | spa |
dc.relation.references | Weitz, T. M., & Town, T. (2012). Microglia in Alzheimer’s disease: It’s all about context. International Journal of Alzheimer’s Disease. https://doi.org/10.1155/2012/314185 | spa |
dc.relation.references | Wild-Bode, C., Yamazaki, T., Capell, A., Leimer, U., Steiner, H., Ihara, Y., & Haass, C. (1997). Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. Journal of Biological Chemistry, 272(26), 16085–16088. https://doi.org/10.1074/jbc.272.26.16085 | spa |
dc.relation.references | Wildsmith, K., Holley, M., Savage, J., Skerrett, R., & Landreth, G. (2013). Apolipoprotein E facilitates amyloid beta clearance by proteolytic degradation. Alzheimer’s Research and Therapy, 5(33). http://alzres.com/content/5/4/33 | spa |
dc.relation.references | Wilson, C., Doms, R., & M-Y Lee, V. (1999). Intracellular APP processing and Aβ production in Alzheimer disease. Journal of Neuropathology Experimental Neurology, 58(8), 787–794. https://doi.org/https://doi.org/10.1097/00005072-199908000-00001 | spa |
dc.relation.references | Xu, K., Malouf, A. T., Messing, A., & Silver, J. (1999). Glial fibrillary acidic protein is necessary for mature astrocytes to react to-amyloid. GLIA, 25, 390–403. | spa |
dc.relation.references | Xu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R. W., & Huang, Y. (2006). Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. Journal of Neuroscience, 26(19), 4985–4994. https://doi.org/10.1523/JNEUROSCI.5476-05.2006 | spa |
dc.relation.references | Yamamoto, M., Horiba, M., Buescher, J. L., Huang, D., Gendelman, H. E., Ransohoff, R. M., & Ikezu, T. (2005). Overexpression of monocyte chemotactic protein-1/ CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. American Journal of Pathology, 166(5), 1475–1485. https://doi.org/10.1016/S0002-9440(10)62364-4 | spa |
dc.relation.references | Zelcer, N., Khanlou, N., Clare, R., Qingguang, J., Reed-Geaghan, Landreth, G., Vinters, H., & Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences, 104(25), 10601–10606. | spa |
dc.relation.references | Zhang, L., Reue, K., Fong, L. G., Young, S. G., & Tontonoz, P. (2012). Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(11), 2541–2546. https://doi.org/10.1161/ATVBAHA.112.250571 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.decs | Extractos vegetales | spa |
dc.subject.decs | Plant Extracts | eng |
dc.subject.decs | Enfermedad de Alzheimer | spa |
dc.subject.decs | Alzheimer Disease | eng |
dc.subject.decs | Medicamentos similares | spa |
dc.subject.decs | Similar Drugs | eng |
dc.subject.proposal | Patología amiloide | spa |
dc.subject.proposal | Enfermedad de Alzheimer | spa |
dc.subject.proposal | Receptores X hepáticos (LXR) | spa |
dc.subject.proposal | Zanthoxylum martinicense | other |
dc.subject.proposal | Taupatías | spa |
dc.title | Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD) | spa |
dc.title.translated | Evaluation of the therapeutic potential of plant extract from Zanthoxylum martinicense associated with agonist activity of LXR in the murine model of Alzheimer's disease (3xTg-AD) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en e.pdf
- Tamaño:
- 3.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en ciencias-Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: