Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD)

dc.contributor.advisorArboleda Bustos, Gonzalo Humberto
dc.contributor.authorPérez Silva, Ana Milena
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001676218spa
dc.contributor.researchgroupMuerte Celular y Neurocienciasspa
dc.date.accessioned2023-06-07T14:12:33Z
dc.date.available2023-06-07T14:12:33Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías principalmente a blanco y negrospa
dc.description.abstractEvaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD) La enfermedad de Alzheimer (EA) es un trastorno neurodegenerativo caracterizado por un deterioro cognitivo asociado patológicamente por la formación de placas amiloides y ovillos neurofibrilares. La hipótesis amiloide postula que el origen de la enfermedad comienza por la acumulación de péptidos Aβ, que desencadena procesos de neuroinflamación, desregulación de quinasas, incremento de especies reactivas de oxígeno, pérdida de espinas dendríticas y muerte neuronal. Estudios preliminares han demostrado que el extracto vegetal de Zanthoxylum martinicense presenta actividad agonista LXR, y la activación de estos receptores se relaciona con la modulación de biomarcadores de la EA (tales como la homeóstasis de colesterol, la agregación de depósitos amiloides y la neuroinflamación) para prevenir el desarrollo de la patología. Por tal motivo, se plantea como objetivo, evaluar el potencial terapéutico del extracto vegetal de Zanthoxylum martinicense con actividad agonista LXR en el modelo murino 3xTg-AD. Método: Se administró vía oral el extracto vegetal de raíz de Zanthoxylum martinicense durante 90 días, con dosis de 50mg/kg/día y 100mg/kg/día en ratones 3xTg-AD de 15 meses de edad, con el fin de evaluar: (1) cambios cognitivos a nivel comportamental empleando el laberinto acuático de Morris, (2) su efecto sobre la carga Aβ y la expresión de τ, GFAP e Iba-1 y (3) cambios en el nivel de expresión de proteína APOE y ABCA1 en lisados de hipocampo y corteza cerebral de ratones 3xTg-AD. Resultados: Se observó que el tratamiento con el extracto vegetal de Zanthoxylum martinicense redujo drásticamente el inmunomarcaje de la patología amiloide de manera dosis dependiente (p = 0.0002), tendió a disminuir el área de inmunoreactividad positiva de τ (p = 0.1619), generó una reversión en los procesos de neuroinflamación tanto a nivel morfológico como inmunohistoquímico para GFAP (p = 0.0857) e Iba-1 (p = 0.0286) y aumentó el nivel de expresión de algunos blancos transcripcionales de LXR: APOE y ABCA1 (p < 0.0001) en el hipocampo y corteza cerebral de ratones 3xTg-AD en comparación con los animales 3xTg-AD tratados con el vehículo (3xTg-AD VH), lo cual está asociado con una mejora en el proceso de consolidación de la memoria espacial y de aprendizaje de ratones 3xTg-AD, asemejando el comportamiento en el laberinto acuático de Morris a niveles similares del grupo control C57, el cual no presentó ningún tipo de daño cognoscitivo. Por tal motivo, la actividad agonista LXR presente en el extracto vegetal de Zanthoxylum martinicense ha demostrado tener un potencial terapéutico prometedor en modelos murinos con el fenotipo de la EA la cual ha sido asociada con una mejora a nivel cognitivo como resultado de una disminución en el inmunomarcaje de los principales biomarcadores histopatológicos de la enfermedad y un incremento en el nivel de expresión de sus blancos transcripcionales: APOE y ABCA1. Palabras clave: Alzheimer, Zanthoxylum martinicense, Aβ, τ, GFAP, Iba-1, APOE, ABCA1. (Texto tomado de la fuente)
dc.description.abstractEvaluation of the therapeutic potential of plant extract from Zanthoxylum martinicense associated with agonist activity of LXR in the murine model of Alzheimer's disease (3xTg-AD) Alzheimer's disease is a neurodegenerative disorder characterized by a cognitive impairment pathologically associated by the formation of amyloid plaques and neurofibrillary tangles. The amyloid hypothesis postulates that the origin of the disease begins with the accumulation of Aβ peptides, which trigger processes of neuroinflammation, deregulation of kinases, reactive oxygen species increase, loss of dendritic spines, and neuronal death. Preliminary studies have shown that the plant extract Zanthoxylum martinicense presents LXR agonist activity, and the activation of these receptors is related to the modulation of biomarkers of Alzheimer's disease (such as cholesterol homeostasis, the aggregation of amyloid deposits and neuroinflammation) to prevent the development of the pathology. Therefore, the objective is to evaluate the therapeutic potential of the plant extract Zanthoxylum martinicense with LXR agonist activity in the 3xTg-AD murine model. Method: The plant extract Zanthoxylum martinicense was administered orally for 90 days, with doses of 50mg/kg/day and 100mg/kg/day in 3xTg-AD mice of 15 months of age, in order to evaluate: (1) cognitive changes at the behavioral level using the Morris water maze, (2) its effect on Aβ load and the expression of τ, GFAP and Iba-1 and (3) changes in the level of expression of APOE and ABCA1 protein in the hippocampus and cerebral cortex of 3xTg-AD mice. Results: It was shown that the treatment with the plant extract Zanthoxylum martinicense reduced the immunolabeling of the amyloid pathology in a dose-dependent manner (p = 0.0002), it tended to decrease the area of positive immunoreactivity of τ (p = 0.1619), followed by a reversion in neuroinflammation processes at a morphological and immunohistochemical level for GFAP (p = 0.0857) and Iba-1 (p = 0.0286) and increased the expression level of some LXR transcriptional targets: APOE and ABCA1 (p < 0 0001) in the hippocampus and cerebral cortex of 3xTg-AD mice compared to 3xTg-AD animals treated with the vehicle (3xTg-AD VH), which it is associated with an improvement in the consolidation process of spatial memory and learning of 3xTg-AD mice, resembling this behavior to C57 control group in the Morris water maze, which did not present any type of cognitive damage. For this reason, the LXR agonist activity in the Zanthoxylum martinicense plant extract has shown promising therapeutic potential in murine models with the Alzheimer's disease phenotype, which has been associated with an improvement at a cognitive level as a result of a decrease in the immunolabeling of the main histopathological biomarkers of the disease and an increase in the level of expression of its transcriptional targets: APOE and ABCA1. Keywords: Alzheimer´s disease, Zanthoxylum martinicense, Aβ, τ, GFAP, Iba-1, APOE, ABCA1eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaEnfermedades neurodegenerativasspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83985
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbildayeva, K., Jansen, P. J., Hirsch-Reinshagen, V., Bloks, V. W., Bakker, A. H. F., Ramaekers, F. C. S., de Vente, J., Groen, A. K., Wellington, C. L., Kuipers, F., & Mulder, M. (2006). 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. Journal of Biological Chemistry, 281(18), 12799–12808. https://doi.org/10.1074/jbc.M601019200spa
dc.relation.referencesAllaman, I., Bélanger, M., & Magistretti, P. J. (2011). Astrocyte-neuron metabolic relationships: For better and for worse. Trends in Neurosciences, 34(2), 76–87. https://doi.org/10.1016/j.tins.2010.12.001spa
dc.relation.referencesBales, K. R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., Hansen, J. C., Sullivan, P. M., & Paul, S. M. (2009). Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. Journal of Neuroscience, 29(21), 6771–6779. https://doi.org/10.1523/JNEUROSCI.0887-09.2009spa
dc.relation.referencesBamberger, M. E., Harris, M. E., Mcdonald, D. R., Husemann, J., & Landreth, G. E. (2003). A cell surface receptor complex for fibrillar-amyloid mediates microglial activation. The Journal of Neuroscience, 23(7), 2665–2674.spa
dc.relation.referencesBejanin, A., Schonhaut, D. R., la Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., Ayakta, N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J. P., Gorno-Tempini, M. L., Miller, Z. A., Rosen, H. J., Miller, B. L., Jagust, W. J., & Rabinovici, G. D. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain, 140(12), 3286–3300. https://doi.org/10.1093/brain/awx243spa
dc.relation.referencesBerislav, Z., Rashid, D., Jan, S., Nienwen, C., & Miano, J. (2005). Neurovascular pathways and Alzheimer amyloid beta-peptide. National Library of Medicine, 15(1), 78–83. https://doi.org/10.1111/j.1750-3639.2005.tb00103.xspa
dc.relation.referencesBillings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45(5), 675–688. https://doi.org/10.1016/j.neuron.2005.01.040spa
dc.relation.referencesBraak, H., & Braak, E. (1994). Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiology of Aging, 15(3), 355–356.spa
dc.relation.referencesBraak, H., Braak, E., Grundke-Iqbal, I., & Iqbal, K. (1986). Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neuroscience Letters, 65, 351–355. https://doi.org/10.1016/0304-3940(86)90288-0spa
dc.relation.referencesBradley, H., & Duyckaerts, C. (2012). Connections, cognition and Alzheimer’s disease. Springer Science & Business Media, 12, 0–254.spa
dc.relation.referencesBrich, J., Shie, F.-S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L.-W., Mumby, M., Churchill, G., Herz, J., & Cooper, J. A. (2002). Genetic modulation of Tau phosphorylation in the mouse. The Journal of Neuroscience, 23(1), 187–192. www.informatics.jax.org/mgihome/spa
dc.relation.referencesBustos, A., & Sandoval, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer.spa
dc.relation.referencesCaicedo Díaz, J. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. Universidad Nacional de Colombia.spa
dc.relation.referencesCameron, B., & Landreth, G. E. (2010). Inflammation, microglia, and alzheimer’s disease. Neurobiology of Disease, 37(3), 503–509. https://doi.org/10.1016/j.nbd.2009.10.006spa
dc.relation.referencesChen, J., Li, Q., Wang, J., & Frieden, C. (2011). Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. National Library of Medicine (NIH), 108(36), 14813–14818. https://doi.org/10.1073/pnas.1106420108/-/DCSupplementalspa
dc.relation.referencesChoi, J., Gao, J., Kim, J., Hong, C., Kim, J., & Peter Tontonoz, †. (2015). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Ab amyloidosis. National Library of Medicine. https://doi.org/10.1126/scitranslmed.aad1904spa
dc.relation.referencesCourtney, R., & Landreth, G. E. (2016). LXR regulation of brain cholesterol: from development to disease. Trends in Endocrinology and Metabolism, 27(6), 404–414. https://doi.org/10.1016/j.tem.2016.03.018spa
dc.relation.referencesCraig-Schapiro, R., Perrin, R. J., Roe, C. M., Xiong, C., Carter, D., Cairns, N. J., Mintun, M. A., Peskind, E. R., Li, G., Galasko, D. R., Clark, C. M., Quinn, J. F., D’Angelo, G., Malone, J. P., Townsend, R. R., Morris, J. C., Fagan, A. M., & Holtzman, D. M. (2010). YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biological Psychiatry, 68(10), 903–912. https://doi.org/10.1016/j.biopsych.2010.08.025spa
dc.relation.referencesCramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y. D., Karlo, J. C., Zinn, A. E., Casali, B. T., Restivo, J. L., Goebel, W. D., James, M. J., Brunden, K. R., Wilson, D. A., & Landreth, G. E. (2012). ApoE-Directed Therapeutics Rapidly Clear b-Amyloid and Reverse Deficits in AD Mouse Models. www.sciencemag.orgspa
dc.relation.referencesCruts, M., Hendriks, L., & Broeckhoven, C. van. (1996). The presenilin genes: a new gene family involved in Alzheimer disease pathology. Human Molecular Genetics, 5. http://hmg.oxfordjournals.org/spa
dc.relation.referencesCui, W., Sun, Y., Wang, Z., Xu, C., Xu, L., Wang, F., Chen, Z., Peng, Y., & Li, R. (2011). Activation of liver x receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels. Neurochemical Research, 36(10), 1910–1921. https://doi.org/10.1007/s11064-011-0513-3spa
dc.relation.referencesD Scheuner, C Eckman, M Jensen, X. S., M Citron, N. S., T D Bird, J Hardy, M Hutton, W Kukull, E Larson, E Levy-Lahad, M Viitanen, E Peskind, P Poorkaj, G Schellenberg, R Tanzi, W Wasco, L Lannfelt, D Selkoe, & S Younkin. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. National Library of Medicine, 2(8), 864–870. https://doi.org/10.1038/nm0896-864spa
dc.relation.referencesDeane, R., Wu, Z., & Zlokovic, B. v. (2004). RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke, 35(11 SUPPL. 1), 2628–2631. https://doi.org/10.1161/01.STR.0000143452.85382.d1spa
dc.relation.referencesDemattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’dell, M. A., Taylor, J. W., Harmony, J. A. K., Aronow, B. J., Bales, K. R., & Paul, S. M. (2004). ApoE and clusterin cooperatively suppress a levels and deposition: Evidence that ApoE regulates extracellular a metabolism in vivo. Neuron, 41, 193–202.spa
dc.relation.referencesDon&, L.-M., Wilson, C., Wardellsii, M. R., Simmons+, T., Mahleys $+so, R. W., Weisgrabers $$, K. H., & Agardo, D. A. (1994). Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. National Library of Medicine, 269(35), 22358–22365.spa
dc.relation.referencesDonkin, J. J., Stukas, S., Hirsch-Reinshagen, V., Namjoshi, D., Wilkinson, A., May, S., Chan, J., Fan, J., Collins, J., & Wellington, C. L. (2010). ATP-binding Cassette Transporter A1 Mediates the Beneficial Effects of the Liver X Receptor Agonist GW3965 on Object Recognition Memory and Amyloid Burden in Amyloid Precursor Protein/Presenilin 1 Mice*. Journal of Biological Chemistry, 285(44), 34144–34154. https://doi.org/10.1074/jbc.M110.108100spa
dc.relation.referencesDoody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., Thomas, R. G., Aisen, P. S., Siemers, E., Sethuraman, G., & Mohs, R. (2013). A Phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/nejmoa1210951spa
dc.relation.referencesElshourbagy, N., Liao, W., Mahley, R., & Taylor, J. (1985). Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A, 82(1), 7–203. https://doi.org/10.1073/pnas.82.1.203spa
dc.relation.referencesFagan, A. M., Bu, G., Sun, Y., Daugherty, A., & Holtzman, D. M. (1996). Apolipoprotein E-containing high-density lipoprotein promotes neurite outgrowth and is a ligand for the low-density lipoprotein receptor-related protein. The Journal of Biological Chemistry, 271(47), 30121–30125. http://www-jbc.stanford.edu/jbc/spa
dc.relation.referencesFan, Z., Brooks, D. J., Okello, A., & Edison, P. (2017). An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain, 140(3), 792–803. https://doi.org/10.1093/brain/aww349spa
dc.relation.referencesFisher, C. A., & Ryan, R. O. (1999). Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. Journal of Lipid Research, 40(1), 93–99. https://doi.org/10.1016/s0022-2275(20)33343-5spa
dc.relation.referencesFitz, N. F., Cronican, A. A., Lefterov, I., & Koldamova, R. (2013). Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.” Science, 340(6135). https://doi.org/10.1126/science.1235809spa
dc.relation.referencesFraser, D. A., Pisalyaput, K., & Tenner, A. J. (2010). C1q enhances microglial clearance of apoptotic neurons and neuronal blebs and modulates subsequent inflammatory cytokine production. Journal of Neurochemistry, 112(3), 733–743. https://doi.org/10.1111/j.1471-4159.2009.06494.xspa
dc.relation.referencesFuller, S., Münch, G., & Steele, M. (2009). Activated astrocytes: A therapeutic target in Alzheimer’s disease? Expert Review of Neurotherapeutics, 9(11), 1585–1594. https://doi.org/10.1586/ern.09.111spa
dc.relation.referencesGenis, L., Chen, Y., Shohami, E., & Michaelson, D. M. (2000). Tau hyperphosphorylation in Apolipoprotein E-deficient and control mice after closed head injury. J. Neurosci. Res, 60, 559–564.spa
dc.relation.referencesGiri, R. K., Selvaraj, S. K., & Kalra, V. K. (2003). Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. The Journal of Immunology, 170(10), 5281–5294. https://doi.org/10.4049/jimmunol.170.10.5281spa
dc.relation.referencesGlass, C. K., & Saijo, K. (2010). Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Reviews Immunology, 10(5), 365–376. https://doi.org/10.1038/nri2748spa
dc.relation.referencesGueguen, Y., Bertrand, P., Ferrari, L., Batt, A.-M., & Siest, G. (2001). Control of apolipoprotein E secretion by 25-hydroxycholesterol and proinflammatory cytokines in the human astrocytoma cell line CCF-STTG1. Cell Biology and Toxicology, 17(1), 191–199.spa
dc.relation.referencesHalassa, M. M., & Haydon, P. G. (2009). Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annual Review of Physiology, 72, 335–355. https://doi.org/10.1146/annurev-physiol-021909-135843spa
dc.relation.referencesHoe, H. S., Freeman, J., & Rebeck, G. W. (2006). Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Molecular Neurodegeneration, 1(1). https://doi.org/10.1186/1750-1326-1-18spa
dc.relation.referencesHutton, M., Lilly, E., & Talbot, C. J. (1996). The role of presenilin 1 in the genetics of Alzheimer’s disease. Article in Cold Spring Harbor Symposia on Quantitative Biology. www.uia.ac.be/ADMutations/spa
dc.relation.referencesIqbal, K., Liu, F., Gong, C.-X., & Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, 7, 656–664.spa
dc.relation.referencesJack, C. R., & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron, 80(6), 1347–1358. https://doi.org/10.1016/j.neuron.2013.12.003spa
dc.relation.referencesJerrett, J. T., & Lansbury, P. T. (1993). Seeding one-dimensional minireview crystallization of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1059.spa
dc.relation.referencesJiang, Q., Lee, C. Y. D., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T. M., Collins, J. L., Richardson, J. C., Smith, J. D., Comery, T. A., Riddell, D., Holtzman, D. M., Tontonoz, P., & Landreth, G. E. (2008). ApoE promotes the proteolytic degradation of Aβ. Neuron, 58(5), 681–693. https://doi.org/10.1016/j.neuron.2008.04.010spa
dc.relation.referencesJohnson-Wood, K., Lee, M., Motter, R., Hu, K., Gordon, G., Barbour, R., Khan, K., Gordon, M., Tan, H., Games, D., Lieberburg, I., Schenk, D., Seubert, P., & Mcconlogue, L. (1997). Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease (PDAPP mouse-peptideamyloidogenesis). National Library of Medicine, 94, 1550–1555. www.pnas.org.spa
dc.relation.referencesJohnston, H., Boutin, H., & Allan, S. M. (2011). Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochemical Society Transactions, 39(4), 886–890. https://doi.org/10.1042/BST0390886spa
dc.relation.referencesJoseph, S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J., & Tontonoz, P. (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Medicine, 9(2), 213–219. https://doi.org/10.1038/nm820spa
dc.relation.referencesK Duff, C Eckman, C Zehr, X Yu, C M Prada, J Perez-tur, M Hutton, L Buee, Y Harigaya, D Yager, D Morgan, M Gordon, L Holcomb, L Refolo, B Zenk, J Hardy, & S Younkin. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Springer Science and Business Media LLC.spa
dc.relation.referencesKamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J. A., Jansen, A. H. P., Verveer, M., de Groot, L. R., Smith, V. D., Rangarajan, S., Rodríguez, J. J., Orre, M., & Hol, E. M. (2012). GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042823spa
dc.relation.referencesKamphuis, W., Orre, M., Kooijman, L., Dahmen, M., & Hol, E. M. (2012). Differential cell proliferation in the cortex of the APPswe PS1dE9 Alzheimer’s disease mouse model. GLIA, 60(4), 615–629. https://doi.org/10.1002/glia.22295spa
dc.relation.referencesKanekiyo, T., Xu, H., & Bu, G. (2014). ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron, 81(4), 740–754. https://doi.org/10.1016/j.neuron.2014.01.045spa
dc.relation.referencesKim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 7(12), 1013–1030. https://doi.org/10.1038/nrd2755spa
dc.relation.referencesKojro, E., Gimpl, G., Lammich, S., Mä Rz ‡, W., & Fahrenholz, F. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the-secretase ADAM 10. PNAS May, 8(10), 5815–5820. www.pnas.orgcgidoi10.1073pnas.081612998spa
dc.relation.referencesKoldamova, R. (2014). Improvement of memory deficits and amyloid-β clearance in aged APP23 mice treated with a combination of anti-amyloid-β antibody and LXR agonist. Journal of Alzheimer’s Disease : JAD, 41(2), 535–549. https://doi.org/10.3233/JAD-132789spa
dc.relation.referencesKoldamova, R. P., Lefterov, I. M., Ikonomovic, M. D., Skoko, J., Lefterov, P. I., Isanski, B. A., DeKosky, S. T., & Lazo, J. S. (2003). 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. Journal of Biological Chemistry, 278(15), 13244–13256. https://doi.org/10.1074/jbc.M300044200spa
dc.relation.referencesKoldamova, R. P., Lefterov, I. M., Staufenbiel, M., Wolfe, D., Huang, S., Glorioso, J. C., Walter, M., Roth, M. G., & Lazo, J. S. (2005). The liver X receptor ligaun T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer’s disease. Journal of Biological Chemistry, 280(6), 4079–4088. https://doi.org/10.1074/jbc.M411420200spa
dc.relation.referencesKoldamova, R., Staufenbiel, M., & Lefterov, I. (2005). Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. Journal of Biological Chemistry, 280(52), 43224–43235. https://doi.org/10.1074/jbc.M504513200spa
dc.relation.referencesKung, H. F. (2012). The β-amyloid hypothesis in Alzheimer’s disease: Seeing is believing. ACS Medicinal Chemistry Letters, 3(4), 265–267. https://doi.org/10.1021/ml300058mspa
dc.relation.referencesLeng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-yspa
dc.relation.referencesLewandowski, C. T., Laham, M. S., & Thatcher, G. R. J. (2022). Remembering your A, B, C’s: Alzheimer’s disease and ABCA1. Acta Pharmaceutica Sinica B, 12(3), 995–1018. https://doi.org/10.1016/j.apsb.2022.01.011spa
dc.relation.referencesLiao, F., Yoon, H., & Kim, J. (2017). Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Current Opinion in Lipidology, 28(1), 60–67. https://doi.org/10.1097/MOL.0000000000000383spa
dc.relation.referencesLoane, D. J., Washington, P. M., Vardanian, L., Pocivavsek, A., Hoe, H. S., Duff, K. E., Cernak, I., Rebeck, G. W., Faden, A. I., & Burns, M. P. (2011). Modulation of ABCA1 by an LXR agonist reduces beta-amyloid levels and improves outcome after traumatic brain injury. Journal of Neurotrauma, 28(2), 225–236. https://doi.org/10.1089/neu.2010.1595spa
dc.relation.referencesMacLennan, D. H., Brandl, C. J., Korczak, B., Green, N. M., Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., & Price, D. L. (1983). Evidence that JLS-amyloid protein in Alzheimer’s disease is not derived by normal processing. Euir. J. Biochem, 209, 1617. http://about.jstor.org/termsspa
dc.relation.referencesMahley, R. W. (1988). Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. National Library of Medicine (NIH), 240(4852), 622–630. https://doi.org/10.1126/science.3283935spa
dc.relation.referencesMahley, R. W., Weisgraber, K. H., & Huang, Y. (2009). Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. Journal of Lipid Research, 50(SUPPL.). https://doi.org/10.1194/jlr.R800069-JLR200spa
dc.relation.referencesMandrekar, S., & Landreth, G. E. (2010). Microglia and inflammation in Alzheimer’s disease. National Library of Medicine, 9(2), 156–167. https://doi.org/10.2174/187152710791012071spa
dc.relation.referencesMandrekar-Colucci, S., & Landreth, G. E. (2011). Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opinion on Therapeutic Targets, 15(9), 1085–1097. https://doi.org/10.1517/14728222.2011.594043spa
dc.relation.referencesMuñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223578spa
dc.relation.referencesNawashiro, H., Brenner, M., Fukui, S., & Shima, K. (2000). High susceptibility to cerebral ischemia in GFAP-null mice. Journal of Cerebral Blood Flow Alld Metabolism, 20, 1040–1044.spa
dc.relation.referencesOkagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum species: A comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules, 26(13). https://doi.org/10.3390/molecules26134023spa
dc.relation.referencesOram, J. F. (2003). HDL apolipoproteins and ABCA1 partners in the removal of excess cellular cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(5), 720–727. https://doi.org/10.1161/01.ATV.0000054662.44688.9Aspa
dc.relation.referencesRashid, D., Shi Du, Y., Submamaryan, K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Chang Lin, Jin Yu, Hong Zhu, Ghiso, J., Frangione, B., Stern, A., Schmidt, A., Armstrong, D., Bernd, A., Liliensiek, B., Nawroth, P., … Zlokovic, B. (2003). RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 9, 907–913. https://doi.org/https://doi.org/10.1038/nm890spa
dc.relation.referencesRebeck, C. W., Reiter, J. S., Strickland, D. K., & Hyman, B. 1. (1993). Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron, 11, 575–580.spa
dc.relation.referencesRemaley, A. T., Stonik, J. A., Demosky, S. J., Neufeld, E. B., Vishnyakova, T. G., Patterson, A. P., Santamarina-Fojo, S., Brewer, H. B., Bocharov, A. v., Eggerman, T. L., & Duverger, N. J. (2001). Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochemical and Biophysical Research Communications, 280(3), 818–823. https://doi.org/10.1006/bbrc.2000.4219spa
dc.relation.referencesRiddell, D. R., Zhou, H., Comery, T. A., Kouranova, E., Lo, C. F., Warwick, H. K., Ring, R. H., Kirksey, Y., Aschmies, S., Xu, J., Kubek, K., Hirst, W. D., Gonzales, C., Chen, Y., Murphy, E., Leonard, S., Vasylyev, D., Oganesian, A., Martone, R. L., … Jacobsen, J. S. (2007). The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Molecular and Cellular Neuroscience, 34(4), 621–628. https://doi.org/10.1016/j.mcn.2007.01.011spa
dc.relation.referencesRomanoski, C. E., Link, V. M., Heinz, S., & Glass, C. K. (2015). Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends in Immunology, 36(9), 507–518. https://doi.org/10.1016/j.it.2015.07.006spa
dc.relation.referencesRuiz González, J. C. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer. Universidad Nacional de Colombia.spa
dc.relation.referencesSandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 10(12), e0145467. https://doi.org/10.1371/journal.pone.0145467spa
dc.relation.referencesSandoval-Hernández, A. G., Hernández, H. G., Restrepo, A., Muñoz, J. I., Bayon, G. F., Fernández, A. F., Fraga, M. F., Cardona-Gómez, G. P., Arboleda, H., & Arboleda, G. H. (2016). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Journal of Molecular Neuroscience, 58(2), 243–253. https://doi.org/10.1007/s12031-015-0665-8spa
dc.relation.referencesSchweinzer, C., Kober, A., Lang, I., Etschmaier, K., Scholler, M., Kresse, A., Sattler, W., & Panzenboeck, U. (2011). Processing of endogenous AβPP in blood-brain barrier endothelial cells is modulated by liver-x receptor agonists and altered cellular cholesterol homeostasis. Journal of Alzheimer’s Disease, 27(2), 341–360. https://doi.org/10.3233/JAD-2011-110854spa
dc.relation.referencesSelkoe, D. J. (1994). Normal and abnormal biology of the beta-amyloid precursor protein. National Library of Medicine, 17(1), 489–517. https://doi.org/10.1146/annurev.ne.17.030194.002421spa
dc.relation.referencesSimpson, J. E., Ince, P. G., Lace, G., Forster, G., Shaw, P. J., Matthews, F., Savva, G., Brayne, C., & Wharton, S. B. (2010). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31(4), 578–590. https://doi.org/10.1016/j.neurobiolaging.2008.05.015spa
dc.relation.referencesSkerrett, R., Malm, T., & Landreth, G. (2014). Nuclear receptors in neurodegenerative diseases. Neurobiology of Disease, 72(Part A), 104–116. https://doi.org/10.1016/j.nbd.2014.05.019spa
dc.relation.referencesSkovronsky, D. M., Doms, R. W., & M-Y Lee, V. (1998). Detection of a novel intraneuronal pool of insoluble amyloid protein that accumulates with time in culture. The Journal of Cell Biology, 141(4), 1031–1039. http://www.jcb.orgspa
dc.relation.referencesSodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45–51. https://doi.org/10.1016/j.phrs.2013.03.008spa
dc.relation.referencesSuárez‐Calvet, M., Kleinberger, G., Araque Caballero, M. Á., Brendel, M., Rominger, A., Alcolea, D., Fortea, J., Lleó, A., Blesa, R., Gispert, J. D., Sánchez‐Valle, R., Antonell, A., Rami, L., Molinuevo, J. L., Brosseron, F., Traschütz, A., Heneka, M. T., Struyfs, H., Engelborghs, S., … Haass, C. (2016). sTREM 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer’s disease and associate with neuronal injury markers . EMBO Molecular Medicine, 8(5), 466–476. https://doi.org/10.15252/emmm.201506123spa
dc.relation.referencesThromb, A., & Biol, V. (2016). Central nervous system lipoproteins ApoE and regulation of cholesterol metabolism. Aha Journal, 26(11), 0–11. http://ahajournals.orgspa
dc.relation.referencesvan Broeckhoven, C., Haan, J., Bakke1r, E., Hardy, J. A., van Hul, W., Wehnert, A., Vegter-Van Der Vlis, M., & Roost, R. A. C. (1990). Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). National Library of Medicine, 248(4959), 1120–1122. https://doi.org/10.1126/science.1971458spa
dc.relation.referencesVanmierlo, T., Rutten, K., Dederen, J., Bloks, V. W., van Vark-van der Zee, L. C., Kuipers, F., Kiliaan, A., Blokland, A., Sijbrands, E. J. G., Steinbusch, H., Prickaerts, J., Lütjohann, D., & Mulder, M. (2011). Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiology of Aging, 32(7), 1262–1272. https://doi.org/10.1016/j.neurobiolaging.2009.07.005spa
dc.relation.referencesVenkateswaran, A., Laffitte, B. A., Joseph, S. B., Mak, P. A., Wilpitz, D. C., Edwards, P. A., & Tontonoz, P. (2000). Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR. PNAS, 97(22), 12097–12102. www.pnas.orgcgidoi10.1073pnas.200367697spa
dc.relation.referencesVillamizar, M., Suárez, C., & Jiménez, K. (2007). Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Duazary, 4(2), 140–159. https://doi.org/https://doi.org/10.21676/2389783X.655spa
dc.relation.referencesVitali, C., Wellington, C., Calabresi, L., & Paoletti, E. G. (2014). HDL and cholesterol handling in the brain. National Library of Medicine (NIH), 103(3). https://doi.org/10.1093/cvr/cvu148spa
dc.relation.referencesvon Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E. M., & Mandelkow, E. (2001). Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. Journal of Biological Chemistry, 276(51), 48165–48174. https://doi.org/10.1074/jbc.M105196200spa
dc.relation.referencesWahrle, S. E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J. D., Kowalewski, T., & Holtzman, D. M. (2004). ABCA1 is required for normal central nervous system apoE levels and for lipidation of astrocyte-secreted apoE. Journal of Biological Chemistry, 279(39), 40987–40993. https://doi.org/10.1074/jbc.M407963200spa
dc.relation.referencesWang, J.-Z., Grundke-Iqbal, I., & Iqbal, K. (1996). Restoration of biological activity of Alzheimer abnormally phosphorylated τ by dephosphorylation with protein phosphatase-2A, −2B and −1. Molecular Brain Research, 38, 200–208. https://doi.org/https://doi.org/10.1016/0169-328X(95)00316-Kspa
dc.relation.referencesWang, L., Schuster, G. U., Hultenby, K., Zhang, Q., Andersson, S., Gustafsson, J.-Å., Förster, C., Mäkela, S., Wärri, A., Kietz, S., Becker, D., Warner, M., & Gustafs, J.-Å. (2002). Inactivation of liver X receptor leads to adult-onset motor neuron degeneration in male mice. Proceedings of the National Academy of Sciences, 21, 15578–15583. www.pnas.orgcgidoi10.1073pnas.0500634102spa
dc.relation.referencesWeitz, T. M., & Town, T. (2012). Microglia in Alzheimer’s disease: It’s all about context. International Journal of Alzheimer’s Disease. https://doi.org/10.1155/2012/314185spa
dc.relation.referencesWild-Bode, C., Yamazaki, T., Capell, A., Leimer, U., Steiner, H., Ihara, Y., & Haass, C. (1997). Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. Journal of Biological Chemistry, 272(26), 16085–16088. https://doi.org/10.1074/jbc.272.26.16085spa
dc.relation.referencesWildsmith, K., Holley, M., Savage, J., Skerrett, R., & Landreth, G. (2013). Apolipoprotein E facilitates amyloid beta clearance by proteolytic degradation. Alzheimer’s Research and Therapy, 5(33). http://alzres.com/content/5/4/33spa
dc.relation.referencesWilson, C., Doms, R., & M-Y Lee, V. (1999). Intracellular APP processing and Aβ production in Alzheimer disease. Journal of Neuropathology Experimental Neurology, 58(8), 787–794. https://doi.org/https://doi.org/10.1097/00005072-199908000-00001spa
dc.relation.referencesXu, K., Malouf, A. T., Messing, A., & Silver, J. (1999). Glial fibrillary acidic protein is necessary for mature astrocytes to react to-amyloid. GLIA, 25, 390–403.spa
dc.relation.referencesXu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R. W., & Huang, Y. (2006). Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. Journal of Neuroscience, 26(19), 4985–4994. https://doi.org/10.1523/JNEUROSCI.5476-05.2006spa
dc.relation.referencesYamamoto, M., Horiba, M., Buescher, J. L., Huang, D., Gendelman, H. E., Ransohoff, R. M., & Ikezu, T. (2005). Overexpression of monocyte chemotactic protein-1/ CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. American Journal of Pathology, 166(5), 1475–1485. https://doi.org/10.1016/S0002-9440(10)62364-4spa
dc.relation.referencesZelcer, N., Khanlou, N., Clare, R., Qingguang, J., Reed-Geaghan, Landreth, G., Vinters, H., & Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences, 104(25), 10601–10606.spa
dc.relation.referencesZhang, L., Reue, K., Fong, L. G., Young, S. G., & Tontonoz, P. (2012). Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(11), 2541–2546. https://doi.org/10.1161/ATVBAHA.112.250571spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsExtractos vegetalesspa
dc.subject.decsPlant Extractseng
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsAlzheimer Diseaseeng
dc.subject.decsMedicamentos similaresspa
dc.subject.decsSimilar Drugseng
dc.subject.proposalPatología amiloidespa
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalReceptores X hepáticos (LXR)spa
dc.subject.proposalZanthoxylum martinicenseother
dc.subject.proposalTaupatíasspa
dc.titleEvaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en el modelo murino de enfermedad de Alzheimer (3xTg-AD)spa
dc.title.translatedEvaluation of the therapeutic potential of plant extract from Zanthoxylum martinicense associated with agonist activity of LXR in the murine model of Alzheimer's disease (3xTg-AD)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación del potencial terapéutico del extracto vegetal Zanthoxylum martinicense asociado a la actividad agonista de LXR en e.pdf
Tamaño:
3.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ciencias-Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: