Modelo de simulación por eventos discretos para calcular las emisiones de CO2 en la logística de última milla de una compañía textil en Colombia para distintas políticas de distribución y consolidación

dc.contributor.advisorMoreno Mantilla, Carlos Eduardospa
dc.contributor.authorRodríguez Olarte, Javier Alejandrospa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-02-24T16:25:59Z
dc.date.available2025-02-24T16:25:59Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEn esta investigación, se elabora un modelo de simulación con un enfoque de eventos discretos para la cadena de suministro de última milla de una compañía textil en Colombia donde se simulan las emisiones de dióxido de carbono equivalente bajo distintos escenarios de consolidación y distribución, con el fin de mejorar la toma de decisiones respecto al desempeño ambiental de dicha cadena de suministro evaluando el comportamiento de los tiempos de entrega. Dado que la geografía de Colombia varía significativamente en cada región, el valor añadido de esta investigación reside en la incorporación de esta heterogeneidad al modelo. Clasificamos cada tramo de las rutas según su geografía (montaña, llanura u ondulada) para calcular el consumo de combustible según el peso de la carga y estimar las emisiones de CO2 de cada camión, dependiendo de la topografía del terreno. Además, se llevó a cabo un análisis estadístico de la demanda para definir las distribuciones de probabilidad apropiadas que simulen la generación de pedidos. Por último, se establecen diversos escenarios de políticas de distribución y consolidación para comparar su desempeño. Además, se calculan los intervalos de confianza para las emisiones de CO2 generadas y los tiempos de entrega, con un nivel de servicio mínimo del 95% (Texto tomado de la fuente).spa
dc.description.abstractIn this research, a simulation model is developed using a discrete event approach for the last-mile supply chain of a textile company in Colombia, where carbon dioxide equivalent emissions are simulated under various consolidation and distribution scenarios. The aim is to enhance decision-making regarding the environmental performance of the supply chain by evaluating delivery time behavior. Given Colombia's geography varies significantly across regions, the added value of this research lies in incorporating this heterogeneity into the model. We classify each segment of routes by geography (mountainous, plains, or undulating) to calculate fuel consumption based on cargo weight and estimate CO2 emissions for each truck, depending on the terrain's topography. Additionally, a statistical analysis of demand was conducted to define appropriate probability distributions simulating order generation. Finally, various distribution and consolidation policy scenarios are established to compare their performance. Confidence intervals are also calculated for CO2 emissions and delivery times, with a minimum service level of 95%eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Industrialspa
dc.description.methodsA continuación de detallan las fases empleadas para el desarrollo de la investigación en relación con cada uno de los objetivos propuestos. La fase 1 (conceptualización del modelo) y 2 (Recolección de datos), permitirán establecer los cimientos para la ejecución de los objetivos definidos. Las fases 3 (Análisis estadístico), 4 (Modelo de simulación), y 5 (Análisis de resultados y conclusiones) corresponden a la ejecución de los objetivos específicos.spa
dc.description.researchareaGestión de operacionesspa
dc.format.extentxviii, 105 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87541
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrialspa
dc.relation.referencesAbourraja, M. N., Rouky, N., Kornevs, M., Meijer, S., & Kringos, N. (2023). A simulation-based decision support framework devoted to Ro–Ro terminals: Design, implementation and evaluation. Computers & Industrial Engineering, 180, 109248. https://doi.org/10.1016/J.CIE.2023.109248spa
dc.relation.referencesAbraham, M. A. (2006). Chapter 1 Principles of sustainable engineering. Sustainability Science and Engineering, 1(C), 3–10. https://doi.org/10.1016/S1871-2711(06)80008-5spa
dc.relation.referencesAloui, A., Hamani, N., & Delahoche, L. (2021). Designing a resilient and sustainable logistics network under epidemic disruptions and demand uncertainty. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132414053spa
dc.relation.referencesBakshi, B. R. (2019). Sustainable engineering: principles and practice. Cambridge University Press.spa
dc.relation.referencesBruzzone, A. G., Tremori, A., Massei, M., & Tarone, F. (2009). Modeling green logistics. Proceedings - 2009 3rd Asia International Conference on Modelling and Simulation, AMS 2009, 543–548. https://doi.org/10.1109/AMS.2009.97spa
dc.relation.referencesDanloup, N., Mirzabeiki, V., Allaoui, H., Goncalves, G., Julien, D., & Mena, C. (2015). Reducing transportation greenhouse gas emissions with collaborative distribution: A case study. Management Research Review, 38(10), 1049–1067. https://doi.org/10.1108/MRR-11-2014-0262spa
dc.relation.referencesDev, N. K., Shankar, R., & Dey, P. K. (2014). Reconfiguration of supply chain network: An ISM-based roadmap to performance. Benchmarking, 21(3), 386–411. https://doi.org/10.1108/BIJ-03-2012-0018spa
dc.relation.referencesFagundes, M. V. C., Teles, E. O., Vieira de Melo, S. A. B., & Freires, F. G. M. (2020). Decision-making models and support systems for supply chain risk: literature mapping and future research agenda. European Research on Management and Business Economics, 26(2), 63–70. https://doi.org/10.1016/j.iedeen.2020.02.001spa
dc.relation.referencesFahimnia, B., Sarkis, J., & Eshragh, A. (2015). A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis. Omega, 54, 173–190. https://doi.org/10.1016/J.OMEGA.2015.01.014spa
dc.relation.referencesFahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research, 247(1), 1–15. https://doi.org/10.1016/j.ejor.2015.04.034spa
dc.relation.referencesGonçalves, A. T. T., Fagundes, L. D., Miranda, R. C., & Lima, R. S. (2019). Discrete event simulation as a decision-making tool for end-of-life tire reverse logistics in a Brazilian city consortium. Environmental Science and Pollution Research, 26(23), 23994–24009. https://doi.org/10.1007/s11356-019-05559-3spa
dc.relation.referencesGruchmann, T., Eiten, J., de La Torre, G., & Melkonyan, A. (2019). Sustainable logistics and transportation systems: Integrating optimization and simulation analysis to enhance strategic supply chain decision-making. In Innovative Logistics Services and Sustainable Lifestyles: Interdependencies, Transformation Strategies and Decision Making. https://doi.org/10.1007/978-3-319-98467-4_12spa
dc.relation.referencesGuo, X., Lujan Jaramillo, Y. J., Bloemhof-Ruwaard, J., & Claassen, G. D. H. (2019). On integrating crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility. Journal of Cleaner Production, 241. https://doi.org/10.1016/J.JCLEPRO.2019.118365spa
dc.relation.referencesHussein, M., Eltoukhy, A. E. E., Karam, A., Shaban, I. A., & Zayed, T. (2021). Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction. Journal of Cleaner Production, 310. https://doi.org/10.1016/j.jclepro.2021.127503spa
dc.relation.referencesJaller, M., & Pahwa, A. (2020). Evaluating the environmental impacts of online shopping: A behavioral and transportation approach. Transportation Research Part D: Transport and Environment, 80, 102223. https://doi.org/10.1016/J.TRD.2020.102223spa
dc.relation.referencesJanjevic, M., & Winkenbach, M. (2020). Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets. Transportation Research Part A: Policy and Practice, 133, 164–196. https://doi.org/10.1016/J.TRA.2020.01.003spa
dc.relation.referencesJuan, A. A., & Calvet, L. (2017). A tutorial on simheuristics: How simulation can efficiently support metaheuristic algorithms in stochastic optimization. Proceedings of the Operational Research Society Simulation Workshop 2018, SW 2018, 47–56.spa
dc.relation.referencesKaivo-Oja, J., Kuusi, O., Knudsen, M. S., & Lauraéus, I. T. (2020). Digital twin: Current shifts and their future implications in the conditions of technological disruption. International Journal of Web Engineering and Technology, 15(2), 170–188. https://doi.org/10.1504/ijwet.2020.109730spa
dc.relation.referencesKin, B., Ambra, T., Verlinde, S., Sustainability, C. M.-, & 2018, undefined. (n.d.). Tackling fragmented last mile deliveries to nanostores by utilizing spare transportation capacity—A simulation study. Mdpi.Com. https://doi.org/10.3390/su10030653spa
dc.relation.referencesKotlars, A., & Skribans, V. (2024). Literature review: Efficiency, environment and robotization in first and last mile logistics. Transportation Research Interdisciplinary Perspectives, 27, 101215. https://doi.org/10.1016/J.TRIP.2024.101215spa
dc.relation.referencesLarrodé, E., & Muerza, V. (2021). European Modular Systems performances comparison in freight transport operations. Transportation Research Procedia, 58, 165–172. https://doi.org/10.1016/J.TRPRO.2021.11.023spa
dc.relation.referencesLaw, A. (2013). Simulation Modeling and Analysis (5th ed.).spa
dc.relation.referencesLebeau, P., Macharis, C., van Mierlo, J., & Maes, G. (2013). Implementing electric vehicles in urban distribution: A discrete event simulation. World Electric Vehicle Journal 2013, Vol. 6, Pages 38-47, 6(1), 38–47. https://doi.org/10.3390/WEVJ6010038spa
dc.relation.referencesLiotta, G., Kaihara, T., & Stecca, G. (2016). Optimization and Simulation of Collaborative Networks for Sustainable Production and Transportation. IEEE Transactions on Industrial Informatics, 12(1), 417–424. https://doi.org/10.1109/TII.2014.2369351spa
dc.relation.referencesMacharis, C., & Kin, B. (2016). The 4 A’s of sustainable city distribution: Innovative solutions and challenges ahead. Http://Dx.Doi.Org/10.1080/15568318.2016.1196404, 11(2), 59–71. https://doi.org/10.1080/15568318.2016.1196404spa
dc.relation.referencesMelkonyan, A., Gruchmann, T., Lohmar, F., Kamath, V., & Spinler, S. (2020). Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks. International Journal of Production Economics, 228. https://doi.org/10.1016/j.ijpe.2020.107746spa
dc.relation.referencesMirkouei, A., Haapala, K. R., Sessions, J., & Murthy, G. S. (2017). A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Applied Energy, 206, 1088–1101. https://doi.org/10.1016/J.APENERGY.2017.09.001spa
dc.relation.referencesMittal, A., & Krejci, C. C. (2019). A hybrid simulation modeling framework for regional food hubs. Journal of Simulation, 13(1), 28–43. https://doi.org/10.1057/s41273-017-0063-zspa
dc.relation.referencesMunasinghe, I. U., Rupasinghe, T. D., & Wickramarachchi, R. (2018). A simulation-based modeling approach to assess the multi-echelon supply chain network design. IEEE International Conference on Industrial Engineering and Engineering Management, 2017-Decem, 1372–1376. https://doi.org/10.1109/IEEM.2017.8290117spa
dc.relation.referencesMuñoz-Villamizar, A., Velázquez-Martínez, J. C., Haro, P., Ferrer, A., & Mariño, R. (2021). The environmental impact of fast shipping ecommerce in inbound logistics operations: A case study in Mexico. Journal of Cleaner Production, 283. https://doi.org/10.1016/J.JCLEPRO.2020.125400spa
dc.relation.referencesMutingi, M., Parasuram, K. V., & Baiphisi, D. (2013). Discrete-event simulation for green supply chain management: A conceptual framework. 7th International Conference on Intelligent Systems and Control, ISCO 2013, 511–516. https://doi.org/10.1109/ISCO.2013.6481208spa
dc.relation.referencesNetwork for Transport Measures. (2019). 5.5 Fuel Consumption. https://www.transportmeasures.org/en/wiki/manuals/road/fuel-consumption/spa
dc.relation.referencesNguyen, T., Duong, Q. H., Nguyen, T. V., Zhu, Y., & Zhou, L. (2022). Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review. International Journal of Production Economics, 244. https://doi.org/10.1016/j.ijpe.2021.108381spa
dc.relation.referencesNürnberg, M. (2019). Analysis of using cargo bikes in urban logistics on the example of Stargard. Transportation Research Procedia, 39, 360–369. https://doi.org/10.1016/J.TRPRO.2019.06.038spa
dc.relation.referencesOlsson, J., Hellström, D., & Pålsson, H. (2019). Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, Vol. 11, Page 7131, 11(24), 7131. https://doi.org/10.3390/SU11247131spa
dc.relation.referencesPerboli, G., & Rosano, M. (2019). Parcel delivery in urban areas: Opportunities and threats for the mix of traditional and green business models. Transportation Research Part C: Emerging Technologies, 99, 19–36. https://doi.org/10.1016/J.TRC.2019.01.006spa
dc.relation.referencesPereira Marcilio Nogueira, G., José de Assis Rangel, J., Rossi Croce, P., & Almeida Peixoto, T. (2022a). The environmental impact of fast delivery B2C e-commerce in outbound logistics operations: A simulation approach. Cleaner Logistics and Supply Chain, 5. https://doi.org/10.1016/J.CLSCN.2022.100070spa
dc.relation.referencesPereira Marcilio Nogueira, G., José de Assis Rangel, J., Rossi Croce, P., & Almeida Peixoto, T. (2022b). The environmental impact of fast delivery B2C e-commerce in outbound logistics operations: A simulation approach. Cleaner Logistics and Supply Chain, 5. https://doi.org/10.1016/J.CLSCN.2022.100070spa
dc.relation.referencesSampei, M., & Kobayashi, T. (1993). Applications of Nonlinear Control Theory to Path Tracking Control of Articulated Vehicles with Double Trailers. IFAC Proceedings Volumes, 26(2), 129–132. https://doi.org/10.1016/S1474-6670(17)49091-4spa
dc.relation.referencesSternad, M., Cvahte, T., Topolšek, D., & Justinek, G. (2016). The influence of logistics barriers on lead times and service levels in Slovenia. International Journal of Logistics Systems and Management, 23(4), 519–533. https://doi.org/10.1504/IJLSM.2016.075213spa
dc.relation.referencesSupply Chain Guidance | US EPA. (n.d.). Retrieved May 21, 2023, from https://www.epa.gov/climateleadership/supply-chain-guidancespa
dc.relation.referencesSzczepański, E., Jachimowski, R., Izdebski, M., & Jacyna-Gołda, I. (2019). Warehouse location problem in supply chain designing: A simulation analysis. Archives of Transport, 50(2), 101–110. https://doi.org/10.5604/01.3001.0013.5752spa
dc.relation.referencesTimperio, G., Tiwari, S., Gaspar Sánchez, J. M., García Martín, R. A., & de Souza, R. (2020). Integrated decision support framework for distribution network design. International Journal of Production Research, 58(8), 2490–2509. https://doi.org/10.1080/00207543.2019.1680894spa
dc.relation.referencesTiwari, A. K., Tiwari, A., & Samuel, C. (2015). Supply chain flexibility: A comprehensive review. Management Research Review, 38(7), 767–792. https://doi.org/10.1108/MRR-08-2013-0194spa
dc.relation.referencesTordecilla, R. D., Juan, A. A., Montoya-Torres, J. R., Quintero-Araujo, C. L., & Panadero, J. (2021). Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review. Simulation Modelling Practice and Theory, 106. https://doi.org/10.1016/j.simpat.2020.102166spa
dc.relation.referencesUgarte, G. M., Golden, J. S., & Dooley, K. J. (2016). Lean versus green: The impact of lean logistics on greenhouse gas emissions in consumer goods supply chains. Journal of Purchasing and Supply Management, 22(2), 98–109. https://doi.org/10.1016/j.pursup.2015.09.002spa
dc.relation.referencesWanke, P., Correa, H., Jacob, J., & Santos, T. (2015). Including carbon emissions in the planning of logistic networks: A Brazilian case. International Journal of Shipping and Transport Logistics, 7(6), 655–675. https://doi.org/10.1504/IJSTL.2015.072681spa
dc.relation.referencesZamora-Cristales, R., Boston, K., Sessions, J., & Murphy, G. (2013). Stochastic simulation and optimization of mobile chipping economics in processing and transport of forest biomass from residues. Silva Fennica., 47(5). https://doi.org/10.14214/sf.937spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ddc333.714spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc628.532spa
dc.subject.lembGASES DE COMBUSTION-MEDICIONESspa
dc.subject.lembFlue gases - meausurementeng
dc.subject.lembEVALUACION DEL IMPACTO AMBIENTALspa
dc.subject.lembEnvironmental impact analysiseng
dc.subject.lembIMPACTO AMBIENTAL-INFORMESspa
dc.subject.lembEnvironmental impact statementseng
dc.subject.lembVEHICULOS-CONSUMO DE COMBUSTIBLEspa
dc.subject.lembVehicles - Fuel consumptioneng
dc.subject.proposalSimulaciónspa
dc.subject.proposalIntervalo de confianzaspa
dc.subject.proposalConsolidaciónspa
dc.subject.proposalEventos discretosspa
dc.subject.proposalDiscrete eventseng
dc.subject.proposalSimulationeng
dc.subject.proposalConfidence intervaleng
dc.subject.proposalLast mile distributioneng
dc.subject.proposalConsolidationeng
dc.subject.proposalDistribución de última millaspa
dc.titleModelo de simulación por eventos discretos para calcular las emisiones de CO2 en la logística de última milla de una compañía textil en Colombia para distintas políticas de distribución y consolidaciónspa
dc.title.translatedDiscrete event simulation model to calculate CO2 emissions in the last mile logistics of a textile company in Colombia for different distribution and consolidation policieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019143104.2024.pdf
Tamaño:
1.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: