Determinación del potencial energético solar en La Dorada Caldas

dc.contributor.advisorToro García, Nicolás
dc.contributor.advisorRuíz Mendoza, Belizza Janet
dc.contributor.authorBuitrago Paternina, Diego
dc.contributor.cvlacBuitrago Paternina, Diego [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000056353]spa
dc.contributor.orcidBuitrago Paternina, Diego [https://orcid.org/0000000212702128]spa
dc.contributor.researchgroupGrupo de Investigación en Recursos Energéticos Girespa
dc.contributor.researchgroupGipem ­ Grupo de Investigación en Potencia, Energía y Mercadosspa
dc.date.accessioned2025-02-20T18:16:59Z
dc.date.available2025-02-20T18:16:59Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractLa energía solar es una fuente de energía renovable y limpia que se utiliza cada vez más para satisfacer la demanda energética mundial. Sin embargo, la cantidad de energía solar disponible en un lugar específico depende en gran medida de las variables meteorológicas, como la cantidad de luz solar, la nubosidad y la temperatura. El conocimiento de las variables meteorológicas es fundamental para evaluar el potencial de la energía solar y predecir la evolución de la irradiación en una serie temporal. Para lograr esto, se requiere una evaluación cuantitativa y cualitativa más precisa utilizando diversas técnicas, incluyendo modelos basados en el brillo solar, modelos basados en temperatura, nubosidad y otros parámetros meteorológicos. Con el fin de adaptarse adecuadamente al cambio climático, es importante destacar que los registros proporcionados por el IDEAM para las variables meteorológicas a menudo presentan errores, datos atípicos y faltantes. Como resultado, es necesario llevar a cabo un proceso riguroso de control de calidad para garantizar la fiabilidad de los datos obtenidos de la estación meteorológica. En este sentido, se llevó a cabo un proceso de imputación para el llenado de los datos faltantes en la serie temporal, utilizando técnicas estadísticas apropiadas y de interpolación. Este proceso permitió obtener una serie temporal más completa y precisa, lo que a su vez facilitó el cálculo de la insolación solar con un promedio anual de 5831 Wh/m2year, y el cálculo de los modelos empíricos basados en temperatura con un promedio anual de 5683 Wh/m2year. El fenómeno ENSO se reconoce como un factor importante que afecta la precisión de los modelos empíricos utilizados para estimar el potencial de energía solar. Dado que los datos de irradiación solar pueden ser menos consistentes que los datos de temperatura, es crucial realizar una validación cuidadosa del impacto del ENSO en los cálculos anuales. Para garantizar la calidad de los datos, se recomienda mantener los instrumentos de medición en buenas condiciones, instalar estaciones meteorológicas auxiliares, utilizar técnicas de interpolación y estadísticas para completar los datos faltantes adquiridos en la serie temporal. El autor propone estas soluciones para mejorar la confiabilidad del sistema de almacenamiento de datos y mejorar la precisión del cálculo. Se utilizaron varios métodos estadísticos para evaluar la precisión de los resultados en los modelos empíricos de temperatura seleccionados para el cálculo de la insolación solar, incluyendo el coeficiente de determinación (𝑅2), el error cuadrático medio (RMSE), el error de sesgo medio (MBE) y el error absoluto medio de sesgo (MABE). Los resultados indicaron que todos los métodos empíricos tenían un ajuste similar según el 𝑅2, pero los métodos de Chen et al., Hunt et al. y Mahmood and Hubbard fueron los mejores para llenar los datos faltantes en términos de MABE. Sin embargo, el error porcentual medio (MPE) arrojó un valor negativo, lo que indica una sobreestimación de los resultados de insolación solar para el año de calibración y se eligen los métodos empíricos de Chen et al., Hunt et al., para el cálculo de la insolación solar en la serie temporal completa (Texto tomado de la fuente).spa
dc.description.abstractSolar energy is a renewable and clean source of energy that is increasingly being used to meet global energy demand. However, the amount of solar energy available at a specific location depends largely on weather variables, such as the amount of sunlight, cloud cover, and temperature. Knowledge of these weather variables is crucial for evaluating the potential of solar energy and predicting the evolution of irradiation in a time series. To achieve this, more precise quantitative and qualitative evaluation is required using various techniques, including models based on solar brightness, temperature-based models, cloud cover and other meteorological parameters. To adapt properly to climate change, it is important to highlight that records provided by IDEAM for meteorological variables often have errors, outliers, and missing data. As a result, a rigorous quality control process is necessary to ensure the reliability of the data obtained from the weather station. In this sense, an imputation process was carried out to fill the missing data in the time series, using appropriate statistical and interpolation techniques. This process allowed for a more complete and accurate time series, which in turn facilitated the calculation of solar insulation with an annual average of 5831 Wh/m2year, and the calculation of empirical models based on temperature with an annual average of 5683 Wh/m2year. The ENSO phenomenon is recognized as an important factor affecting the accuracy of empirical models used to estimate the potential of solar energy. Since solar irradiation data may be less consistent than temperature data, it is crucial to carefully validate the impact of ENSO on annual calculations. To ensure data quality, it is recommended to maintain measuring instruments in good condition, install auxiliary weather stations, use interpolation and statistical techniques to fill in missing data in the time series. The author proposes these solutions to improve the reliability of the data storage system and enhance calculation accuracy. Various statistical methods were employed to assess the accuracy of results in the selected empirical temperature models for solar insolation calculation, including the coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Bias Error (MBE), and Mean Absolute Bias Error (MABE). The results indicated that all empirical methods had similar fits according to R2, but Chen et al., Hunt et al., and Mahmood and Hubbard's methods were the best for filling missing data in terms of MABE. However, the mean percentage error (MPE) yielded a negative value, indicating an overestimation of solar insolation results for the calibration year, and therefore, the empirical methods by Chen et al. and Hunt et al. are chosen for solar insolation calculation in the entire time series.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaEnergías renovablesspa
dc.description.technicalinfoProgramación realizada con el software computacional Matlab.spa
dc.format.extent146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87521
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAkima, H. (1970). A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. Journal of the ACM (JACM), 17(4), 589–602. https://doi.org/10.1145/321607.321609spa
dc.relation.referencesAkima, H. (1974). A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures. Communications of the ACM, 17(1), 18–20. https://doi.org/10.1145/360767.360779spa
dc.relation.referencesAllen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation from Air Temperature. Journal of Hydrologic Engineering, 2(2), 56–67. https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(56)spa
dc.relation.referencesAlmorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022spa
dc.relation.referencesAlmorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy, 88(5), 1703–1709. https://doi.org/10.1016/j.apenergy.2010.11.003spa
dc.relation.referencesAngarita, A. (2014). Apuntes de análisis numérico (Departamen, Vol. 1). https://dokumen.tips/documents/apuntes-de-analisis-numerico- 56671ef984d84.html?page=1spa
dc.relation.referencesAngström, A. (1924). Solar and Terrestrial Radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126. https://doi.org/10.1002/qj.49705021008spa
dc.relation.referencesAnnandale, J., Jovanovic, N., Benadé, N., & Allen, R. (2002). Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrigation Science, 21(2). https://doi.org/10.1007/s002710100047spa
dc.relation.referencesBadescu, V., & Fallis, A. . (2013). Modeling Solar Radiation at the Earth’s Surface_ Recent Advances-Springer (2008). In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesBahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation solar radiation. Energy, 12(2), 131–135. https://doi.org/https://doi.org/10.1016/0360-5442(87)90117-4spa
dc.relation.referencesBakirci, K. (2009). Correlations for estimation of daily global solar radiation with hours of 142 bright sunshine in Turkey. Energy, 34(4), 485–501. https://doi.org/10.1016/j.energy.2009.02.005spa
dc.relation.referencesBandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2008). Estimation of monthly solar radiation from measured air temperature extremes. Agricultural and Forest Meteorology, 148(11), 1707–1718. https://doi.org/10.1016/j.agrformet.2008.06.002spa
dc.relation.referencesBesharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. In Renewable and Sustainable Energy Reviews (Vol. 21, pp. 798–821). https://doi.org/10.1016/j.rser.2012.12.043spa
dc.relation.referencesBica, A. M. (2014). Optimizing at the end-points the Akima’s interpolation method of smooth curve fitting. Computer Aided Geometric Design, 31(5), 245–257. https://doi.org/10.1016/j.cagd.2014.03.001spa
dc.relation.referencesBoland, J., Ridley, B., & Brown, B. (2008). Models of diffuse solar radiation. Renewable Energy, 33(4), 575–584. https://doi.org/10.1016/j.renene.2007.04.012spa
dc.relation.referencesBoland, J., Scott, L., & Luther, M. (2001). Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics, 12(2), 103–116. https://doi.org/10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2spa
dc.relation.referencesBoor, C. De, Höllig, K. H., & Sabin, M. (1987). High accuracy geometric Hermite interpolation. Computer Aided Geometric Design (1987), 4, 269–278. https://doi.org/10.1016/0167-8396(87)90002-1spa
dc.relation.referencesBristow, Keith L. Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2), 159–166. https://doi.org/https://doi.org/10.1016/0168-1923(84)90017-0spa
dc.relation.referencesČadro, S., Uzunović, M., Žurovec, J., & Žurovec, O. (2017). Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, 5(4), 309–324. https://doi.org/10.1016/j.iswcr.2017.07.002spa
dc.relation.referencesCerón, W. L., Kayano, M. T., Andreoli, R. V., Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2021). Rainfall Variability in Southwestern Colombia: Changes in ENSO-Related Features. Pure and Applied Geophysics, 178(3), 1087–1103. https://doi.org/10.1007/s00024-021-02673-7spa
dc.relation.referencesChen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45(11–12), 1759–143 1769. https://doi.org/10.1016/j.enconman.2003.09.019spa
dc.relation.referencesDavid Kahaner; Cleve Moler; Stephen Nash. (1990). Numerical Methods and Software. Numerical Methods, 144–147. https://doi.org/10.1137/1033033spa
dc.relation.referencesDevore, J. L. (2005). Probabilidad y estadística para ingeniería y ciencias (Thomson Learning (ed.); 6° edición). International Thomson Editores, S.A. de C.V.spa
dc.relation.referencesDíaz Monroy, L. G., & Morales Rivera, M. A. (2012). Estadística multivariada: inferencia y métodos (3° edición). Editorial Universidad Nacional de Colombia. direditorial@unal.edu.cospa
dc.relation.referencesDracup, J. A., & Gutie, F. (2001). An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators. Journal of Hydrology, 246, 181–196.spa
dc.relation.referencesEssmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117spa
dc.relation.referencesEstévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology, 402(1–2), 144–154. https://doi.org/10.1016/j.jhydrol.2011.02.031spa
dc.relation.referencesF.N. Fritsch; Carlson, R. E. (1980). Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246., 17(2), 238–246. https://doi.org/doi:10.1137/0717021spa
dc.relation.referencesFeng, L., Lin, A., Wang, L., Qin, W., & Gong, W. (2018). Evaluation of sunshine-based models for predicting diffuse solar radiation in China. Renewable and Sustainable Energy Reviews, 94(June), 168–182. https://doi.org/10.1016/j.rser.2018.06.009spa
dc.relation.referencesFeng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L., & Cui, N. (2019). Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Conversion and Management, 198(May), 111780. https://doi.org/10.1016/j.enconman.2019.111780spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesGómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015spa
dc.relation.referencesGonzález, J. A. C., Pérez, R. C., Santos, A. C., & Gil, M. A. C. (2009). Centrales de energías renovables (2009th ed.). UNED. http://datos.bne.es/edicion/a4625923.htmlspa
dc.relation.referencesHargreaves, G. H., & Samani, Z. A. (1982a). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division - ASCE.spa
dc.relation.referencesHargreaves, G. H., & Samani, Z. A. (1982b). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division - ASCE, 108(IR3), 225–230.spa
dc.relation.referencesHaylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113(20). https://doi.org/10.1029/2008JD010201spa
dc.relation.referencesHunt, L. A., Kuchar, L., & Swanton, C. J. (1998). Estimation of solar radiation for use in crop modelling. Agricultural and Forest Meteorology, 91(3–4), 293–300. https://doi.org/10.1016/S0168-1923(98)00055-0spa
dc.relation.referencesKung, J., & Rota, G.-C. (1979). A practical guide to splines. Advances in Mathematics (1979). Advances in Mathematics, 32(1), 82(32), 8708. https://doi.org/10.1016/0001-8708(79)90033-1spa
dc.relation.referencesL’Heureux, M. L., Collins, D. C., & Hu, Z. Z. (2013). Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Climate Dynamics, 40(5–6), 1223–1236. https://doi.org/10.1007/s00382-012-1331-2spa
dc.relation.referencesLiu, X., Mei, X., Li, Y., Wang, Q., Jensen, J. R., Zhang, Y., & Porter, J. R. (2009). Evaluation of temperature-based global solar radiation models in China. Agricultural and Forest Meteorology, 149(9), 1433–1446. https://doi.org/10.1016/j.agrformet.2009.03.012spa
dc.relation.referencesLópez S., W. R., Perdomo Ch, C. A., & Camargo L., J. R. (2020). Algorithm for the recovery of missing data in the Bogotá river. ARPN Journal of Engineering and Applied Sciences, 15(14), 1536–1544.spa
dc.relation.referencesLuque, A., & Hegedus, S. (2011). Handbook of Photovolatic Science and Engineering. In A. Luque & S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering (Second Edi). Wiley Ltda.spa
dc.relation.referencesMahmood, R., & Hubbard, K. (2002). Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA. Agronomy Journal, 94(4), 723–733. https://dl.sciencesocieties.org/publications/aj/abstracts/94/4/723spa
dc.relation.referencesMoler, C. (2019). Makima Piecewise Cubic Interpolation » Cleve’s Corner: Cleve Moler on Mathematics and Computing - MATLAB & Simulink. https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/spa
dc.relation.referencesMuzathik, A. M., Ibrahim, M. Z., Samo, K. B., & Wan Nik, W. B. (2011). Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements. Energy, 36(2), 812–818. https://doi.org/10.1016/j.energy.2010.12.035spa
dc.relation.referencesNash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6spa
dc.relation.referencesPaulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. In Green Energy and Technology (Vol. 103). https://doi.org/10.1007/978-1-4471-4649-0spa
dc.relation.referencesPeters, A., & Durner, W. (2008). Simplified evaporation method for determining soil hydraulic properties. Journal of Hydrology, 356(1–2), 147–162. https://doi.org/10.1016/j.jhydrol.2008.04.016spa
dc.relation.referencesReddy, S. J. (1987). The estimation of global solar radiation and evaporation through precipitation-A note. Solar Energy, 38(2), 97–104. https://doi.org/10.1016/0038-092X(87)90032-6spa
dc.relation.referencesReek, T., Doty, S. R., & Owen, T. W. (1992). A deterministic approach to the validation of historical daily temperature and precipitation data from the Cooperative Network. In Bulletin - American Meteorological Society (Vol. 73, Issue 6, pp. 753–762). https://doi.org/10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2spa
dc.relation.referencesReynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2spa
dc.relation.referencesRietveld, M. R. (1978). A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agricultural Meteorology, 19(2–3), 243–252. https://doi.org/10.1016/0002-1571(78)90014-6spa
dc.relation.referencesRuiz, B. J., Hoyos, L. S., & Perilla, C. A. (2017). Complementariedad de fuentes no convencionales de energía (Issue 260). https://www.researchgate.net/publication/350385900_Informe_final_Validacion_de_datos_de_radiacion_solar_velocidad_y_direccion_de_viento_V1spa
dc.relation.referencesShafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., & Hughes, T. W. (2000). Quality assurance procedures in the Oklahoma Mesonetwork. Journal of Atmospheric and Oceanic Technology, 17(4), 474–494. https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2spa
dc.relation.referencesSmith, T. M., Reynolds, R. W., Peterson, T. C., & Lawrimore, J. (2008). Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate, 21(10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1spa
dc.relation.referencesSong, Y., & Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. In Journal of Computational Physics (Vol. 115, Issue 1, pp. 228–244). https://doi.org/10.1006/jcph.1994.1189spa
dc.relation.referencesSteven C. Chapra; Raymond P. Canale. (2015). Métodos numéricos para ingenieros. In S. A. Interamericana editores (Ed.), Journal of Chemical Information and Modeling (Septima ed, Vol. 1). McGraw-Hill/Interamericana editores, S.A. DE C.V.https://www.mheducation.com/highered/product/9780073397924.html?exactIsbn=truespa
dc.relation.referencesSupit, I., & Van Kappel, R. R. (1998). A simple method to estimate global radiation. Solar Energy, 63(3), 147–160. https://doi.org/10.1016/S0038-092X(98)00068-1spa
dc.relation.referencesSwartman, R. K., & Ogunlade, O. (1967). Solar radiation estimates from common parameters. Solar Energy, 11(3–4), 170–172. https://doi.org/10.1016/0038-092x(67)90026-6spa
dc.relation.referencesTogrul, I. T., Togrul, H., & Evin, D. (2000). Estimation of monthly global solar radiation from sunshine duration measurement in Elazig. Renewable Energy, 19(4), 587–595. https://doi.org/10.1016/S0960-1481(99)00084-1spa
dc.relation.referencesVancanneyt, S., Bont, M. de, & Orneno. (2008). Las 50 principales erupciones solares | Actividad solar | SpaceWeatherLive.com. Website. https://www.spaceweatherlive.com/es/actividad-solar/las-50-principales-erupciones-solares/.htmlspa
dc.relation.referencesWan Nik, W. B., Ibrahim, M. Z., Samo, K. B., & Muzathik, A. M. (2012). Monthly mean hourly global solar radiation estimation. Solar Energy, 86(1), 379–387. https://doi.org/10.1016/j.solener.2011.10.008spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalSolar energy potentialeng
dc.subject.proposalEmpirical modelseng
dc.subject.proposalData imputationeng
dc.subject.proposalMeteorological parameterseng
dc.subject.proposalSolar energyeng
dc.subject.proposalPhotovoltaic systemseng
dc.subject.proposalPotencial energético solarspa
dc.subject.proposalModelos empíricosspa
dc.subject.proposalImputación de datosspa
dc.subject.proposalParámetros meteorológicosspa
dc.subject.proposalEnergía solarspa
dc.subject.proposalSistemas fotovoltaicosspa
dc.subject.unescoEnergía renovable
dc.subject.unescoCambio climático
dc.subject.unescoMeteorología
dc.titleDeterminación del potencial energético solar en La Dorada Caldasspa
dc.title.translatedDetermination of solar energy potential in La Dorada Caldaseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020716801.2024.pdf
Tamaño:
11.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: