Caracterización molecular y de sensibilidad in vitro a antibióticos y péptidos derivados de catelicidina como agentes antimicrobianos frente a aislamientos clínicos de Staphylococcus aureus procedentes de la ciudad de Bogotá D.C.

dc.contributor.advisorCelis Ramírez, Adriana Marcela
dc.contributor.advisorLeal Castro, Aura Lucía
dc.contributor.authorFonseca Fernández, Angie Lorena
dc.contributor.researcherMancera García, María Alejandra
dc.contributor.researcherMartínez, Heydys
dc.contributor.researcherChad, Leidy
dc.contributor.researcherGuevara-Suárez, Marcela
dc.contributor.researchgroupGrupo de Investigación Celular y Molecular de Microorganismos Patógenosspa
dc.date.accessioned2023-01-16T16:23:10Z
dc.date.available2023-01-16T16:23:10Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractStaphylococcus aureus es una bacteria de gran importancia clínica, caracterizada por ser la especie más virulenta dentro de su género y causante de infecciones muy diversas que pueden amenazar la vida de quienes las padecen. Sin embargo, su importancia no radica únicamente en las enfermedades que causa, sino en la alta capacidad que ha evidenciado para presentar resistencia a múltiples antibióticos dentro de los que se encuentran los βlactámicos, ejemplificada por la resistencia a meticilina. Los aislamientos resistentes a meticilina son un problema de salud pública mundial, que inicialmente se atribuían a ambientes hospitalarios, pero que con el paso del tiempo han comenzado a reportarse cada vez con más frecuencia en la comunidad. Adicional a esto, se ha observado resistencia a otros antibióticos con blancos terapéuticos diferentes. Lo anterior hace necesario la búsqueda de nuevas alternativas que permitan controlar el crecimiento bacteriano de aislamientos que no pueden tratarse mediante los antimicrobianos existentes actualmente. Este trabajo tiene como objetivo determinar el efecto de péptidos derivados de catelicidina en el crecimiento y la morfología de aislamientos clínicos de S. aureus procedentes de la ciudad de Bogotá D.C. Para ello, realizaremos la caracterización molecular respecto al gen de resistencia a meticilina mecA, la proteína A (spa) y pvl , causante de la presencia de leucocidina Panton-Valentine, e identificaremos los perfiles de sensibilidad a compuestos antibióticos de 57 aislamientos clínicos de S. aureus. Adicionalmente, evaluaremos la actividad de péptidos de catelicidina, LL-37 y ATRA-1, y daptomicina sobre los aislamientos clínicos caracterizados. Finalmente, identificaremos los cambios en la morfología bacteriana de S. aureus, por acción de los péptidos de catelicidina, mediante microscopía electrónica de barrido. Determinamos que existe una importante prevalencia de aislamientos resistentes a meticilina, y que además, existen aislamientos con discordancias en el perfil de sensibilidad a estos antibióticos en S. aureus, por otra parte se evidencia una tasa alta de sensibilidad a antibióticos con mecanismos de acciones diferentes a meticilina. Comprobamos que los péptidos LL-37 y ATRA-1 presentan capacidad antimicrobiana frente a este patógeno y que existen diferencias entre la actividad de estos compuestos y el perfil de sensibilidad a meticiilina. Finalmente, comprobamos que estos péptidos generan cambios en la morfología superficial como uno de sus mecanismos de acción, sin embargo, no se descarta que presenten efectos intracelulares que potencien su actividad antimicrobiana. Con este trabajo, buscamos contribuir a la vigilancia de la resistencia bacteriana en la ciudad de Bogotá, promover el desarrollo de nuevas alternativas terapéuticas que permitan controlar la resistencia bacteriana en nuestra región, así como aportar en la caracterización de la actividad de péptidos antimicrobianos sintéticos en S. aureus. (Texto tomado de la fuente)spa
dc.description.abstractStaphylococcus aureus is a bacterium of great clinical importance. It is the most virulent species within its genus and the cause of very diverse infections that can threaten the lives of those who suffer from them. More importantly, it has shown resistance to multiple antibiotics, including β-lactam antibiotics, like Methicillin resistance. Methicillin-resistant isolates are a worldwide public health problem, attributed initially to hospital environments, but it has begun to be reported more and more frequently in the community. In addition to this, resistance to other antibiotics with different therapeutic targets has been observed. That makes it necessary to search for new alternatives to control the bacterial growth of isolates that cannot be treated with existing antibiotics. This work aims to determine the effect of cathelicidin-derived peptides on the growth and morphology of S. aureus clinical isolates from Bogotá D.C. city. We performed molecular characterization of the methicillin resistance mecA gene, protein A (spa), and pvl genes, and we identified the sensitivity profiles to the antibiotics of 57 S. aureus clinical isolates. Additionally, we evaluated the antimicrobial activity of LL-37, ATRA-1, and daptomycin on the characterized clinical isolates. Finally, we identified the changes in S. aureus bacterial morphology by peptides’ action using scanning electron microscopy (SEM). We determined that there is an important prevalence of resistant isolates to Methicillin. Some of them with discordances in the methicillin sensitivity in S. aureus. However, a high sensitivity rate to antibiotics with mechanisms of action different from methicillin is evidenced. We found that LL-37 and ATRA-1 peptides have antimicrobial capacity against this pathogen and are differences between the activity of these compounds and the sensitivity of the Methicillin profile. Finally, we proved that these peptides generate Surface changes in morphology as one of their mechanisms; however, it is not excluded that they present intracellular effects that potentiate its antimicrobial action. With this work, we are looking to contribute to the surveillance of bacterial resistance in Bogotá city, promote the development of new therapeutic strategies to control bacterial resistance in our region, and contribute to the characterization of the activity of synthetic antimicrobial peptides against S. aureus.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.methodsCaracterización de aislamientos de S. aureus Perfil de sensibilidad antibiótica En este estudio se incluyeron 57 aislamientos proporcionados por el Grupo para el Control de la resistencia bacteriana en Bogotá (GREBO) y el laboratorio de Biofísica de la Universidad de los Andes (ver Anexo A). A partir de estos aislamientos se realizaron cultivos iniciales de 24 h a 37°C en medio solido tripticasa de soya (TSA) (Scharlau Chemie, España). La sensibilidad oxacilina se evalúo empleando el método microdilución en caldo conforme a lo descrito en la norma CLSI M07 (Clinical and Laboratory Standards Institute, 2018) y a cefoxitina, gentamicina, eritromicina, clindamicina, ciprofloxacina y trimetoprima-sulfametoxazol empleando el método difusión en agar conforme a lo descrito en la normar CLSI M02 (Clinical and Laboratory Standards Institute, 2018). Como controles se emplearon las cepas Staphylococcus aureus subsp. aureus (ATCC® 25923™), Staphylococcus aureus subsp. aureus (ATCC® 29213™) y Staphylococcus aureus subsp. aureus (ATCC® 33591™) (American Type Culture Collection, Virginia, USA) y los aislamientos clínicos 1631 sensible a daptomicina y 1634 resistente a daptomicina, proporcionados por el laboratorio de Biofísica de la Universidad de los Andes (ver anexo A). Todos los ensayos se realizaron por triplicado.spa
dc.description.researchareaMicrobiología médicaspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extent62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82941
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbente, S., Carpinelli, L., Guillén, R., Rodríguez, F., Fariña, N., Laspina, F., & López, Y. (2016). Frecuencia de Staphylococcus aureus meticilino resistente y del factor de virulencia PVL en pacientes ambulatorios con infección de piel y partes blandas de Asunción, Paraguay. Memorias Del Instituto de Investigaciones En Ciencias de La Salud, 14(2).spa
dc.relation.referencesAkanbi, O. E., Njom, H. A., Fri, J., Otigbu, A. C., & Clarke, A. M. (2017). Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. International Journal of Environmental Research and Public Health, 14(9), 1001.spa
dc.relation.referencesAli, A. (2016). Detection of MecA, MecC and Femb Genes by Multiplex Polymerase Chain Reaction. Journal of Veterinary Advances, 6(1), 1199. https://doi.org/10.5455/jva.20151204111125spa
dc.relation.referencesAmer, L. S., Bishop, B. M., & van Hoek, M. L. (2010). Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochemical and Biophysical Research Communications, 396(2), 246–251.spa
dc.relation.referencesAskari, E., Soleymani, F., Arianpoor, A., Tabatabai, S. M., Amini, A., & NaderiNasab, M. (2012). Epidemiology of mecA-methicillin resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. Iranian Journal of Basic Medical Sciences, 15(5), 1010.spa
dc.relation.referencesBahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543–1575.spa
dc.relation.referencesBaindara, P., Ghosh, A. K., & Mandal, S. M. (2020). Coevolution of resistance against antimicrobial peptides. Microbial Drug Resistance, 26(8), 880–899.spa
dc.relation.referencesBals, R., Wang, X., Zasloff, M., & Wilson, J. M. (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proceedings of the National Academy of Sciences, 95(16), 9541–9546.spa
dc.relation.referencesBatoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 1044–1060.spa
dc.relation.referencesBecker, K., Ballhausen, B., Köck, R., & Kriegeskorte, A. (2014). Methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. International Journal of Medical Microbiology, 304(7), 794–804.spa
dc.relation.referencesBlower, R. J., Barksdale, S. M., & van Hoek, M. L. (2015). Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Neglected Tropical Diseases, 9(7), e0003862.spa
dc.relation.referencesBoonsiri, T., Watanabe, S., Tan, X.-E., Thitiananpakorn, K., Narimatsu, R., Sasaki, K., Takenouchi, R., Sato’o, Y., Aiba, Y., & Kiga, K. (2020). Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Scientific Reports, 10(1), 1–22.spa
dc.relation.referencesBrogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.spa
dc.relation.referencesBrogden, N. K., & Brogden, K. A. (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 38(3), 217–225.spa
dc.relation.referencesCallegan, M. C., Engel, L. S., Hill, J. M., & O’Callaghan, R. J. (1994). Corneal virulence of Staphylococcus aureus: roles of alpha-toxin and protein A in pathogenesis. Infection and Immunity, 62(6), 2478–2482.spa
dc.relation.referencesCao, X., Zhang, Y., Mao, R., Teng, D., Wang, X., & Wang, J. (2015). Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus. Applied Microbiology and Biotechnology, 99(6), 2649–2662.spa
dc.relation.referencesCardoso, M. H., Meneguetti, B. T., Costa, B. O., Buccini, D. F., Oshiro, K. G. N., Preza, S. L. E., Carvalho, C. M. E., Migliolo, L., & Franco, O. L. (2019). Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. International Journal of Molecular Sciences, 20(19), 4877.spa
dc.relation.referencesCardot‐Martin, E., Casalegno, J. S., Badiou, C., Dauwalder, O., Keller, D., Prevost, G., Rieg, S., Kern, W. V, Cuerq, C., & Etienne, J. (2015). α‐defensins partially protect human neutrophils against Panton‐Valentine leukocidin produced by Staphylococcus aureus. Letters in Applied Microbiology, 61(2), 158–164.spa
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio, 61(1), 28–40.spa
dc.relation.referencesCarvalho, S. P. D., Almeida, J. B. D., Andrade, Y. M., da Silva, L. S., Chamon, R. C., Santos, K., & Marques, L. M. (2019). Molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from hospital and community environments in northeastern Brazil. Brazilian Journal of Infectious Diseases, 23, 134-138.spa
dc.relation.referencesChávez, M., Erazo, N. C., Reina, D. A., & Esparza, M. (2015). Métodos de tipificación y epidemiología molecular de Staphylococcus aureus con resistencia a la meticilina. Biosalud, 14(2), 81-90.spa
dc.relation.referencesChen, F.-J., Wang, C.-H., Chen, C.-Y., Hsu, Y.-C., & Wang, K.-T. (2014). Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrobial Agents and Chemotherapy, 58(2), 1047–1054.spa
dc.relation.referencesChou, S., Wang, J., Shang, L., Akhtar, M. U., Wang, Z., Shi, B., Feng, X., & Shan, A. (2019). Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomaterials Science, 7(6), 2394–2409.spa
dc.relation.referencesClinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute.spa
dc.relation.referencesCondrad, R. S. (1998). The effects of daptomycin on chemical composition and morphology of Staphylococcus aureus. Proceedings of the Oklahoma Academy of Science, 15–22.spa
dc.relation.referencesConlon, J. M., & Sonnevend, A. (2010). Antimicrobial peptides in frog skin secretions. In Antimicrobial Peptides (pp. 3–14). Springer.spa
dc.relation.referencesCorrea-Jiménez, O., Pinzón-Redondo, H., & Reyes, N. (2016). High frequency of Panton-Valentine leukocidin in Staphylococcus aureus causing pediatric infections in the city of CartagenaColombia. Journal of Infection and Public Health, 9(4), 415-420.spa
dc.relation.referencesCunningham, S. D., Lowe, D. J., O’brien, J. P., Wang, H., & Wilkins, A. E. (2011). Polyethylene binding peptides and methods of use. Google Patents.spa
dc.relation.referencesDawson, R. M., & Liu, C.-Q. (2011). Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. International Journal of Antimicrobial Agents, 37(5), 432– 437.spa
dc.relation.referencesde Latour, F. A., Amer, L. S., Papanstasiou, E. A., Bishop, B. M., & van Hoek, M. L. (2010). Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochemical and Biophysical Research Communications, 396(4), 825–830.spa
dc.relation.referencesDean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011a). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology, 11(1), 1–13.spa
dc.relation.referencesDean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011b). Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Frontiers in Microbiology, 2, 128.spa
dc.relation.referencesDíaz, P., Bello, H., Domínguez, M., Trabal, N., Mella, S., Zemelman, R., & González, G. (2004). Resistencia a gentamicina, amikacina y ciprofloxacina en cepas hospitalarias de Klebsiella pneumoniae subespecie pneumoniae productoras de ß-lactamasas de espectro extendido. Revista Médica de Chile, 132(10), 1173–1178.spa
dc.relation.referencesDonkor, E. S., Dayie, N. T. K. D., & Adiku, T. K. (2014). Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). Journal of Bioinformatics and Sequence Analysis, 6(1), 1–6.spa
dc.relation.referencesDürr, U. H. N., Sudheendra, U. S., & Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)Biomembranes, 1758(9), 1408–1425.spa
dc.relation.referencesEnright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., & Spratt, B. G. (2002). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 99(11), 7687–7692.spa
dc.relation.referencesEpand, R. M., & Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1–2), 11–28.spa
dc.relation.referencesEscobar-Pérez, J. A., Castro, B. E., Márquez-Ortiz, R. A., Gaines, S., Chavarro, B., Moreno, J., Leal, A. L., & Vanegas, N. (2014). Aislamientos de Staphylococcus aureus sensibles a meticilina relacionados genéticamente con el clon USA300,¿ origen de los aislamientos SARM de genotipo comunitario en Colombia? Biomédica, 34(1), 124–136.spa
dc.relation.referencesEspinosa, C. J., Cortés, J. A., Castillo, J. S., & Leal, A. L. (2011). Revisión sistemática de la resistencia antimicrobiana en cocos Gram positivos intrahospitalarios en Colombia. Biomédica, 31(1), 27–34.spa
dc.relation.referencesFalanga, A., Lombardi, L., Franci, G., Vitiello, M., Iovene, M. R., Morelli, G., Galdiero, M., & Galdiero, S. (2016). Marine antimicrobial peptides: nature provides templates for the design of novel compounds against pathogenic bacteria. International Journal of Molecular Sciences, 17(5), 785.spa
dc.relation.referencesFrenay, H. M. E., Bunschoten, A. E., Schouls, L. M., Van Leeuwen, W. J., Vandenbroucke-Grauls, C., Verhoef, J., & Mooi, F. R. (1996). Molecular typing of methicillin- aureus on the basis of protein A gene polymorphism. European Journal of Clinical Microbiology and Infectious Diseases, 15(1), 60–64.spa
dc.relation.referencesFumakia, M., & Ho, E. A. (2016). Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Molecular Pharmaceutics, 13(7), 2318–2331.spa
dc.relation.referencesGanz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 3(9), 710–720.spa
dc.relation.referencesGhebremedhin, B., Layer, F., Konig, W., & Konig, B. (2008). Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. Journal of Clinical Microbiology, 46(3), 1019–1025.spa
dc.relation.referencesGraf, M., Mardirossian, M., Nguyen, F., Seefeldt, A. C., Guichard, G., Scocchi, M., Innis, C. A., & Wilson, D. N. (2017). Proline-rich antimicrobial peptides targeting protein synthesis. Natural Product Reports, 34(7), 702–711.spa
dc.relation.referencesGrönberg, A., Mahlapuu, M., Ståhle, M., Whately‐Smith, C., & Rollman, O. (2014). Treatment with LL‐37 is safe and effective in enhancing healing of hard‐to‐heal venous leg ulcers: a randomized, placebo‐controlled clinical trial. Wound Repair and Regeneration, 22(5), 613– 621.spa
dc.relation.referencesHarmsen, D., Claus, H., Witte, W., Rothgänger, J., Claus, H., Turnwald, D., & Vogel, U. (2003). Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. Journal of Clinical Microbiology, 41(12), 5442–5448.spa
dc.relation.referencesHenzler Wildman, K. A., Lee, D.-K., & Ramamoorthy, A. (2003). Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 42(21), 6545–6558.spa
dc.relation.referencesHobbs, J. K., Miller, K., O’neill, A. J., & Chopra, I. (2008). Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 62(5), 1003–1008.spa
dc.relation.referencesHong, S. Y., Oh, J. E., & Lee, K.-H. (1999). Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochemical Pharmacology, 58(11), 1775–1780.spa
dc.relation.referencesHryniewicz, M. M., & Garbacz, K. (2017). Borderline oxacillin-resistant Staphylococcus aureus (BORSA)–a more common problem than expected? Journal of Medical Microbiology, 66(10), 1367–1373spa
dc.relation.referencesHsiao, C.-H., Ong, S. J., Chuang, C.-C., Ma, D. H. K., & Huang, Y.-C. (2015). A comparison of clinical features between community-associated and healthcare-associated methicillinresistant Staphylococcus aureus keratitis. Journal of Ophthalmology, 2015.spa
dc.relation.referencesHuang, H. W. (2020). DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183395.spa
dc.relation.referencesJokinen, E., Lindholm, L., Huttunen, R., Huhtala, H., Vuento, R., Vuopio, J., & Syrjänen, J. (2018). Spa type distribution in MRSA and MSSA bacteremias and association of spa clonal complexes with the clinical characteristics of bacteremia. European Journal of Clinical Microbiology & Infectious Diseases, 37(5), 937–943.spa
dc.relation.referencesJuba, M. L., Porter, D. K., Williams, E. H., Rodriguez, C. A., Barksdale, S. M., & Bishop, B. M. (2015). Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(5), 1081–1091.spa
dc.relation.referencesJuba, M., Porter, D., Dean, S., Gillmor, S., & Bishop, B. (2013). Characterization and performance of short cationic antimicrobial peptide isomers. Peptide Science, 100(4), 387–401.spa
dc.relation.referencesJung, S.-I., Shin, D.-H., Park, K.-H., & Shin, J.-H. (2006). Antimicrobial susceptibility and clonal relatedness between community-and hospital-acquired methicillin-resistant Staphylococcus aureus from blood cultures. Journal of Microbiology, 44(3), 336–343.spa
dc.relation.referencesKandasamy, S. K., & Larson, R. G. (2006). Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochimica et Biophysica Acta (BBA)Biomembranes, 1758(9), 1274–1284.spa
dc.relation.referencesKhurshid, Z., Najeeb, S., Mali, M., Moin, S. F., Raza, S. Q., Zohaib, S., Sefat, F., & Zafar, M. S. (2017). Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal, 25(1), 25–31.spa
dc.relation.referencesKlemetsen, T., Karlsen, C. R., & Willassen, N. P. (2021). Phylogenetic revision of the genus Aliivibrio: intra-and inter-species variance among clusters suggest a wider diversity of species. Frontiers in Microbiology, 12, 272.spa
dc.relation.referencesKöck, R., Schaumburg, F., Mellmann, A., Köksal, M., Jurke, A., Becker, K., & Friedrich, A. W. (2013). Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PloS One, 8(2), e55040.spa
dc.relation.referencesKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 8(1), 4.spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547– 1549.spa
dc.relation.referencesLabandeira-Rey, M., Couzon, F., Boisset, S., Brown, E. L., Bes, M., Benito, Y., Barbu, E. M., Vazquez, V., Höök, M., & Etienne, J. (2007). Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science, 315(5815), 1130–1133.spa
dc.relation.referencesLane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics, 115–175.spa
dc.relation.referencesLázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P. K., Kintses, B., & Csörgő, B. (2018). Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 3(6), 718–731.spa
dc.relation.referencesLi, H., Sun, S., Yap, J. Q., Chen, J., & Qian, Q. (2016). 0.9% saline is neither normal nor physiological. Journal of Zhejiang University-SCIENCE B, 17(3), 181–187.spa
dc.relation.referencesLina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M.-O., Gauduchon, V., Vandenesch, F., & Etienne, J. (1999). Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clinical Infectious Diseases, 29(5), 1128– 1132. https://doi.org/10.1086/313461spa
dc.relation.referencesLiu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C., & Kallenbach, N. R. (2007). Length effects in antimicrobial peptides of the (RW) n series. Antimicrobial Agents and Chemotherapy, 51(2), 597–603.spa
dc.relation.referencesLöffler, B., Hussain, M., Grundmeier, M., Brück, M., Holzinger, D., Varga, G., Roth, J., Kahl, B. C., Proctor, R. A., & Peters, G. (2010). Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathogens, 6(1), e1000715.spa
dc.relation.referencesMagiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., & Olsson-Liljequist, B. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281.spa
dc.relation.referencesMalanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 936–946.spa
dc.relation.referencesMalik, E., Dennison, S. R., Harris, F., & Phoenix, D. A. (2016). pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals, 9(4), 67.spa
dc.relation.referencesMascio, C. T. M., Alder, J. D., & Silverman, J. A. (2007). Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrobial Agents and Chemotherapy, 51(12), 4255–4260.spa
dc.relation.referencesMerriman, J. A., Nemeth, K. A., & Schlievert, P. M. (2014). Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis. PloS One, 9(4), e95661.spa
dc.relation.referencesMiller, B. A., Gray, A., LeBlanc, T. W., Sexton, D. J., Martin, A. R., & Slama, T. G. (2010). Acute eosinophilic pneumonia secondary to daptomycin: a report of three cases. Clinical Infectious Diseases, 50(11), e63–e68.spa
dc.relation.referencesMinahk, C. J., & Morero, R. D. (2003). Inhibition of enterocin CRL35 antibiotic activity by monoand divalent ions. Letters in Applied Microbiology, 37(5), 374–379.spa
dc.relation.referencesMüller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V, Kohl, B., Siersma, T., Bandow, J. E., Sahl, H.-G., & Schneider, T. (2016). Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 113(45), E7077–E7086.spa
dc.relation.referencesMurray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2020). Medical Microbiology E-Book. Elsevier Health Sciences.spa
dc.relation.referencesMwambi, B., Iramiot, J., Bwanga, F., Nakaye, M., Itabangi, H., & Bazira, J. (2014). Clindamycin resistance among taphylococcus aureus isolated at Mbarara regional referral hospital, in south western Uganda. British Microbiology Research Journal, 4(12), 1335.spa
dc.relation.referencesNathwani, D., Morgan, M., Masterton, R. G., Dryden, M., Cookson, B. D., French, G., & Lewis, D. (2008). Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. Journal of Antimicrobial Chemotherapy, 61(5), 976–994.spa
dc.relation.referencesNeshani, A., Zare, H., Eidgahi, M. R. A., Kakhki, R. K., Safdari, H., Khaledi, A., & Ghazvini, K. (2019). LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Reports, 17, 100519.spa
dc.relation.referencesOcampo, A. M., Vélez, L. A., Robledo, J., & Jiménez, J. N. (2014). Cambios a lo largo del tiempo en la distribución de los complejos de clones dominantes de Staphylococcus aureus resistente a la meticilina en Medellín, Colombia. Biomédica, 34, 34-40.spa
dc.relation.referencesOliveira, D. C., Tomasz, A., & de Lencastre, H. (2001). The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microbial Drug Resistance, 7(4), 349–361spa
dc.relation.referencesOng, S. J., Huang, Y.-C., Tan, H.-Y., Ma, D. H. K., Lin, H.-C., Yeh, L.-K., Chen, P. Y. F., Chen, H.C., Chuang, C.-C., & Chang, C.-J. (2013). Staphylococcus aureus keratitis: a review of hospital cases. PLoS One, 8(11), e80119.spa
dc.relation.referencesOrozco, R. C., Ferrer, L. V., Jiménez, J. R., & Guzmán, N. A. (2018). Resistencia antimicrobiana en aureus y epidermidis: tendencia temporal (2010-2016) y fenotipos de multirresistencia, Cartagena (Colombia). Biosalud, 17(2), 25–36.spa
dc.relation.referencesOuhara, K., Komatsuzawa, H., Kawai, T., Nishi, H., Fujiwara, T., Fujiue, Y., Kuwabara, M., Sayama, K., Hashimoto, K., & Sugai, M. (2008). Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 61(6), 1266–1269.spa
dc.relation.referencesOvalle Guerro, M. (2020). Vigilancia por WHONET de resistencia antimicrobiana en el ámbito hospitalario, Colombia 2020. https://www.ins.gov.co/BibliotecaDigital/vigilancia-porwhonet-de-resistencia-antimicrobiana-en-el-ambito-hospitalario-colombia2020.pdf#search=Staphylococcusspa
dc.relation.referencesPal, M., Kerorsa, G. B., Marami, L. M., & Kandi, V. (2020). Epidemiology, Pathogenicity, Animal Infections, Antibiotic Resistance, Public Health Significance, and Economic Impact of Staphylococcus : A Comprehensive Review. American Journal of Public Health, 8(1), 14–21.spa
dc.relation.referencesPapanastasiou, E. A., Hua, Q., Sandouk, A., Son, U. H., Christenson, A. J., Van Hoek, M. L., & Bishop, B. M. (2009). Role of acetylation and charge in antimicrobial peptides based on human β‐defensin‐3. Apmis, 117(7), 492–499.spa
dc.relation.referencesPark, C. B., Yi, K.-S., Matsuzaki, K., Kim, M. S., & Kim, S. C. (2000). Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proceedings of the National Academy of Sciences, 97(15), 8245–8250.spa
dc.relation.referencesPatel, J. B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321.spa
dc.relation.referencesPellens, R., & Grandcolas, P. (2016). Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis. Springer Nature.spa
dc.relation.referencesPiątkowska, E., Piątkowski, J., & Przondo-Mordarska, A. (2012). The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cellular & Molecular Biology Letters, 17(4), 633–645.spa
dc.relation.referencesPo, K. H. L., Chow, H. Y., Cheng, Q., Chan, B. K., Deng, X., Wang, S., Chan, E. W. C., Kong, H., Chan, K. F., & Li, X. (2021). Daptomycin exerts bactericidal effect through induction of excessive ROS production and blocking the function of stress response protein Usp2. Natural Sciences, 1(2), e10023.spa
dc.relation.referencesPuklo, M., Guentsch, A., Hiemstra, P. S., Eick, S., & Potempa, J. (2008). Analysis of neutrophilderived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL‐37 in the innate immune response against periodontogenic bacteria. Oral Microbiology and Immunology, 23(4), 328–335.spa
dc.relation.referencesQuinn, P. J., Markey, B. K., Leonard, F. C., Hartigan, P., Fanning, S., & Fitzpatrick, Es. (2011). Veterinary microbiology and microbial disease. John Wiley & Sons.spa
dc.relation.referencesR Dennison, S., HG Morton, L., & A Phoenix, D. (2012). Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs. Protein and Peptide Letters, 19(6), 586–591.spa
dc.relation.referencesRichter, S. S., Kealey, D. E., Murray, C. T., Heilmann, K. P., Coffman, S. L., & Doern, G. V. (2003). The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy, 52(1), 123–127.spa
dc.relation.referencesSaeed, K., Marsh, P., & Ahmad, N. (2014). Cryptic resistance in Staphylococcus aureus: a risk for the treatment of skin infection? Current Opinion in Infectious Diseases, 27(2), 130–136.spa
dc.relation.referencesSantaniello, A., Sansone, M., Fioretti, A., & Menna, L. F. (2020). Systematic review and metaanalysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. International Journal of Environmental Research and Public Health, 17(9), 3278.spa
dc.relation.referencesScott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D., & Hancock, R. E. W. (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. The Journal of Immunology, 169(7), 3883–3891.spa
dc.relation.referencesShai, Y., & Oren, Z. (2001). From “carpet” mechanism to de-novo designed diastereomeric cellselective antimicrobial peptides. Peptides, 22(10), 1629–1641.spa
dc.relation.referencesShopsin, B., Gomez, M., Montgomery, S. O., Smith, D. H., Waddington, M., Dodge, D. E., Bost, D. A., Riehman, M., Naidich, S., & Kreiswirth, B. N. (1999). Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of Clinical Microbiology, 37(11), 3556–3563.spa
dc.relation.referencesSohail, M., & Latif, Z. (2017). Prevalence and antibiogram of methicillin resistant Staphylococcus aureus isolated from medical device-related infections; a retrospective study in Lahore, Pakistan. Revista Da Sociedade Brasileira de Medicina Tropical, 50(5), 680–684.spa
dc.relation.referencesTakizawa, Y., Taneike, I., Nakagawa, S., Oishi, T., Nitahara, Y., Iwakura, N., Ozaki, K., Takano, M., Nakayama, T., & Yamamoto, T. (2005). A Panton-Valentine leucocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. Journal of Clinical Microbiology, 43(7), 3356–3363.spa
dc.relation.referencesTerra, R. M. S., Guimarães, J. A., & Verli, H. (2007). Structural and functional behavior of biologically active monomeric melittin. Journal of Molecular Graphics and Modelling, 25(6), 767–772.spa
dc.relation.referencesThampi, D. K., Mundangalam, N., Pulikottil, S. K., & Jacob, N. (2019). Comparison of Phenotypic MRSA Detection Methods with mecA gene PCR in a Tertiary Care Centre in India. Journal of Evolution of Medical and Dental Sciences, 8(36), 2813–2818.spa
dc.relation.referencesThitiananpakorn, K., Aiba, Y., Tan, X.-E., Watanabe, S., Kiga, K., Sato’o, Y., Boonsiri, T., Li, F.-Y., Sasahara, T., & Taki, Y. (2020). Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Scientific Reports, 10(1), 1–15.spa
dc.relation.referencesThomas, P., Sekhar, A. C., Upreti, R., Mujawar, M. M., & Pasha, S. S. (2015). Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports, 8, 45–55.spa
dc.relation.referencesToor, H. G., Banerjee, D. I., & Chauhan, J. B. (2021). In Silico Evaluation of Human Cathelicidin LL-37 as a Novel Therapeutic Inhibitor of Panton-Valentine Leukocidin Toxin of MethicillinResistant Staphylococcus aureus. Microbial Drug Resistance, 27(5), 602–615.spa
dc.relation.referencesTrindade, P. A., McCulloch, J. A., Oliveira, G. A., & Mamizuka, E. M. (2003). Molecular techniques for MRSA typing: current issues and perspectives. Brazilian Journal of Infectious Diseases, 7(1), 32–43.spa
dc.relation.referencesTurner, A. M., Lee, J. Y. H., Gorrie, C. L., Howden, B. P., & Carter, G. P. (2021). Genomic Insights Into Last-Line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Frontiers in Microbiology, 12, 576.spa
dc.relation.referencesValderrama-Beltrán, S., Cortés, J. A., Caro, M. A., Cely-Andrado, L., Osorio-Pinzón, J. V., Gualtero, S. M., Berrio-Medina, I., Rodriguez, J. Y., Granada-Copete, A. M., & Guevara, F. (2019). Guía de práctica clínica para el diagnóstico y manejo de las infecciones de piel y tejidos blandos en Colombia. Infectio, 23(4), 318–346.spa
dc.relation.referencesVan Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: an overview. Frontiers in Microbiology, 2, 203.spa
dc.relation.referencesVasilchenko, A. S., Julian, W. T., Lapchinskaya, O. A., Katrukha, G. S., Sadykova, V. S., & Rogozhin, E. A. (2020). A novel peptide antibiotic produced by Streptomyces roseoflavus strain INAAc-5812 with directed activity against Gram-positive bacteria. Frontiers in Microbiology, 11.spa
dc.relation.referencesWu, G., Ding, J., Li, H., Li, L., Zhao, R., Fan, X., & Shen, Z. (2008). Effects of Cations and PH on Antimicrobial Activity of Thanatin and s-Thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Nature Precedings, 1.spa
dc.relation.referencesYamada, T., Ishikawa, S., Ishiguro, N., Kobayashi, M., & Iseki, K. (2020). Evaluation of daptomycin-induced cellular membrane injury in skeletal muscle. Biological and Pharmaceutical Bulletin, b20-00217.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsProgramas de Optimización del Uso de los Antimicrobianosspa
dc.subject.decsAntimicrobial Stewardshipeng
dc.subject.decsAislamiento de Pacientesspa
dc.subject.decsPatient Isolationeng
dc.subject.proposalStaphylococcus aureusspa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalLL-37eng
dc.subject.proposalATRA-1eng
dc.subject.proposalCatelicidinaspa
dc.subject.proposalResistencia antibióticaspa
dc.subject.proposalResistencia a meticilinaspa
dc.subject.proposalAntimicrobial peptideseng
dc.subject.proposalAntibiotic resistanceeng
dc.subject.proposalCathelicidineng
dc.subject.proposalMethicillin resistanceeng
dc.titleCaracterización molecular y de sensibilidad in vitro a antibióticos y péptidos derivados de catelicidina como agentes antimicrobianos frente a aislamientos clínicos de Staphylococcus aureus procedentes de la ciudad de Bogotá D.C.spa
dc.title.translatedMolecular and in vitro sensitivity characterization to antibiotics and cathelicidin peptides as antimicrobial agents against clinical isolates of Staphylococcus aureus from Bogotá city.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCaracterización molecular y de sensibilidad in vitro a antibióticos y péptidos derivados de catelicidina como agentes antimicrobianos frente a aislamientos clínicos de Staphylococcus aureus procedentes de la ciudad de Bogotá D.C.spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013675857.2022.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: