Modelo de simulación por eventos discretos para calcular las emisiones de CO2 en la logística de última milla de una compañía textil en Colombia para distintas políticas de distribución y consolidación
dc.contributor.advisor | Moreno Mantilla, Carlos Eduardo | spa |
dc.contributor.author | Rodríguez Olarte, Javier Alejandro | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-02-24T16:25:59Z | |
dc.date.available | 2025-02-24T16:25:59Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | En esta investigación, se elabora un modelo de simulación con un enfoque de eventos discretos para la cadena de suministro de última milla de una compañía textil en Colombia donde se simulan las emisiones de dióxido de carbono equivalente bajo distintos escenarios de consolidación y distribución, con el fin de mejorar la toma de decisiones respecto al desempeño ambiental de dicha cadena de suministro evaluando el comportamiento de los tiempos de entrega. Dado que la geografía de Colombia varía significativamente en cada región, el valor añadido de esta investigación reside en la incorporación de esta heterogeneidad al modelo. Clasificamos cada tramo de las rutas según su geografía (montaña, llanura u ondulada) para calcular el consumo de combustible según el peso de la carga y estimar las emisiones de CO2 de cada camión, dependiendo de la topografía del terreno. Además, se llevó a cabo un análisis estadístico de la demanda para definir las distribuciones de probabilidad apropiadas que simulen la generación de pedidos. Por último, se establecen diversos escenarios de políticas de distribución y consolidación para comparar su desempeño. Además, se calculan los intervalos de confianza para las emisiones de CO2 generadas y los tiempos de entrega, con un nivel de servicio mínimo del 95% (Texto tomado de la fuente). | spa |
dc.description.abstract | In this research, a simulation model is developed using a discrete event approach for the last-mile supply chain of a textile company in Colombia, where carbon dioxide equivalent emissions are simulated under various consolidation and distribution scenarios. The aim is to enhance decision-making regarding the environmental performance of the supply chain by evaluating delivery time behavior. Given Colombia's geography varies significantly across regions, the added value of this research lies in incorporating this heterogeneity into the model. We classify each segment of routes by geography (mountainous, plains, or undulating) to calculate fuel consumption based on cargo weight and estimate CO2 emissions for each truck, depending on the terrain's topography. Additionally, a statistical analysis of demand was conducted to define appropriate probability distributions simulating order generation. Finally, various distribution and consolidation policy scenarios are established to compare their performance. Confidence intervals are also calculated for CO2 emissions and delivery times, with a minimum service level of 95% | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Industrial | spa |
dc.description.methods | A continuación de detallan las fases empleadas para el desarrollo de la investigación en relación con cada uno de los objetivos propuestos. La fase 1 (conceptualización del modelo) y 2 (Recolección de datos), permitirán establecer los cimientos para la ejecución de los objetivos definidos. Las fases 3 (Análisis estadístico), 4 (Modelo de simulación), y 5 (Análisis de resultados y conclusiones) corresponden a la ejecución de los objetivos específicos. | spa |
dc.description.researcharea | Gestión de operaciones | spa |
dc.format.extent | xviii, 105 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87541 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial | spa |
dc.relation.references | Abourraja, M. N., Rouky, N., Kornevs, M., Meijer, S., & Kringos, N. (2023). A simulation-based decision support framework devoted to Ro–Ro terminals: Design, implementation and evaluation. Computers & Industrial Engineering, 180, 109248. https://doi.org/10.1016/J.CIE.2023.109248 | spa |
dc.relation.references | Abraham, M. A. (2006). Chapter 1 Principles of sustainable engineering. Sustainability Science and Engineering, 1(C), 3–10. https://doi.org/10.1016/S1871-2711(06)80008-5 | spa |
dc.relation.references | Aloui, A., Hamani, N., & Delahoche, L. (2021). Designing a resilient and sustainable logistics network under epidemic disruptions and demand uncertainty. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132414053 | spa |
dc.relation.references | Bakshi, B. R. (2019). Sustainable engineering: principles and practice. Cambridge University Press. | spa |
dc.relation.references | Bruzzone, A. G., Tremori, A., Massei, M., & Tarone, F. (2009). Modeling green logistics. Proceedings - 2009 3rd Asia International Conference on Modelling and Simulation, AMS 2009, 543–548. https://doi.org/10.1109/AMS.2009.97 | spa |
dc.relation.references | Danloup, N., Mirzabeiki, V., Allaoui, H., Goncalves, G., Julien, D., & Mena, C. (2015). Reducing transportation greenhouse gas emissions with collaborative distribution: A case study. Management Research Review, 38(10), 1049–1067. https://doi.org/10.1108/MRR-11-2014-0262 | spa |
dc.relation.references | Dev, N. K., Shankar, R., & Dey, P. K. (2014). Reconfiguration of supply chain network: An ISM-based roadmap to performance. Benchmarking, 21(3), 386–411. https://doi.org/10.1108/BIJ-03-2012-0018 | spa |
dc.relation.references | Fagundes, M. V. C., Teles, E. O., Vieira de Melo, S. A. B., & Freires, F. G. M. (2020). Decision-making models and support systems for supply chain risk: literature mapping and future research agenda. European Research on Management and Business Economics, 26(2), 63–70. https://doi.org/10.1016/j.iedeen.2020.02.001 | spa |
dc.relation.references | Fahimnia, B., Sarkis, J., & Eshragh, A. (2015). A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis. Omega, 54, 173–190. https://doi.org/10.1016/J.OMEGA.2015.01.014 | spa |
dc.relation.references | Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research, 247(1), 1–15. https://doi.org/10.1016/j.ejor.2015.04.034 | spa |
dc.relation.references | Gonçalves, A. T. T., Fagundes, L. D., Miranda, R. C., & Lima, R. S. (2019). Discrete event simulation as a decision-making tool for end-of-life tire reverse logistics in a Brazilian city consortium. Environmental Science and Pollution Research, 26(23), 23994–24009. https://doi.org/10.1007/s11356-019-05559-3 | spa |
dc.relation.references | Gruchmann, T., Eiten, J., de La Torre, G., & Melkonyan, A. (2019). Sustainable logistics and transportation systems: Integrating optimization and simulation analysis to enhance strategic supply chain decision-making. In Innovative Logistics Services and Sustainable Lifestyles: Interdependencies, Transformation Strategies and Decision Making. https://doi.org/10.1007/978-3-319-98467-4_12 | spa |
dc.relation.references | Guo, X., Lujan Jaramillo, Y. J., Bloemhof-Ruwaard, J., & Claassen, G. D. H. (2019). On integrating crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility. Journal of Cleaner Production, 241. https://doi.org/10.1016/J.JCLEPRO.2019.118365 | spa |
dc.relation.references | Hussein, M., Eltoukhy, A. E. E., Karam, A., Shaban, I. A., & Zayed, T. (2021). Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction. Journal of Cleaner Production, 310. https://doi.org/10.1016/j.jclepro.2021.127503 | spa |
dc.relation.references | Jaller, M., & Pahwa, A. (2020). Evaluating the environmental impacts of online shopping: A behavioral and transportation approach. Transportation Research Part D: Transport and Environment, 80, 102223. https://doi.org/10.1016/J.TRD.2020.102223 | spa |
dc.relation.references | Janjevic, M., & Winkenbach, M. (2020). Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets. Transportation Research Part A: Policy and Practice, 133, 164–196. https://doi.org/10.1016/J.TRA.2020.01.003 | spa |
dc.relation.references | Juan, A. A., & Calvet, L. (2017). A tutorial on simheuristics: How simulation can efficiently support metaheuristic algorithms in stochastic optimization. Proceedings of the Operational Research Society Simulation Workshop 2018, SW 2018, 47–56. | spa |
dc.relation.references | Kaivo-Oja, J., Kuusi, O., Knudsen, M. S., & Lauraéus, I. T. (2020). Digital twin: Current shifts and their future implications in the conditions of technological disruption. International Journal of Web Engineering and Technology, 15(2), 170–188. https://doi.org/10.1504/ijwet.2020.109730 | spa |
dc.relation.references | Kin, B., Ambra, T., Verlinde, S., Sustainability, C. M.-, & 2018, undefined. (n.d.). Tackling fragmented last mile deliveries to nanostores by utilizing spare transportation capacity—A simulation study. Mdpi.Com. https://doi.org/10.3390/su10030653 | spa |
dc.relation.references | Kotlars, A., & Skribans, V. (2024). Literature review: Efficiency, environment and robotization in first and last mile logistics. Transportation Research Interdisciplinary Perspectives, 27, 101215. https://doi.org/10.1016/J.TRIP.2024.101215 | spa |
dc.relation.references | Larrodé, E., & Muerza, V. (2021). European Modular Systems performances comparison in freight transport operations. Transportation Research Procedia, 58, 165–172. https://doi.org/10.1016/J.TRPRO.2021.11.023 | spa |
dc.relation.references | Law, A. (2013). Simulation Modeling and Analysis (5th ed.). | spa |
dc.relation.references | Lebeau, P., Macharis, C., van Mierlo, J., & Maes, G. (2013). Implementing electric vehicles in urban distribution: A discrete event simulation. World Electric Vehicle Journal 2013, Vol. 6, Pages 38-47, 6(1), 38–47. https://doi.org/10.3390/WEVJ6010038 | spa |
dc.relation.references | Liotta, G., Kaihara, T., & Stecca, G. (2016). Optimization and Simulation of Collaborative Networks for Sustainable Production and Transportation. IEEE Transactions on Industrial Informatics, 12(1), 417–424. https://doi.org/10.1109/TII.2014.2369351 | spa |
dc.relation.references | Macharis, C., & Kin, B. (2016). The 4 A’s of sustainable city distribution: Innovative solutions and challenges ahead. Http://Dx.Doi.Org/10.1080/15568318.2016.1196404, 11(2), 59–71. https://doi.org/10.1080/15568318.2016.1196404 | spa |
dc.relation.references | Melkonyan, A., Gruchmann, T., Lohmar, F., Kamath, V., & Spinler, S. (2020). Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks. International Journal of Production Economics, 228. https://doi.org/10.1016/j.ijpe.2020.107746 | spa |
dc.relation.references | Mirkouei, A., Haapala, K. R., Sessions, J., & Murthy, G. S. (2017). A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Applied Energy, 206, 1088–1101. https://doi.org/10.1016/J.APENERGY.2017.09.001 | spa |
dc.relation.references | Mittal, A., & Krejci, C. C. (2019). A hybrid simulation modeling framework for regional food hubs. Journal of Simulation, 13(1), 28–43. https://doi.org/10.1057/s41273-017-0063-z | spa |
dc.relation.references | Munasinghe, I. U., Rupasinghe, T. D., & Wickramarachchi, R. (2018). A simulation-based modeling approach to assess the multi-echelon supply chain network design. IEEE International Conference on Industrial Engineering and Engineering Management, 2017-Decem, 1372–1376. https://doi.org/10.1109/IEEM.2017.8290117 | spa |
dc.relation.references | Muñoz-Villamizar, A., Velázquez-Martínez, J. C., Haro, P., Ferrer, A., & Mariño, R. (2021). The environmental impact of fast shipping ecommerce in inbound logistics operations: A case study in Mexico. Journal of Cleaner Production, 283. https://doi.org/10.1016/J.JCLEPRO.2020.125400 | spa |
dc.relation.references | Mutingi, M., Parasuram, K. V., & Baiphisi, D. (2013). Discrete-event simulation for green supply chain management: A conceptual framework. 7th International Conference on Intelligent Systems and Control, ISCO 2013, 511–516. https://doi.org/10.1109/ISCO.2013.6481208 | spa |
dc.relation.references | Network for Transport Measures. (2019). 5.5 Fuel Consumption. https://www.transportmeasures.org/en/wiki/manuals/road/fuel-consumption/ | spa |
dc.relation.references | Nguyen, T., Duong, Q. H., Nguyen, T. V., Zhu, Y., & Zhou, L. (2022). Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review. International Journal of Production Economics, 244. https://doi.org/10.1016/j.ijpe.2021.108381 | spa |
dc.relation.references | Nürnberg, M. (2019). Analysis of using cargo bikes in urban logistics on the example of Stargard. Transportation Research Procedia, 39, 360–369. https://doi.org/10.1016/J.TRPRO.2019.06.038 | spa |
dc.relation.references | Olsson, J., Hellström, D., & Pålsson, H. (2019). Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, Vol. 11, Page 7131, 11(24), 7131. https://doi.org/10.3390/SU11247131 | spa |
dc.relation.references | Perboli, G., & Rosano, M. (2019). Parcel delivery in urban areas: Opportunities and threats for the mix of traditional and green business models. Transportation Research Part C: Emerging Technologies, 99, 19–36. https://doi.org/10.1016/J.TRC.2019.01.006 | spa |
dc.relation.references | Pereira Marcilio Nogueira, G., José de Assis Rangel, J., Rossi Croce, P., & Almeida Peixoto, T. (2022a). The environmental impact of fast delivery B2C e-commerce in outbound logistics operations: A simulation approach. Cleaner Logistics and Supply Chain, 5. https://doi.org/10.1016/J.CLSCN.2022.100070 | spa |
dc.relation.references | Pereira Marcilio Nogueira, G., José de Assis Rangel, J., Rossi Croce, P., & Almeida Peixoto, T. (2022b). The environmental impact of fast delivery B2C e-commerce in outbound logistics operations: A simulation approach. Cleaner Logistics and Supply Chain, 5. https://doi.org/10.1016/J.CLSCN.2022.100070 | spa |
dc.relation.references | Sampei, M., & Kobayashi, T. (1993). Applications of Nonlinear Control Theory to Path Tracking Control of Articulated Vehicles with Double Trailers. IFAC Proceedings Volumes, 26(2), 129–132. https://doi.org/10.1016/S1474-6670(17)49091-4 | spa |
dc.relation.references | Sternad, M., Cvahte, T., Topolšek, D., & Justinek, G. (2016). The influence of logistics barriers on lead times and service levels in Slovenia. International Journal of Logistics Systems and Management, 23(4), 519–533. https://doi.org/10.1504/IJLSM.2016.075213 | spa |
dc.relation.references | Supply Chain Guidance | US EPA. (n.d.). Retrieved May 21, 2023, from https://www.epa.gov/climateleadership/supply-chain-guidance | spa |
dc.relation.references | Szczepański, E., Jachimowski, R., Izdebski, M., & Jacyna-Gołda, I. (2019). Warehouse location problem in supply chain designing: A simulation analysis. Archives of Transport, 50(2), 101–110. https://doi.org/10.5604/01.3001.0013.5752 | spa |
dc.relation.references | Timperio, G., Tiwari, S., Gaspar Sánchez, J. M., García Martín, R. A., & de Souza, R. (2020). Integrated decision support framework for distribution network design. International Journal of Production Research, 58(8), 2490–2509. https://doi.org/10.1080/00207543.2019.1680894 | spa |
dc.relation.references | Tiwari, A. K., Tiwari, A., & Samuel, C. (2015). Supply chain flexibility: A comprehensive review. Management Research Review, 38(7), 767–792. https://doi.org/10.1108/MRR-08-2013-0194 | spa |
dc.relation.references | Tordecilla, R. D., Juan, A. A., Montoya-Torres, J. R., Quintero-Araujo, C. L., & Panadero, J. (2021). Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review. Simulation Modelling Practice and Theory, 106. https://doi.org/10.1016/j.simpat.2020.102166 | spa |
dc.relation.references | Ugarte, G. M., Golden, J. S., & Dooley, K. J. (2016). Lean versus green: The impact of lean logistics on greenhouse gas emissions in consumer goods supply chains. Journal of Purchasing and Supply Management, 22(2), 98–109. https://doi.org/10.1016/j.pursup.2015.09.002 | spa |
dc.relation.references | Wanke, P., Correa, H., Jacob, J., & Santos, T. (2015). Including carbon emissions in the planning of logistic networks: A Brazilian case. International Journal of Shipping and Transport Logistics, 7(6), 655–675. https://doi.org/10.1504/IJSTL.2015.072681 | spa |
dc.relation.references | Zamora-Cristales, R., Boston, K., Sessions, J., & Murphy, G. (2013). Stochastic simulation and optimization of mobile chipping economics in processing and transport of forest biomass from residues. Silva Fennica., 47(5). https://doi.org/10.14214/sf.937 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.ddc | 333.714 | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 628.532 | spa |
dc.subject.lemb | GASES DE COMBUSTION-MEDICIONES | spa |
dc.subject.lemb | Flue gases - meausurement | eng |
dc.subject.lemb | EVALUACION DEL IMPACTO AMBIENTAL | spa |
dc.subject.lemb | Environmental impact analysis | eng |
dc.subject.lemb | IMPACTO AMBIENTAL-INFORMES | spa |
dc.subject.lemb | Environmental impact statements | eng |
dc.subject.lemb | VEHICULOS-CONSUMO DE COMBUSTIBLE | spa |
dc.subject.lemb | Vehicles - Fuel consumption | eng |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Intervalo de confianza | spa |
dc.subject.proposal | Consolidación | spa |
dc.subject.proposal | Eventos discretos | spa |
dc.subject.proposal | Discrete events | eng |
dc.subject.proposal | Simulation | eng |
dc.subject.proposal | Confidence interval | eng |
dc.subject.proposal | Last mile distribution | eng |
dc.subject.proposal | Consolidation | eng |
dc.subject.proposal | Distribución de última milla | spa |
dc.title | Modelo de simulación por eventos discretos para calcular las emisiones de CO2 en la logística de última milla de una compañía textil en Colombia para distintas políticas de distribución y consolidación | spa |
dc.title.translated | Discrete event simulation model to calculate CO2 emissions in the last mile logistics of a textile company in Colombia for different distribution and consolidation policies | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019143104.2024.pdf
- Tamaño:
- 1.83 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: