Determinación del potencial energético solar en La Dorada Caldas
dc.contributor.advisor | Toro García, Nicolás | |
dc.contributor.advisor | Ruíz Mendoza, Belizza Janet | |
dc.contributor.author | Buitrago Paternina, Diego | |
dc.contributor.cvlac | Buitrago Paternina, Diego [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000056353] | spa |
dc.contributor.orcid | Buitrago Paternina, Diego [https://orcid.org/0000000212702128] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Recursos Energéticos Gire | spa |
dc.contributor.researchgroup | Gipem Grupo de Investigación en Potencia, Energía y Mercados | spa |
dc.date.accessioned | 2025-02-20T18:16:59Z | |
dc.date.available | 2025-02-20T18:16:59Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | La energía solar es una fuente de energía renovable y limpia que se utiliza cada vez más para satisfacer la demanda energética mundial. Sin embargo, la cantidad de energía solar disponible en un lugar específico depende en gran medida de las variables meteorológicas, como la cantidad de luz solar, la nubosidad y la temperatura. El conocimiento de las variables meteorológicas es fundamental para evaluar el potencial de la energía solar y predecir la evolución de la irradiación en una serie temporal. Para lograr esto, se requiere una evaluación cuantitativa y cualitativa más precisa utilizando diversas técnicas, incluyendo modelos basados en el brillo solar, modelos basados en temperatura, nubosidad y otros parámetros meteorológicos. Con el fin de adaptarse adecuadamente al cambio climático, es importante destacar que los registros proporcionados por el IDEAM para las variables meteorológicas a menudo presentan errores, datos atípicos y faltantes. Como resultado, es necesario llevar a cabo un proceso riguroso de control de calidad para garantizar la fiabilidad de los datos obtenidos de la estación meteorológica. En este sentido, se llevó a cabo un proceso de imputación para el llenado de los datos faltantes en la serie temporal, utilizando técnicas estadísticas apropiadas y de interpolación. Este proceso permitió obtener una serie temporal más completa y precisa, lo que a su vez facilitó el cálculo de la insolación solar con un promedio anual de 5831 Wh/m2year, y el cálculo de los modelos empíricos basados en temperatura con un promedio anual de 5683 Wh/m2year. El fenómeno ENSO se reconoce como un factor importante que afecta la precisión de los modelos empíricos utilizados para estimar el potencial de energía solar. Dado que los datos de irradiación solar pueden ser menos consistentes que los datos de temperatura, es crucial realizar una validación cuidadosa del impacto del ENSO en los cálculos anuales. Para garantizar la calidad de los datos, se recomienda mantener los instrumentos de medición en buenas condiciones, instalar estaciones meteorológicas auxiliares, utilizar técnicas de interpolación y estadísticas para completar los datos faltantes adquiridos en la serie temporal. El autor propone estas soluciones para mejorar la confiabilidad del sistema de almacenamiento de datos y mejorar la precisión del cálculo. Se utilizaron varios métodos estadísticos para evaluar la precisión de los resultados en los modelos empíricos de temperatura seleccionados para el cálculo de la insolación solar, incluyendo el coeficiente de determinación (𝑅2), el error cuadrático medio (RMSE), el error de sesgo medio (MBE) y el error absoluto medio de sesgo (MABE). Los resultados indicaron que todos los métodos empíricos tenían un ajuste similar según el 𝑅2, pero los métodos de Chen et al., Hunt et al. y Mahmood and Hubbard fueron los mejores para llenar los datos faltantes en términos de MABE. Sin embargo, el error porcentual medio (MPE) arrojó un valor negativo, lo que indica una sobreestimación de los resultados de insolación solar para el año de calibración y se eligen los métodos empíricos de Chen et al., Hunt et al., para el cálculo de la insolación solar en la serie temporal completa (Texto tomado de la fuente). | spa |
dc.description.abstract | Solar energy is a renewable and clean source of energy that is increasingly being used to meet global energy demand. However, the amount of solar energy available at a specific location depends largely on weather variables, such as the amount of sunlight, cloud cover, and temperature. Knowledge of these weather variables is crucial for evaluating the potential of solar energy and predicting the evolution of irradiation in a time series. To achieve this, more precise quantitative and qualitative evaluation is required using various techniques, including models based on solar brightness, temperature-based models, cloud cover and other meteorological parameters. To adapt properly to climate change, it is important to highlight that records provided by IDEAM for meteorological variables often have errors, outliers, and missing data. As a result, a rigorous quality control process is necessary to ensure the reliability of the data obtained from the weather station. In this sense, an imputation process was carried out to fill the missing data in the time series, using appropriate statistical and interpolation techniques. This process allowed for a more complete and accurate time series, which in turn facilitated the calculation of solar insulation with an annual average of 5831 Wh/m2year, and the calculation of empirical models based on temperature with an annual average of 5683 Wh/m2year. The ENSO phenomenon is recognized as an important factor affecting the accuracy of empirical models used to estimate the potential of solar energy. Since solar irradiation data may be less consistent than temperature data, it is crucial to carefully validate the impact of ENSO on annual calculations. To ensure data quality, it is recommended to maintain measuring instruments in good condition, install auxiliary weather stations, use interpolation and statistical techniques to fill in missing data in the time series. The author proposes these solutions to improve the reliability of the data storage system and enhance calculation accuracy. Various statistical methods were employed to assess the accuracy of results in the selected empirical temperature models for solar insolation calculation, including the coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Bias Error (MBE), and Mean Absolute Bias Error (MABE). The results indicated that all empirical methods had similar fits according to R2, but Chen et al., Hunt et al., and Mahmood and Hubbard's methods were the best for filling missing data in terms of MABE. However, the mean percentage error (MPE) yielded a negative value, indicating an overestimation of solar insolation results for the calibration year, and therefore, the empirical methods by Chen et al. and Hunt et al. are chosen for solar insolation calculation in the entire time series. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Energías renovables | spa |
dc.description.technicalinfo | Programación realizada con el software computacional Matlab. | spa |
dc.format.extent | 146 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87521 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | Akima, H. (1970). A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. Journal of the ACM (JACM), 17(4), 589–602. https://doi.org/10.1145/321607.321609 | spa |
dc.relation.references | Akima, H. (1974). A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures. Communications of the ACM, 17(1), 18–20. https://doi.org/10.1145/360767.360779 | spa |
dc.relation.references | Allen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation from Air Temperature. Journal of Hydrologic Engineering, 2(2), 56–67. https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(56) | spa |
dc.relation.references | Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022 | spa |
dc.relation.references | Almorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy, 88(5), 1703–1709. https://doi.org/10.1016/j.apenergy.2010.11.003 | spa |
dc.relation.references | Angarita, A. (2014). Apuntes de análisis numérico (Departamen, Vol. 1). https://dokumen.tips/documents/apuntes-de-analisis-numerico- 56671ef984d84.html?page=1 | spa |
dc.relation.references | Angström, A. (1924). Solar and Terrestrial Radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126. https://doi.org/10.1002/qj.49705021008 | spa |
dc.relation.references | Annandale, J., Jovanovic, N., Benadé, N., & Allen, R. (2002). Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrigation Science, 21(2). https://doi.org/10.1007/s002710100047 | spa |
dc.relation.references | Badescu, V., & Fallis, A. . (2013). Modeling Solar Radiation at the Earth’s Surface_ Recent Advances-Springer (2008). In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Bahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation solar radiation. Energy, 12(2), 131–135. https://doi.org/https://doi.org/10.1016/0360-5442(87)90117-4 | spa |
dc.relation.references | Bakirci, K. (2009). Correlations for estimation of daily global solar radiation with hours of 142 bright sunshine in Turkey. Energy, 34(4), 485–501. https://doi.org/10.1016/j.energy.2009.02.005 | spa |
dc.relation.references | Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2008). Estimation of monthly solar radiation from measured air temperature extremes. Agricultural and Forest Meteorology, 148(11), 1707–1718. https://doi.org/10.1016/j.agrformet.2008.06.002 | spa |
dc.relation.references | Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. In Renewable and Sustainable Energy Reviews (Vol. 21, pp. 798–821). https://doi.org/10.1016/j.rser.2012.12.043 | spa |
dc.relation.references | Bica, A. M. (2014). Optimizing at the end-points the Akima’s interpolation method of smooth curve fitting. Computer Aided Geometric Design, 31(5), 245–257. https://doi.org/10.1016/j.cagd.2014.03.001 | spa |
dc.relation.references | Boland, J., Ridley, B., & Brown, B. (2008). Models of diffuse solar radiation. Renewable Energy, 33(4), 575–584. https://doi.org/10.1016/j.renene.2007.04.012 | spa |
dc.relation.references | Boland, J., Scott, L., & Luther, M. (2001). Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics, 12(2), 103–116. https://doi.org/10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2 | spa |
dc.relation.references | Boor, C. De, Höllig, K. H., & Sabin, M. (1987). High accuracy geometric Hermite interpolation. Computer Aided Geometric Design (1987), 4, 269–278. https://doi.org/10.1016/0167-8396(87)90002-1 | spa |
dc.relation.references | Bristow, Keith L. Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2), 159–166. https://doi.org/https://doi.org/10.1016/0168-1923(84)90017-0 | spa |
dc.relation.references | Čadro, S., Uzunović, M., Žurovec, J., & Žurovec, O. (2017). Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, 5(4), 309–324. https://doi.org/10.1016/j.iswcr.2017.07.002 | spa |
dc.relation.references | Cerón, W. L., Kayano, M. T., Andreoli, R. V., Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2021). Rainfall Variability in Southwestern Colombia: Changes in ENSO-Related Features. Pure and Applied Geophysics, 178(3), 1087–1103. https://doi.org/10.1007/s00024-021-02673-7 | spa |
dc.relation.references | Chen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45(11–12), 1759–143 1769. https://doi.org/10.1016/j.enconman.2003.09.019 | spa |
dc.relation.references | David Kahaner; Cleve Moler; Stephen Nash. (1990). Numerical Methods and Software. Numerical Methods, 144–147. https://doi.org/10.1137/1033033 | spa |
dc.relation.references | Devore, J. L. (2005). Probabilidad y estadística para ingeniería y ciencias (Thomson Learning (ed.); 6° edición). International Thomson Editores, S.A. de C.V. | spa |
dc.relation.references | Díaz Monroy, L. G., & Morales Rivera, M. A. (2012). Estadística multivariada: inferencia y métodos (3° edición). Editorial Universidad Nacional de Colombia. direditorial@unal.edu.co | spa |
dc.relation.references | Dracup, J. A., & Gutie, F. (2001). An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators. Journal of Hydrology, 246, 181–196. | spa |
dc.relation.references | Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117 | spa |
dc.relation.references | Estévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology, 402(1–2), 144–154. https://doi.org/10.1016/j.jhydrol.2011.02.031 | spa |
dc.relation.references | F.N. Fritsch; Carlson, R. E. (1980). Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246., 17(2), 238–246. https://doi.org/doi:10.1137/0717021 | spa |
dc.relation.references | Feng, L., Lin, A., Wang, L., Qin, W., & Gong, W. (2018). Evaluation of sunshine-based models for predicting diffuse solar radiation in China. Renewable and Sustainable Energy Reviews, 94(June), 168–182. https://doi.org/10.1016/j.rser.2018.06.009 | spa |
dc.relation.references | Feng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L., & Cui, N. (2019). Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Conversion and Management, 198(May), 111780. https://doi.org/10.1016/j.enconman.2019.111780 | spa |
dc.relation.references | Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 | spa |
dc.relation.references | Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015 | spa |
dc.relation.references | González, J. A. C., Pérez, R. C., Santos, A. C., & Gil, M. A. C. (2009). Centrales de energías renovables (2009th ed.). UNED. http://datos.bne.es/edicion/a4625923.html | spa |
dc.relation.references | Hargreaves, G. H., & Samani, Z. A. (1982a). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division - ASCE. | spa |
dc.relation.references | Hargreaves, G. H., & Samani, Z. A. (1982b). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division - ASCE, 108(IR3), 225–230. | spa |
dc.relation.references | Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113(20). https://doi.org/10.1029/2008JD010201 | spa |
dc.relation.references | Hunt, L. A., Kuchar, L., & Swanton, C. J. (1998). Estimation of solar radiation for use in crop modelling. Agricultural and Forest Meteorology, 91(3–4), 293–300. https://doi.org/10.1016/S0168-1923(98)00055-0 | spa |
dc.relation.references | Kung, J., & Rota, G.-C. (1979). A practical guide to splines. Advances in Mathematics (1979). Advances in Mathematics, 32(1), 82(32), 8708. https://doi.org/10.1016/0001-8708(79)90033-1 | spa |
dc.relation.references | L’Heureux, M. L., Collins, D. C., & Hu, Z. Z. (2013). Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Climate Dynamics, 40(5–6), 1223–1236. https://doi.org/10.1007/s00382-012-1331-2 | spa |
dc.relation.references | Liu, X., Mei, X., Li, Y., Wang, Q., Jensen, J. R., Zhang, Y., & Porter, J. R. (2009). Evaluation of temperature-based global solar radiation models in China. Agricultural and Forest Meteorology, 149(9), 1433–1446. https://doi.org/10.1016/j.agrformet.2009.03.012 | spa |
dc.relation.references | López S., W. R., Perdomo Ch, C. A., & Camargo L., J. R. (2020). Algorithm for the recovery of missing data in the Bogotá river. ARPN Journal of Engineering and Applied Sciences, 15(14), 1536–1544. | spa |
dc.relation.references | Luque, A., & Hegedus, S. (2011). Handbook of Photovolatic Science and Engineering. In A. Luque & S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering (Second Edi). Wiley Ltda. | spa |
dc.relation.references | Mahmood, R., & Hubbard, K. (2002). Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA. Agronomy Journal, 94(4), 723–733. https://dl.sciencesocieties.org/publications/aj/abstracts/94/4/723 | spa |
dc.relation.references | Moler, C. (2019). Makima Piecewise Cubic Interpolation » Cleve’s Corner: Cleve Moler on Mathematics and Computing - MATLAB & Simulink. https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/ | spa |
dc.relation.references | Muzathik, A. M., Ibrahim, M. Z., Samo, K. B., & Wan Nik, W. B. (2011). Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements. Energy, 36(2), 812–818. https://doi.org/10.1016/j.energy.2010.12.035 | spa |
dc.relation.references | Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 | spa |
dc.relation.references | Paulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. In Green Energy and Technology (Vol. 103). https://doi.org/10.1007/978-1-4471-4649-0 | spa |
dc.relation.references | Peters, A., & Durner, W. (2008). Simplified evaporation method for determining soil hydraulic properties. Journal of Hydrology, 356(1–2), 147–162. https://doi.org/10.1016/j.jhydrol.2008.04.016 | spa |
dc.relation.references | Reddy, S. J. (1987). The estimation of global solar radiation and evaporation through precipitation-A note. Solar Energy, 38(2), 97–104. https://doi.org/10.1016/0038-092X(87)90032-6 | spa |
dc.relation.references | Reek, T., Doty, S. R., & Owen, T. W. (1992). A deterministic approach to the validation of historical daily temperature and precipitation data from the Cooperative Network. In Bulletin - American Meteorological Society (Vol. 73, Issue 6, pp. 753–762). https://doi.org/10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2 | spa |
dc.relation.references | Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 | spa |
dc.relation.references | Rietveld, M. R. (1978). A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agricultural Meteorology, 19(2–3), 243–252. https://doi.org/10.1016/0002-1571(78)90014-6 | spa |
dc.relation.references | Ruiz, B. J., Hoyos, L. S., & Perilla, C. A. (2017). Complementariedad de fuentes no convencionales de energía (Issue 260). https://www.researchgate.net/publication/350385900_Informe_final_Validacion_de_datos_de_radiacion_solar_velocidad_y_direccion_de_viento_V1 | spa |
dc.relation.references | Shafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., & Hughes, T. W. (2000). Quality assurance procedures in the Oklahoma Mesonetwork. Journal of Atmospheric and Oceanic Technology, 17(4), 474–494. https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2 | spa |
dc.relation.references | Smith, T. M., Reynolds, R. W., Peterson, T. C., & Lawrimore, J. (2008). Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate, 21(10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1 | spa |
dc.relation.references | Song, Y., & Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. In Journal of Computational Physics (Vol. 115, Issue 1, pp. 228–244). https://doi.org/10.1006/jcph.1994.1189 | spa |
dc.relation.references | Steven C. Chapra; Raymond P. Canale. (2015). Métodos numéricos para ingenieros. In S. A. Interamericana editores (Ed.), Journal of Chemical Information and Modeling (Septima ed, Vol. 1). McGraw-Hill/Interamericana editores, S.A. DE C.V.https://www.mheducation.com/highered/product/9780073397924.html?exactIsbn=true | spa |
dc.relation.references | Supit, I., & Van Kappel, R. R. (1998). A simple method to estimate global radiation. Solar Energy, 63(3), 147–160. https://doi.org/10.1016/S0038-092X(98)00068-1 | spa |
dc.relation.references | Swartman, R. K., & Ogunlade, O. (1967). Solar radiation estimates from common parameters. Solar Energy, 11(3–4), 170–172. https://doi.org/10.1016/0038-092x(67)90026-6 | spa |
dc.relation.references | Togrul, I. T., Togrul, H., & Evin, D. (2000). Estimation of monthly global solar radiation from sunshine duration measurement in Elazig. Renewable Energy, 19(4), 587–595. https://doi.org/10.1016/S0960-1481(99)00084-1 | spa |
dc.relation.references | Vancanneyt, S., Bont, M. de, & Orneno. (2008). Las 50 principales erupciones solares | Actividad solar | SpaceWeatherLive.com. Website. https://www.spaceweatherlive.com/es/actividad-solar/las-50-principales-erupciones-solares/.html | spa |
dc.relation.references | Wan Nik, W. B., Ibrahim, M. Z., Samo, K. B., & Muzathik, A. M. (2012). Monthly mean hourly global solar radiation estimation. Solar Energy, 86(1), 379–387. https://doi.org/10.1016/j.solener.2011.10.008 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.proposal | Solar energy potential | eng |
dc.subject.proposal | Empirical models | eng |
dc.subject.proposal | Data imputation | eng |
dc.subject.proposal | Meteorological parameters | eng |
dc.subject.proposal | Solar energy | eng |
dc.subject.proposal | Photovoltaic systems | eng |
dc.subject.proposal | Potencial energético solar | spa |
dc.subject.proposal | Modelos empíricos | spa |
dc.subject.proposal | Imputación de datos | spa |
dc.subject.proposal | Parámetros meteorológicos | spa |
dc.subject.proposal | Energía solar | spa |
dc.subject.proposal | Sistemas fotovoltaicos | spa |
dc.subject.unesco | Energía renovable | |
dc.subject.unesco | Cambio climático | |
dc.subject.unesco | Meteorología | |
dc.title | Determinación del potencial energético solar en La Dorada Caldas | spa |
dc.title.translated | Determination of solar energy potential in La Dorada Caldas | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020716801.2024.pdf
- Tamaño:
- 11.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería – Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: