Clasificación de semioquímicos asociados a coleópteros del suborden Polyphaga mediante redes neuronales artificiales

dc.contributor.advisorDaza Caicedo, Edgar Eduardo
dc.contributor.authorValencia Colman, Laura Sofía
dc.contributor.researchgroupGrupo de Química Teóricaspa
dc.date.accessioned2022-08-29T22:52:16Z
dc.date.available2022-08-29T22:52:16Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn esta investigación buscamos establecer la relación entre los compuesto que median la interacción y el mensaje que transmiten para los coleópteros del suborden Polyphaga. Para ello, nos propusimos desarrollar herramientas de aprendizaje de máquina para predecir la respuesta de un individuo al exponerse a un cierto compuesto; es decir, establecer la naturaleza del semioquímico según la especie a la que pertenezca el individuo y, a la vez, buscar patrones entre estas moléculas. Construimos una base de datos relacional basada en el lenguaje SQL en la que almacenamos información correspondiente a las categorías taxonómicas de los insectos, sus hospederos y los semioquímicos reportados para cada especie; así como, el tipo de semioquímico, es decir, si es feromona (de agregación, de rastro, sexual, ovoposición, etc) o aleloquímico (cairomona, sinomona o alomona); si presenta atracción específica (macho y/o hembra) y la metodología mediante la cual se evaluó su actividad (pruebas de campo, electroantenografía u olfatometría). La información con la cual alimentamos esta base de datos provino de una revisión de 957 artículos publicados en revistas especializadas, en los cuales se reportan 981 compuestos como semioquímicos. Para implementar las técnicas de aprendizaje de máquina, requerimos una caracterización cuantitativa tanto de la estructura química de cada uno de los semioquímicos, como de la clasificación taxonómica de los insectos. Para lo primero empleamos un conjunto de 1287 descriptores moleculares, este conjunto es hiper-redundante dado que se busca poder incluir la mayor cantidad de información sobre las características de cada compuesto y su posible vínculo con la propiedad esperada. Para la caracterización de las categorías taxonómicas creamos un código taxonómico numérico capaz de dar cuenta de la similitud de dos especies. Una vez calculamos las variables procedimos a seleccionar los más discriminantes o apropiados para una clasificación dada. El proceso de selección de variables lo hicimos con las técnicas de Análisis de Componentes Principales, Bosques Aleatorios y Boruta-SHAP. Para la predicción de la función de los semioquímicos y la búsqueda de patrones entre ellos implementamos los algoritmos de: C-means, mapas auto-organizados de Kohonen y perceptrones multicapa; todos empleando Python. La combinación de estas herramientas nos permitió dilucidar un primer patrón de clasificación relacionado con su origen biosintético y así clasificar el conjunto de semioquímicos según de las rutas biosintéticas de las cuales se derivan. Además, logramos establecer un modelo capaz de asignar el tipo de mensaje que transmite un compuesto dado, es decir la función que cumple para la pareja insecto-molécula; en otras palabras adscribimos una función a cada semioquímico dependiendo del insecto con que interactúa. (Texto tomado de la fuente)spa
dc.description.abstractIn this research we seek to establish the relationship between the compounds that mediate the interaction and the message they transmit for beetles of the suborder Polyphaga. Consequently, we set out to develop tools employing machine learning to predict the response of each individual when exposed to a certain compound; that is, to establish the nature of the semiochemical according to the species to which the individual belongs, and at the same time look for patterns between these molecules. We built a relational database based on SQL language in which we store information corresponding to the taxonomic categories of insects, their hosts and the semiochemicals reported for each species; as well as the type of semiochemical, that is, if it corresponds to a pheromone (aggregation, trace, sexual, oviposition, etc.) or an allelochemical (kairomone, sinomone or allomone); if it presents specific attraction (male, female, larva) and the methodology by which its activity was evaluated (field tests, electroantenography or olfactometry). The information with which we fed this database came from a review of 957 articles published in specialized journals, in which 981 compounds are reported as semiochemicals. To implement machine learning techniques, we require a quantitative characterization of both the chemical structure of each of the semiochemicals and the taxonomic classification of insects. For the first, we use a set of 1287 molecular descriptors, this set is hyper-redundant since it seeks to be able to include the greatest amount of information about the characteristics of each compound and its possible linkage with the expected property. For the characterization of the taxonomic categories we created a numerical taxonomic code capable of accounting for the similarity of two species. Once we calculated the variables, we proceeded to select the most discriminating or appropriate for a given classification. The variable selection process was carried out using Principal Component Analysis, Random Forest and Boruta-SHAP techniques. For the prediction of the function of semiochemicals and the search for patterns between them, we implement the following algorithms: C-means, Kohonen self-organized maps and multilayer perceptrons; all using Python. The combination of these tools allowed us to elucidate a first classification pattern related to their biosynthetic origin and thus classify the set of semiochemicals according to the biosynthetic routes from which they are derived. In addition, we managed to establish a model capable of assigning the type of message transmitted by a given compound, that is, the function it fulfills for the insect-molecule pair; in other words, we ascribe a function to each semiochemical depending on the insect with which it interacts.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica computacionalspa
dc.description.researchareaEcología químicaspa
dc.format.extentxii, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82182
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdi, H. & Williams, L. J. Principal component analysis Wiley interdisciplinary reviews: computational statistics, Wiley Online Library, 2010, 2, 433-459spa
dc.relation.referencesAllison, J. D.; Borden, J. H. & Seybold, S. J. A review of the chemical ecology of the Cerambycidae (Coleoptera) Chemoecology, Springer, 2004, 14, 123-150spa
dc.relation.referencesAllouche, A.-R. Gabedit—A graphical user interface for computational chemistry softwares Journal of computational chemistry, Wiley Online Library, 2011, 32, 174-182spa
dc.relation.referencesAssembly, G. The International Committee on Bionomenclature, 2011spa
dc.relation.referencesBakthavatsalam, N. Semiochemicals Ecofriendly pest management for food security, Elsevier, 2016, 563-611spa
dc.relation.referencesBezdek, J. C.; Ehrlich, R. & Full, W. FCM: The fuzzy c-means clustering algorithm Computers & geosciences, Elsevier, 1984, 10, 191-203spa
dc.relation.referencesBlack, P. E. & others Algorithms and Theory of Computation Handbook Dictionary of algorithms and data structures, CRC Press LLC, 1999spa
dc.relation.referencesBlomquist, G. & Vogt, R. (Eds.) Insect Pheromone Biochemistry and Molecular Biology, Elsevier Academic Press, 2003spa
dc.relation.referencesBrownlee, J. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python, Machine Learning Mastery, 2020spa
dc.relation.referencesBurns, J. A. & Whitesides, G. M. Feed-forward neural networks in chemistry: mathematical systems for classification and pattern recognition, Chemical Reviews, ACS Publications, 1993, 93, 2583-2601spa
dc.relation.referencesCai, D.; Zhang, C. & He, X. Unsupervised feature selection for multi-cluster data, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, 2010, 333-342spa
dc.relation.referencesCebeci, Z.; Yildiz, F.; Kavlak, A.; Cebeci, C. & Onder, H. ppclust: Probabilistic and Possibilistic Cluster Analysis, R package version 0.1, 2019, 3spa
dc.relation.referencesChen, R.-C.; Dewi, C.; Huang, S.-W. & Caraka, R. E. Selecting critical features for data classification based on machine learning methods, Journal of Big Data, Springer, 2020, 7, 1-26spa
dc.relation.referencesDeep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns, Front. Chem., 2019, 7, 809.spa
dc.relation.referencesDavid, L.; Thakkar, A.; Mercado, R. & Engkvist, O. Molecular representations in AI-driven drug discovery: a review and practical guide, Journal of Cheminformatics, BioMed Central, 2020, 12, 1-22spa
dc.relation.referencesDelgadillo, D. Feromonas. Lo que el viento se llevó, Revista Casa del Tiempo, 2005, 3spa
dc.relation.referencesDong, J.; Cao, D.-S.; Miao, H.-Y.; Liu, S.; Deng, B.-C.; Yun, Y.-H.; Wang, N.-N.; Lu, A.-P.; Zeng, W.-B. & Chen, A. F. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation, Journal of cheminformatics, BioMed Central, 2015, 7, 60spa
dc.relation.referencesEffrosynidis, D. & Arampatzis, A. An evaluation of feature selection methods for environmental data, Ecological Informatics, Elsevier, 2021, 61, 101224spa
dc.relation.referencesEl-Sayed, A. M. The pherobase: database of insect pheromones and semiochemicals, 2022spa
dc.relation.referencesEzzat, S. M.; Jeevanandam, J.; Egbuna, C.; Merghany, R. M.; Akram, M.; Daniyal, M.; Nisar, J. & Sharif, A. Semiochemicals: A Green Approach to Pest and Disease Control, Natural Remedies for Pest, Disease and Weed Control, Elsevier, 2020, 81-89spa
dc.relation.referencesFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B. & Fox, D. J. Gaussian16 Revision C.01 2016spa
dc.relation.referencesGenuer, R.; Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests, Pattern recognition letters, Elsevier, 2010, 31, 2225-2236spa
dc.relation.referencesGéron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2019spa
dc.relation.referencesGhosh, S. & Dubey, S. K. Comparative analysis of k-means and fuzzy c-means algorithms International, Journal of Advanced Computer Science and Applications, Citeseer, 2013, 4spa
dc.relation.referencesGitau, C.; Bashford, R.; Carnegie, A. & Gurr, G. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates, Forest Ecology and Management, Elsevier, 2013, 297, 1-14spa
dc.relation.referencesGrinberg, M. Flask web development: developing web applications with python, O'Reilly Media, Inc., 2018spa
dc.relation.referencesJanet, J. P. & Kulik, H. J. Machine Learning in Chemistry, American Chemical Society, 2020spa
dc.relation.referencesJaramillo-Noreña, J.; León, G. D. S.; Rodríguez, V. P.; Garzón, D. Q.; Cuartas, M. Á. Z. & Arroyave, M. G. Capitulo 7: Manejo integrado de plagas, Tecnología para el cultivo de tomate bajo condiciones protegidas, Corporación Colombiana de Investigación Agropecuaria, 2013spa
dc.relation.referencesJudd, W. S.; Campbell, C. S.; Kellogg, E. A.; Stevens, P. F. & Donoghue, M. J. Plant systematics: a phylogenetic approach, Ecología mediterranea, 1999, 25, 215spa
dc.relation.referencesKalousis, A.; Prados, J. & Hilario, M. Stability of feature selection algorithms: a study on high-dimensional spaces, Knowledge and information systems, Springer, 2007, 12, 95-116spa
dc.relation.referencesKasabov, N. K. Time-space, spiking neural networks and brain-inspired artificial intelligence, Springer, 2019spa
dc.relation.referencesKassambara, A. Multivariate Analysis II: Practical Guide to Principal Component Methods in R, Scotts Valley, CA: CreateSpace Independent Publishing Platform.[Google Scholar], 2017spa
dc.relation.referencesKassambara, A. Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra, Sthda, 2017, 2spa
dc.relation.referencesKeany, E. BorutaShap, MIT License, 2021spa
dc.relation.referencesKohonen, T. Self-organized formation of topologically correct feature maps, Biological cybernetics, Springer, 1982, 43, 59-69spa
dc.relation.referencesKohonen, T. The self-organizing map, Proceedings of the IEEE, IEEE, 1990, 78, 1464-1480spa
dc.relation.referencesKramer, O. Scikit-learn, Machine learning for evolution strategies, Springer, 2016, 45-53spa
dc.relation.referencesKuhn, M. & Johnson, K. Feature engineering and selection: A practical approach for predictive models, CRC Press, 2019spa
dc.relation.referencesKursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package, Journal of statistical software, 2010, 36, 1-13spa
dc.relation.referencesKuzma, T. & Farkaš, I. Embedding Complexity of Learned Representations in Neural Networks, International Conference on Artificial Neural Networks, 2019, 518-528spa
dc.relation.referencesLal, T. N.; Chapelle, O.; Weston, J. & Elisseeff, A. Embedded methods, Feature extraction, Springer, 2006, 137-165spa
dc.relation.referencesLundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions, Advances in neural information processing systems, 2017, 30spa
dc.relation.referencesMaltarollo, V. G.; Honório, K. M. & da Silva, A. B. F. Suzuki, K. (Ed.) Applications of Artificial Neural Networks in Chemical Problems, Chap.10, Artificial Neural Networks, IntechOpen, 2013spa
dc.relation.referencesMauri, A.; Consonni, V. & Todeschini, R. Molecular descriptors, Springer International Publishing, 2017spa
dc.relation.referencesMcHugh, M. L. Interrater reliability: the kappa statistic, Biochemia medica, Medicinska naklada, 2012, 22, 276-282spa
dc.relation.referencesMishra, S. S.; Shroff, S.; Sahu, J. K.; Naik, P. P. & Baitharu, I. Insect Pheromones and Its Applications in Management of Pest Population, Natural Materials and Products from Insects: Chemistry and Applications, Springer, 2020, 121-136spa
dc.relation.referencesMitchell, T. M. & others Machine learning, McGraw-hill New York, 1997spa
dc.relation.referencesMoretto Cosson, K. y. A. Pollination of Amorphophallus barthlottii and A. abyssinicus subsp. akeassii (Araceae) by dung beetles (Insecta: Coleoptera: Scarabaeoidea), Association Catharsius, 2019spa
dc.relation.referencesMorgan, E. D. Biosynthesis in insects, Royal society of chemistry, 2010spa
dc.relation.referencesMoriwaki, H.; Tian, Y.-S.; Kawashita, N. & Takagi, T. Mordred: a molecular descriptor calculator, Journal of cheminformatics, BioMed Central, 2018, 10, 1-14spa
dc.relation.referencesMustaqeem, A.; Anwar, S. M. & Majid, M. Multiclass classification of cardiac arrhythmia using improved feature selection and SVM invariants, Computational and mathematical methods in medicine, Hindawi, 2018, 2018spa
dc.relation.referencesMySQL, A. MySQL, 2001spa
dc.relation.referencesOdell, S. G.; Lazo, G. R.; Woodhouse, M. R.; Hane, D. L. & Sen, T. Z. The art of curation at a biological database: principles and application, Current Plant Biology, Elsevier, 2017, 11, 2-11spa
dc.relation.referencesPardo-Locarno, L.; González, J.; Pérez, C.; Yepes, F. & Fernández, C. Escarabajos de importancia agrícola (Coleoptera: Melolonthidae) en la región Caribe colombiana: Registros y propuestas de manejo, Boletín Del Museo Entomológico Francisco Luis Gallejo, 2012, 4, 7-23spa
dc.relation.referencesPeterson, M. A.; Dobler, S.; Larson, E. L.; Juárez, D.; Schlarbaum, T.; Monsen, K. J. & Francke, W. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae), Chemoecology, Springer, 2007, 17, 87-96spa
dc.relation.referencesPiñeiro Gomez, J. Diseño de bases de datos relacionales, Ediciones Paraninfo, SA, 2014spa
dc.relation.referencesPla, L. Análisis multivariado: método de componentes principales, OEA (Organizacion de los Estados Americanos), 1986spa
dc.relation.referencesRaices, M. Comunicación química en larvas de Rhinella arenarum. Caracterización del comportamiento antipredatorio y de las señales de alarma, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, 2018spa
dc.relation.referencesRaju, M.; Gopi, V. P. & Anitha, V. Multi-class Classification of Alzheimer's Disease using 3DCNN Features and Multilayer Perceptron, 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2021, 368-373spa
dc.relation.referencesRomero-Frías, A.; Murata, Y.; Simões Bento, J. M. & Osorio, C. (1R, 2S, 6R)-Papayanal: a new male-specific volatile compound released by the guava weevil Conotrachelus psidii (Coleoptera: Curculionidae), Bioscience, Biotechnology, and Biochemistry, Oxford University Press, 2016, 80, 848-855spa
dc.relation.referencesRomero-Frías, A. A.; Sinuco, D. C. & Bento, J. M. S. Male-specific volatiles released by the big avocado seed weevil Heilipus lauri Boheman (Coleoptera: Curculionidae), Journal of the Brazilian Chemical Society, SciELO Brasil, 2019, 30, 158-163spa
dc.relation.referencesRomero-López, A. A.; Reyes-Chilpa, R.; Pérez-Flores, F. J.; Lugo-García, G. A. & Maldonado-Rodríguez, J. I. Chemicals in the Genital Chamber of Two Mexican Species of Phyllophaga, Southwestern Entomologist, Society of Southwestern Entomologists, 2019, 44, 457 - 464spa
dc.relation.referencesSamuel, A. L. Some studies in machine learning using the game of checkers, IBM Journal of research and development, IBM, 1959, 3, 210-229spa
dc.relation.referencesSandri, M. & Zuccolotto, P. Variable selection using random forests, Data analysis, classification and the forward search, Springer, 2006, 263-270spa
dc.relation.referencesSharma, A.; Sandhi, R. K. & Reddy, G. V. A Review of Interactions between Insect Biological Control Agents and Semiochemicals, Insects, Multidisciplinary Digital Publishing Institute, 2019, 10, 439spa
dc.relation.referencesShibata, E.; Sato, S.; Sakuratani, Y.; Sugimoto, T.; Kimura, F. & Ito, F. Cerambycid beetles (Coleoptera) lured to chemicals in forests of Nara Prefecture, central Japan, Annals of the Entomological Society of America, Oxford University Press Oxford, UK, 1996, 89, 835-842spa
dc.relation.referencesSilva, W. D.; Millar, J. G.; Hanks, L. M.; Costa, C. M.; Leite, M. O.; Tonelli, M. & Bento, J. M. S. Interspecific cross-attraction between the South American cerambycid beetles Cotyclytus curvatus and Megacyllene acuta is averted by minor pheromone components, Journal of chemical ecology, Springer, 2018, 44, 268-275spa
dc.relation.referencesSmart, L.; Aradottir, G. & Bruce, T. Role of semiochemicals in integrated pest management, Integrated Pest Management, Elsevier, 2014, 93-109spa
dc.relation.referencesSneath, P. H. Thirty years of numerical taxonomy, Systematic Biology, Society of Systematic Biologists, 1995, 44, 281-298spa
dc.relation.referencesSolorio-Fernández, S.; Carrasco-Ochoa, J. A. & Mart\inez-Trinidad, J. F. A review of unsupervised feature selection methods, Artificial Intelligence Review, Springer, 2020, 53, 907-948spa
dc.relation.referencesSpurlock, J. Bootstrap: responsive web development, O'Reilly Media, Inc., 2013spa
dc.relation.referencesStanczyk, S.; Champion, B. & Leyton, R. Theory and practice of relational databases, CRC Press, 2003spa
dc.relation.referencesSyakur, M.; Khotimah, B.; Rochman, E. & Satoto, B. D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster, IOP conference series: materials science and engineering, 2018, 336, 012017spa
dc.relation.referencesTauler, R.; Walczak, B. & Brown, S. D. Comprehensive chemometrics: chemical and biochemical data analysis, Elsevier, 2009spa
dc.relation.referencesThai, V. D.; Hoan, N. Q. & others Improving Feature Map Quality of SOM Based on Adjusting the Neighborhood Function, International Journal of Computer Science and Information Security, LJS Publishing, 2016, 14, 746spa
dc.relation.referencesTodeschini, R. & Consonni, V. Handbook of molecular descriptors, John Wiley & Sons, 2008spa
dc.relation.referencesTouzet, H. Tree edit distance with gaps, Information Processing Letters, Citeseer, 2003, 85, 123-129spa
dc.relation.referencesUriarte, E. A. & Mart\in, F. D. Topology preservation in SOM, International journal of applied mathematics and computer sciences, Citeseer, 2005, 1, 19-22spa
dc.relation.referencesVettigli, G. MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map, 2013spa
dc.relation.referencesVidal Medina, V. Señales químicas entre el escarabajo-plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) y la palma de aceite (Elaeis guineensis Jacq.), Universidad Nacional de Colombia, Universidad Nacional de Colombia, 2021, 120spa
dc.relation.referencesWarner, J. & Sexauer, J. JDWarner/scikit-fuzzy: Scikit-Fuzzy version 0.4. 2 Nov, 2019spa
dc.relation.referencesWei, J. N.; Duvenaud, D. & Aspuru-Guzik, A. Neural networks for the prediction of organic chemistry reactions, ACS central science, ACS Publications, 2016, 2, 725-732spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalDescriptores Molecularesspa
dc.subject.proposalAnálisis de Componentes Principalesspa
dc.subject.proposalBosques Aleatoriosspa
dc.subject.proposalBoruta-SHAPspa
dc.subject.proposalC-meansspa
dc.subject.proposalMapas Autoorganizados de Kohonenspa
dc.subject.proposalPerceptrón Multicapaspa
dc.subject.proposalMolecular Descriptorseng
dc.subject.proposalPrincipal Component Analysiseng
dc.subject.proposalRandom Forestseng
dc.subject.proposalBoruta-SHAPeng
dc.subject.proposalC-meanseng
dc.subject.proposalKohonen Self Organizing Mapseng
dc.subject.proposalMultilayer Perceptroneng
dc.titleClasificación de semioquímicos asociados a coleópteros del suborden Polyphaga mediante redes neuronales artificialesspa
dc.title.translatedClassification of semiochemicals associated with coleoptera of the Polyphaga suborder by means of artificial neural networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072713817.2022.pdf
Tamaño:
2.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: