Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60

dc.contributor.advisorDuarte Ruíz, Álvaro
dc.contributor.authorMartínez Bustos, Anthony Jesús
dc.contributor.researchgroupNuevos Materiales Nano y Supramolecularesspa
dc.date.accessioned2023-09-04T16:31:39Z
dc.date.available2023-09-04T16:31:39Z
dc.date.issued2023-09-04
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractDesde el descubrimiento del fullereno C60, se han sintetizado diferentes derivados como las fulleropirrolidinas. Estos derivados han tenido aplicación en áreas como fotovoltaica, celdas solares, supramolecular, y sensores. En este trabajo se desarrolló una ruta de síntesis para un nuevo derivado de fullereno a partir del ácido 5-aminoisoftálico (1). Por medio de la esterificación, cianometilación e hidrólisis fue posible obtener el 5-aminoisoftalato de dimetilo (2), el 5-(cianometilamino)isoftalato de dimetilo (3) y el ácido 5-(carboximetilamino)isoftalico (4). Los compuestos 3 y 4 no han sido reportados anteriormente en la literatura. La caracterización de estos compuestos se hizo por medio de RMN 1H y 13C, IR, DRX, Raman, UV-Vis, Fluorescencia, MS/ESI, análisis elemental. Se llevaron a cabo ensayos preliminares de la reacción Prato entre C60, 4 y formaldehído. Luego de evaluar variables como tiempo y temperatura, se formularon dos hipótesis relacionadas con la miscibilidad de las fases en la reacción y con el estado de 4 en forma de clorhidrato. El análisis elemental y termogravimétrico permitieron sustentar la última hipótesis. También se evaluó el potencial de 4 en la química supramolecular para la formación de un compuesto de coordinación con cobalto y en su capacidad gelificante, no prevista hasta el desarrollo de este trabajo. Así, el trabajo es un punto de partida para la investigación de la ruta de una nueva fulleropirrolidina. Este tema es de gran interés por las características de los compuestos nuevos que fueron sintetizados y las variables en torno al desarrollo de la reacción Prato. (Texto tomado de la fuente)spa
dc.description.abstractSince the discovery of C60, different derivatives have been synthesized, such as fulleropyrrolidines that are generated through an addition reaction of an azomethine ylide on C60, using an α-amino acid and formaldehyde for the formation of the ylide. These derivatives have applications in areas such as photovoltaics, solar cells, supramolecular, and sensors. In this work, a synthetic route was developed for a new fullerene derivative from 5-aminoisophthalic acid (1). It consisted on ésterification, cyanomethylation and hydrolysis to obtain dimethyl 5-aminoisophthalate (2), dimethyl 5-(cyanomethylamino)isophthalate (3) and 5-(carboxymethylamino)isophthalic acid (4). Compounds 3 and 4 have not been previously reported in the literature. The characterization of these compounds was done by means of 1H and 13C NMR, IR, XRD, Raman, UV-Vis, Fluorescence, MS/ESI, and elemental analysis. Experiments were carried out with 4 for the synthesis of 5, but it was not possible to observe a reaction product. After evaluating variables such as time and temperature, two hypotheses related to the miscibility of the phases in the reaction and to the state of 4 in the hydrochloride form were formulated. The elemental and thermogravimetric analysis allowed to support the last hypothesis. The potential of 4 in supramolecular chemistry for the formation of a coordination compound with cobalt and its gelling capacity, not foreseen until the development of this work, was also evaluated. Thus, the work is a starting point for the investigation of the synthesis route of 5, a broad subject of great interest due to the characteristics of the new compounds that were synthesized and the variables around the development of the Prato reaction.eng
dc.description.abstractDesde a descoberta do fulereno C60, diferentes derivados, como as fuleropirrolidinas, foram sintetizados. Esses derivados tiveram aplicações em áreas como energia fotovoltaica, células solares, supramoleculares e sensores. Neste trabalho foi desenvolvida uma rota de síntese para um novo derivado de fulereno do ácido 5-aminoisoftálico (1). Por meio de esterificação, cianometilação e hidrólise foi possível obter 5-aminoisoftalato de dimetila (2), 5-(cianometilamino)isoftalato de dimetila (3) e ácido 5-(carboximetilamino)isoftálico (4). Os compostos 3 e 4 não foram relatados anteriormente na literatura. A caracterização destes compostos foi feita por meio de RMN de 1H e 13C, IR, DRX, Raman, UV-Vis, Fluorescência, MS/ESI, análise elementar. Foram realizados testes preliminares da reação de Prato entre C60,4 e formaldeído. Após avaliação de variáveis ​​como tempo e temperatura, foram formuladas duas hipóteses relacionadas à miscibilidade das fases da reação e ao estado 4 na forma cloridrato. A análise elementar e termogravimétrica permitiu apoiar a última hipótese. Também foi avaliado o potencial do 4 em química supramolecular para a formação de um composto de coordenação com cobalto e sua capacidade gelificante, não prevista até o desenvolvimento deste trabalho. Assim, o trabalho é um ponto de partida para a investigação da rota de uma nova fuleropirrolidina. Este assunto é de grande interesse devido às características dos novos compostos que foram sintetizados e às variáveis ​​que envolvem o desenvolvimento da reação de Prato.por
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipFacultad de Ciencias, Universidad Nacional de Colombia (proyecto No. 45627)spa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación-MINCIENCIAS (proyecto No. 110171249591 )spa
dc.format.extent147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84635
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesLu, X., Akasaka, T. and Slanina, Z. (2021). Handbook of fullerene science and technology. 1st ed. Singapore: Springer Singapore, pp.1-32. doi:10.1007/978-981-13-3242-5spa
dc.relation.referencesYamada, M., Nagase, S., Akasaka, T. (2021). Functionalization of Fullerenes: Addition Reactions. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. doi:1007/978-981-13-3242-5_33-1spa
dc.relation.referencesLi, C., Yip, H. and Jen, A. (2012). Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 22(10), p.4161. doi:10.1039/C2JM15126Jspa
dc.relation.referencesKarakawa, M., Nagai, T., Adachi, K., Ie, Y. and Aso, Y. (2014). N-phenyl[60]fulleropyrrolidines: alternative acceptor materials to PC61BM for high performance organic photovoltaic cells. J. Mater. Chem. A, 2(48), pp.20889-20895. doi:10.1039/c4ta04857aspa
dc.relation.referencesYang, Z., Zhong, M., Liang, Y., Yang, L., Liu, X., Li, Q., Xu, D. (2019). SnO 2 ‐C60 Pyrrolidine Tris‐Acid (CPTA) as the Electron Transport Layer for Highly Efficient and Stable Planar Sn‐Based Perovskite Solar Cells. Advanced Functional Materials, 1903621. doi:10.1002/adfm.201903621spa
dc.relation.referencesPeng, P., Li, F.-F., Neti, V. S. P. K., Metta-Magana, A. J., & Echegoyen, L. (2013). Design, Synthesis, and X-Ray Crystal Structure of a Fullerene-Linked Metal-Organic Framework. Angewandte Chemie International Edition, 53(1), 160–163. doi:10.1002/anie.201306761spa
dc.relation.referencesSondheimer, F., Wolovsky, R., & Amiel, Y. (1962). Unsaturated Macrocyclic Compounds. XXIII.1The Synthesis of the Fully Conjugated Macrocyclic Polyenes Cycloöctadecanonaene ([18]Annulene),2Cyclotetracosadodecaene ([24]Annulene), and Cyclotriacontapentadecaene ([30]Annulene). Journal of the American Chemical Society, 84(2), 274–284. doi:10.1021/ja00861a030spa
dc.relation.referencesŌsawa, E., Kroto, H. W., Fowler, P. W., Wasserman, E., Lindsay Mackay, A., Turner, G., & Walton, D. R. M. (1993). The evolution of the football structure for the C60 molecule: a retrospective. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 343, 1–8. doi:10.1017/cbo9780511622946.001spa
dc.relation.referencesBarth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi,mno]fluoranthene. Journal of the American Chemical Society, 88(2), 380–381. doi:10.1021/ja00954a049spa
dc.relation.referencesKanagaraj, K., Lin, K., Wu, W., Gao, G., Zhong, Z., Su, D., & Yang, C. (2017). Chiral Buckybowl Molecules. Symmetry, 9(9), 174. doi:10.3390/sym9090174spa
dc.relation.referencesRohlfing, E. A., Cox, D. M., & Kaldor, A. (1984). Production and characterization of supersonic carbon cluster beams. The Journal of Chemical Physics, 81(7), 3322–3330. doi:10.1063/1.447994spa
dc.relation.referencesKroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. doi:10.1038/318162a0spa
dc.relation.referencesKrätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: a new form of carbon. Nature, 347(6291), 354–358. doi:10.1038/347354a0spa
dc.relation.referencesMurayama, H., Tomonoh, S., Alford, J. M., & Karpuk, M. E. (2005). Fullerene Production in Tons and More: From Science to Industry. Fullerenes, Nanotubes and Carbon Nanostructures, 12(1-2), 1–9. doi:10.1081/fst-120027125spa
dc.relation.referencesStalling, D. L., Kuo, K. C., Guo, C. Y., & Saim, S. (1993). Separation of Fullerenes C60, C70, and C76-84 on Polystyrene Divinylbenzene Columns. Journal of Liquid Chromatography, 16(3), 699–722. doi:10.1080/10826079308019558spa
dc.relation.referencesYan, Q.-L., Gozin, M., Zhao, F.-Q., Cohen, A., & Pang, S.-P. (2016). Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799–4851. doi:10.1039/c5nr07855espa
dc.relation.referencesKatz, E. A. (2006). Fullerene Thin Films as Photovoltaic Material. Nanostructured Materials for Solar Energy Conversion, 361–443. doi:10.1016/b978-044452844-5/50014-7spa
dc.relation.referencesSperanza, G. (2021). Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 11(4), 967. doi:10.3390/nano11040967spa
dc.relation.referencesHirsch, A., Lamparth, I., & Karfunkel, H. R. (1994). Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene. Angewandte Chemie International Edition in English, 33(4), 437–438. doi:10.1002/anie.199404371spa
dc.relation.referencesCerón, M. R., & Echegoyen, L. (2016). Recent progress in the synthesis of regio-isomerically pure bis-adducts of empty and endohedral fullerenes. Journal of Physical Organic Chemistry, 29(11), 613–619. doi:10.1002/poc.3563spa
dc.relation.referencesRašović, I. (2016). Water-soluble fullerenes for medical applications. Materials Science and Technology, 33(7), 777–794. doi:10.1080/02670836.2016.1198114spa
dc.relation.referencesCataldo, F., & Da Ros, T. (Eds.). (2008). Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes (Vol. 1). Springer Science & Business Media.spa
dc.relation.referencesSemenov, K. N., Charykov, N. A., Keskinov, V. A., Piartman, A. K., Blokhin, A. A., & Kopyrin, A. A. (2010). Solubility of Light Fullerenes in Organic Solvents. Journal of Chemical & Engineering Data, 55(1), 13–36. doi:10.1021/je900296sspa
dc.relation.referencesThilgen, C., Herrmann, A., & Diederich, F. (1997). The Covalent Chemistry of Higher Fullerenes: C70 and Beyond. Angewandte Chemie International Edition in English, 36(21), 2268–2280. doi:10.1002/anie.199722681spa
dc.relation.referencesRao, C. N. R., Seshadri, R., Govindaraj, A., & Sen, R. (1995). Fullerenes, nanotubes, onions and related carbon structures. Materials Science and Engineering: R: Reports, 15(6), 209–262, PP.69.. doi:10.1016/s0927-796x(95)00181-6spa
dc.relation.referencesUmeyama, T., Takahara, S., Shibata, S., Igarashi, K., Higashino, T., Mishima, K., Yamashita, K., & Imahori, H. (2018). Cis -1 Isomers of tethered bismethano[70]fullerene as electron acceptors in organic photovoltaics. RSC Advances, 8(33), 18316–18326. doi:10.1039/c8ra02896fspa
dc.relation.referencesHaddon, R. C., Palmer, R. E., Kroto, H. W., & Sermon, P. A. (1993). The Fullerenes: Powerful Carbon-Based Electron Acceptors [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 343(1667), 53–62. doi:10.1098/rsta.1993.0040spa
dc.relation.referencesCho, H. Y., Ansems, R. B. M., & Scott, L. T. (2014). Site-selective covalent functionalization at interior carbon atoms and on the rim of circumtrindene, a C36H12 open geodesic polyarene. Beilstein Journal of Organic Chemistry, 10, 956–968. doi:10.3762/bjoc.10.94spa
dc.relation.referencesFleming, I. (2011). “Molecular Orbitals and the Structures of Organic Molecules,” in Molecular orbitals and organic chemical reactions. Chichéster, West Sussex, U.K.: Wiley, pp. 69–125. doi:10.1002/9780470689493spa
dc.relation.referencesHirsch, A. (2006). Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (b), 243(13), 3209–3212. doi:10.1002/pssb.200669191spa
dc.relation.referencesYan, W., Seifermann, S. M., Pierrat, P., & Bräse, S. (2015). Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Organic & Biomolecular Chemistry, 13(1), 25–54. doi:10.1039/c4ob01663gspa
dc.relation.referencesSamal, S., & Sahoo, S. K. (1997). An overview of fullerene chemistry. Bulletin of Materials Science, 20(2), 141–230. doi:10.1007/bf02744892spa
dc.relation.referencesJensen, A. W., Wilson, S. R., & Schuster, D. I. (1996). Biological applications of fullerenes. Bioorganic & Medicinal Chemistry, 4(6), 767–779. doi:10.1016/0968-0896(96)00081-8spa
dc.relation.referencesIkeda, A., Iizuka, T., Maekubo, N., Aono, R., Kikuchi, J., Akiyama, M. Shiozaki, K. (2013). Cyclodextrin Complexed [60]Fullerene Derivatives with High Levels of Photodynamic Activity by Long Wavelength Excitation. ACS Medicinal Chemistry Letters, 4(8), 752–756. doi:10.1021/ml4001535spa
dc.relation.referencesLi, J., Takeuchi, A., Ozawa, M., Li, X., Saigo, K., & Kitazawa, K. (1993). C60 fullerol formation catalysed by quaternary ammonium hydroxides. Journal of the Chemical Society, Chemical Communications, (23), 1784. doi:10.1039/c39930001784spa
dc.relation.referencesChiang, L. Y., Wang, L.-Y., Swirczewski, J. W., Soled, S., & Cameron, S. (1994). Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. The Journal of Organic Chemistry, 59(14), 3960–3968. doi:10.1021/jo00093a030spa
dc.relation.referencesMaggini, M., Scorrano, G., & Prato, M. (1993). Addition of Azomethine Ylides to C60: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines. Journal of the American Chemical Society, 115(21), 9798–9799. doi:10.1021/ja00074a056spa
dc.relation.referencesHirsch, A., Li, Q., & Wudl, F. (1991). Globe-trotting Hydrogens on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6. Angewandte Chemie International Edition in English, 30(10), 1309–1310. doi:10.1002/anie.199113091spa
dc.relation.referencesLi, Y., & Gan, L. (2014). Selective Addition of Secondary Amines to C60: Formation of Penta- and Hexaamino[60]fullerenes. The Journal of Organic Chemistry, 79(18), 8912–8916. doi:10.1021/jo5015867spa
dc.relation.referencesBingel, C. (1993). Cyclopropanierung von Fullerenen. Chemische Berichte, 126(8), 1957–1959. doi:10.1002/cber.19931260829spa
dc.relation.referencesWudl, F. (1992). The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Accounts of Chemical Research, 25(3), 157–161. doi:10.1021/ar00015a009spa
dc.relation.referencesHirsch, A. and Brettreich, M. (2005) “4. Cicloadition” in Fullerenes Chemistry and reactions. Weinheim: Wiley-VCH, pp. 101–184. doi:10.1002/3527603492spa
dc.relation.referencesCamps, X., & Hirsch, A. (1997). Efficient cyclopropanation of C60 starting from malonates. Journal of the Chemical Society, Perkin Transactions 1, (11), 1595–1596. doi:10.1039/a702055dspa
dc.relation.referencesMartínez, J. P., Garcia-Borràs, M., Osuna, S., Poater, J., Bickelhaupt, F. M., & Solà, M. (2016). Reaction Mechanism and Regioselectivity of the Bingel-Hirsch Addition of Dimethyl Bromomalonate to La@C2v-C82. Chemistry - A European Journal, 22(17), 5953–5962. doi:10.1002/chem.201504668spa
dc.relation.referencesBiglova, Y. N., & Mustafin, A. G. (2019). Nucleophilic cyclopropanation of [60]fullerene by the addition–elimination mechanism. RSC Advances, 9(39), 22428–22498. doi:10.1039/c9ra04036fspa
dc.relation.referencesSattarova, A. F., Biglova, Y. N., & Mustafin, A. G. (2022). Quantum‐chemical approaches in the study of fullerene and its derivatives by the example of the most typical cycloaddition reactions: A review. International Journal of Quantum Chemistry, 122(7), e26863. doi: 10.1002/qua.26863spa
dc.relation.referencesLi, H., Haque, S. A., Kitaygorodskiy, A., Meziani, M. J., Torres-Castillo, M., & Sun, Y.-P. (2006). Alternatively Modified Bingel Reaction for Efficient Syntheses of C60 Hexakis- Adducts. Organic Letters, 8(24), 5641–5643. doi:10.1021/ol062391dspa
dc.relation.referencesPereira, G. R., Santos, L. J., Luduvico, I., Alves, R. B., & de Freitas, R. P. (2010). “Click” chemistry as a tool for the facile synthesis of fullerene glycoconjugate derivatives. Tetrahedron Letters, 51(7), 1022–1025. doi:10.1016/j.tetlet.2009.12.050spa
dc.relation.referencesRiala, M., & Chronakis, N. (2011). A Facile Access to Enantiomerically Pure [60]Fullerene Bisadducts with the Inherently ChiralTrans-3 Addition Pattern. Organic Letters, 13(11), 2844–2847. doi:10.1021/ol200816zspa
dc.relation.referencesJin, B., Shen, J., Peng, R., Zheng, R., & Chu, S. (2014). Efficient cyclopropanation of [60]fullerene starting from bromo-substituted active methylene compounds without using a basic catalyst. Tetrahedron Letters, 55(36), 5007–5010. doi:10.1016/j.tetlet.2014.07.048spa
dc.relation.referencesPrato, M. (1997). [60]Fullerene chemistry for materials science applications. Journal of Materials Chemistry, 7(7), 1097–1109. doi:10.1039/a700080dspa
dc.relation.referencesLanga, F., De La Cruz, P., Espíldora, E., García, J. J., Pérez, M. C., & De La Hoz, A. (2000). Fullerene chemistry under microwave irradiation. Carbon, 38(11), 1641–1646. doi:10.1016/S0008-6223(99)00284-5spa
dc.relation.referencesSafaei-Ghomi, J., & Masoomi, R. (2015). Rapid microwave-assisted synthesis of N-benzyl fulleropyrrolidines under solvent free conditions. RSC Advances, 5(20), 15591–15596. doi:10.1039/c4ra16020gspa
dc.relation.referencesGuryanov, I., Montellano López, A., Carraro, M., Da Ros, T., Scorrano, G., Maggini, M., Prato, M., & Bonchio, M. (2009). Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chemical Communications, 26, 3940–3942. doi:10.1039/b906813aspa
dc.relation.referencesP. Economopoulos, S., Karousis, N., Rotas, G., Pagona, G., & Tagmatarchis, N. (2011). Microwave-assisted Functionalization of Carbon Nanostructured Materials. Current Organic Chemistry, 15(8), 1121–1132. doi:10.2174/138527211795203031spa
dc.relation.referencesZhang, J., Yang, W., He, P., Zhu, S., & Wang, S. (2005). Microwave‐promoted One‐Pot Three‐Component Reaction to [60]Fulleropyrrolidine Derivatives. Synthetic Communications, 35(1), 89–96. doi:10.1081/scc-200046505spa
dc.relation.referencesMartinis, E. M., Montellano, A., Sartorel, A., Carraro, M., Prato, M., & Bonchio, M. (2021). Microwave‐Assisted 1,3‐Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bis‐Addition with Ionic Liquids Additives. European Journal of Organic Chemistry, 2021(25), 3545–3551. doi:10.1002/ejoc.202100546spa
dc.relation.referencesBinSabt, M. H., Al-Matar, H. M., Balch, A. L., & Shalaby, M. A. (2021). Synthesis and Electrochemistry of Novel Dumbbell-Shaped Bis-pyrazolino[60]fullerene Derivatives Formed Using Microwave Radiation. ACS Omega, 6(31), 20321–20330. doi:10.1021/acsomega.1c02245spa
dc.relation.referencesRudolf, M., Kirner, S. V., & Guldi, D. M. (2016). A multicomponent molecular approach to artificial photosynthesis – the role of fullerenes and endohedral metallofullerenes. Chemical Society Reviews, 45(3), 612–630. doi:10.1039/c5cs00774gspa
dc.relation.referencesMatsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y.-W., Nakae, T., & Nakamura, E. (2008). Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society, 130(15), 5016–5017. doi:10.1021/ja800481dspa
dc.relation.referencesPérez, L., García-Martínez, J. C., Díez-Barra, E., Atienzar, P., García, H., Rodríguez-López, J., & Langa, F. (2006). Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 12(19), 5149–5157. doi:10.1002/chem.200600207spa
dc.relation.referencesFoote, C. S. (1994). Photophysical and photochemical properties of fullerenes. Topics in Current Chemistry, 347–363. doi:10.1007/3-540-57565-0_80spa
dc.relation.referencesLeach, S., Vervloet, M., Desprès, A., Bréheret, E., Hare, J. P., John Dennis, T. Walton, D. R. M. (1992). Electronic spectra and transitions of the fullerene C60. Chemical Physics, 160(3), 451–466. doi:10.1016/0301-0104(92)80012-kspa
dc.relation.referencesPrato, M., & Maggini, M. (1998). Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives. Accounts of Chemical Research, 31(9), 519–526. doi:10.1021/ar970210pspa
dc.relation.referencesIsaacs, L., Haldimann, R. F., & Diederich, F. (1994). Tether‐Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation. Angewandte Chemie International Edition in English, 33(22), 2339–2342. doi:10.1002/anie.199423391spa
dc.relation.referencesSchwenninger, R., Muller, T., & Kräutler, B. (1997). Concise Route to Symmetric Multiadducts of [60] Fullerene : Preparation of an Equatorial Tetraadduct by Orthogonal Transposition and the development of a preparative method for their synthesis by Kra regioselectively multifunctionalized derivatives of t. Journal of American Chemical Society, 2(9 mL), 9317–9318. doi:10.1021/ja971875pspa
dc.relation.referencesZhang, S., Lukoyanova, O., & Echegoyen, L. (2006). Synthesis of fullerene adducts with terpyridyl- or pyridylpyrrolidine groups in trans-1 positions. Chemistry - A European Journal, 12(10), 2846–2853. doi:10.1002/chem.200501333spa
dc.relation.referencesDuarte-Ruiz, A., Wurst, K., & Kräutler, B. (2001). Regioselective “one-pot” synthesis of antipodal bis-adducts by heating of solid [5,6]fullerene-C60-Ih and anthracenes. Helvetica Chimica Acta, 84(8), 2167–2177. doi:10.1002/1522-2675(20010815)84:8<2167::AID-HLCA2167>3.0.CO;2-Vspa
dc.relation.referencesDuarte-Ruiz, A., Müller, T., Wurst, K., & Kräutler, B. (2001). The bis-adducts of the [5,6]-fullerene C60 and anthracene. Tetrahedron, 57(17), 3709–3714. doi:10.1016/S0040-4020(01)00237-Xspa
dc.relation.referencesDuarte-Ruiz, A., Neti, V. S. P. K., Cerón, M. R., Olmstead, M. M., Balch, A. L., & Echegoyen, L. (2014). High-yield, regiospecific bis-functionalization of C70 using a Diels-Alder reaction in molten anthracene. Chemical Communications, 50(73), 10584–10587. doi:10.1039/c4cc02472aspa
dc.relation.referencesOrtiz, A. L., Rivera, D. M., Athans, A. J., & Echegoyen, L. (2009). Regioselective addition of N-(4-Thiocyanatophenyl)pyrrolidine addends to fullerenes. European Journal of Organic Chemistry, 20, 3396–3403. doi:10.1002/ejoc.200900228spa
dc.relation.referencesTaylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, (20), 1423. doi:10.1039/c39900001423spa
dc.relation.referencesTian, C., Castro, E., Betancourt-Solis, G., Nan, Z., Fernandez-Delgado, O., Jankuru, S., & Echegoyen, L. (2018). Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 42(4), 2896–2902. doi:10.1039/c7nj04978aspa
dc.relation.referencesFernandez-Delgado, O., Castro, E., Ganivet, C. R., Fosnacht, K., Liu, F., Mates, T., Liu, Y., Wu, X., & Echegoyen, L. (2019). Variation of Interfacial Interactions in PC61BM-like Electron-Transporting Compounds for Perovskite Solar Cells [Research-article]. ACS Applied Materials and Interfaces, 11(37), 34408–34415. doi.org:10.1021/acsami.9b09018spa
dc.relation.referencesTian, C., Kochiss, K., Castro, E., Betancourt-Solis, G., Han, H., & Echegoyen, L. (2017). A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 5(16), 7326–7332. doi:10.1039/c7ta00362espa
dc.relation.referencesCastro, E., Murillo, J., Fernandez-Delgado, O., & Echegoyen, L. (2018). Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 6(11), 2635–2651. doi:10.1039/c7tc04302cspa
dc.relation.referencesTian, C., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., & Echegoyen, L. (2016). Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Applied Materials and Interfaces, 8(45), 31426–31432. doi:10.1021/acsami.6b10668spa
dc.relation.referencesHassanzadeh, Z., Ghavami, R., & Kompany-Zareh, M. (2016). Radial basis function neural networks based on the projection pursuit and principal component analysis approaches: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors. Medicinal Chemistry Research, 25(1), 19–29. https://doi.org/10.1007/s00044-015-1466-xspa
dc.relation.referencesPan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., Liang, Q., He, Q., Yuan, X., Huang, D., & Chen, M. (2020). Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Applied Catalysis B: Environmental, 265, 118579. doi:10.1016/j.apcatb.2019.118579spa
dc.relation.referencesYuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., & Zhou, H. C. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1–35. doi:10.1002/adma.201704303spa
dc.relation.referencesBabu, S. S., Möhwald, H., & Nakanishi, T. (2010). Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chemical Society Reviews, 39(11), 4021–4035. doi:10.1039/c000680gspa
dc.relation.referencesKamat, P. V. (2007). Meeting clean energy demand with nanostructure architectures. ACS National Meeting Book of Abstracts, 2834–2860.spa
dc.relation.referencesNREL. (2020). Best Research-Cell Efficiencies: Rev. 04-06-2020. In Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL (p. https://www.nrel.gov/pv/cell-efficiency.html). https://www.nrel.gov/pv/cell-efficiency.htmlspa
dc.relation.referencesThomas, T., Mellor, A., Hylton, N. P., Fuhrer, M., Alonso-Àlvarez, D., Braun, A., Ekins-Daukes, N. J., David, J. P. R., & Sweeney, S. J. (2015). Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semiconductor Science and Technology, 30(9). doi:10.1088/0268-1242/30/9/094010spa
dc.relation.referencesAraki, K., Yamaguchi, M., Kondo, M., & Uozumi, H. (2003, May). Which is the best number of junctions for solar cells under ever-changing terrestrial spectrum?. In 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of (Vol. 1, pp. 307-310). IEEE.spa
dc.relation.referencesLungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S. N., Glatthaar, M., Meyer, T., & Meyer, A. (2007). Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells, 91(5), 379–384. doi:10.1016/j.solmat.2006.10.013spa
dc.relation.referencesKim, T., Kim, J. H., Kang, T. E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T. S., & Kim, B. J. (2015). Flexible, highly efficient all-polymer solar cells. Nature Communications, 6(May), 1–7. doi:10.1038/ncomms9547spa
dc.relation.referencesSong, S., Hill, R., Choi, K., Wojciechowski, K., Barlow, S., Leisen, J., Snaith, H. J., Marder, S. R., & Park, T. (2018). Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 49, 324–332. doi:10.1016/j.nanoen.2018.04.068spa
dc.relation.referencesLi, C., Fuxhi, W., Xu, J., Yao, J., Zhang, B., Xhang, C., Min, X., Songyuan, D., Li, Y., & Z, T. (2015). Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 21(7), 9771–9778. doi:10.1039/c4nr06240jspa
dc.relation.referencesBrédas, J.-L., Norton, J. E., Cornil, J., & Coropceanu, V. (2009). Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42(11), 1691–1699. doi:10.1021/ar900099hspa
dc.relation.referencesMazzio, K. A., & Luscombe, C. K. (2015). The future of organic photovoltaics. Chemical Society Reviews, 44(1), 78–90. doi:10.1039/c4cs00227jspa
dc.relation.referencesMarinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. doi:10.1016/j.jcis.2016.11.021spa
dc.relation.referencesMiyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J. T.-W., Stranks, S. D., Nicholas, R. J. (2015). Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 11(7), 582–587. doi:10.1038/nphys3357spa
dc.relation.referencesEdri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., & Cahen, D. (2014). Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nature Communications, 5(1). doi:10.1038/ncomms4461spa
dc.relation.referencesLin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L., & Meredith, P. (2014). Electro-optics of perovskite solar cells. Nature Photonics, 9(2), 106–112. doi:10.1038/nphoton.2014.284spa
dc.relation.referencesCollavini, S., Völker, S. F., & Delgado, J. L. (2015). Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie International Edition, 54(34), 9757–9759. doi:10.1002/anie.201505321spa
dc.relation.referencesVölker, S. F., Collavini, S., & Delgado, J. L. (2015). Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 8(18), 3012–3028. doi:10.1002/cssc.201500742spa
dc.relation.referencesCook, S., Katoh, R., & Furube, A. (2009). Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM. The Journal of Physical Chemistry C, 113(6), 2547–2552. doi:10.1021/jp8050774spa
dc.relation.referencesSheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., & Green, M. A. (2015). Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. The Journal of Physical Chemistry C, 119(7), 3545–3549. doi:10.1021/jp512936zspa
dc.relation.referencesNoh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764–1769. doi:10.1021/nl400349bspa
dc.relation.referencesKnop, O., Wasylishen, R. E., White, M. A., Cameron, T. S., & Oort, M. J. M. V. (1990). Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Canadian Journal of Chemistry, 68(3), 412–422. doi:10.1139/v90-063spa
dc.relation.referencesEperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982. doi:10.1039/c3ee43822hspa
dc.relation.referencesPellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J., & Grätzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition, 53(12), 3151–3157. doi:10.1002/anie.201309361spa
dc.relation.referencesBi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1), e1501170–e1501170. doi:10.1126/sciadv.1501170spa
dc.relation.referencesMcMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Horantner, M. T., Snaith, H. J. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351(6269), 151–155. doi:10.1126/science.aad5845spa
dc.relation.referencesSaliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S. M., Gratzel, M. (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206–209. doi:10.1126/science.aah5557spa
dc.relation.referencesJeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476–480. doi:10.1038/nature14133spa
dc.relation.referencesKim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591spa
dc.relation.referencesO’Mahony, F. T. F., Lee, Y. H., Jellett, C., Dmitrov, S., Bryant, D. T. J., Durrant, J. R., Haque, S. A. (2015). Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. Journal of Materials Chemistry A, 3(14), 7219–7223. doi:10.1039/c5ta01221jspa
dc.relation.referencesTress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. (2015). Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3), 995–1004. doi:10.1039/c4ee03664fspa
dc.relation.referencesSnaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., Zhang, W. (2014). Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(9), 1511–1515. doi:10.1021/jz500113xspa
dc.relation.referencesWei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Yu, D. (2014). Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(21), 3937–3945. doi:10.1021/jz502111uspa
dc.relation.referencesFrost, J. M., Butler, K. T., & Walsh, A. (2014). Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Materials, 2(8), 081506. doi:10.1063/1.4890246spa
dc.relation.referencesRichardson, G., O’Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J., & Walker, A. B. (2016). Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy & Environmental Science, 9(4), 1476–1485. doi:10.1039/c5ee02740cspa
dc.relation.referencesWojciechowski, K., Stranks, S. D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Snaith, H. J. (2014). Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 8(12), 12701–12709. doi:10.1021/nn505723hspa
dc.relation.referencesHu, C., Xiao, J.-D., Mao, X.-D., Song, L.-L., Yang, X.-Y., & Liu, S.-J. (2019). Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive. Materials Letters. doi:10.1016/j.matlet.2018.12.123.spa
dc.relation.referencesXing, X.-S., Fu, Z., Zhang, N.-N., Yu, X.-Q., Wang, M.-S., & Guo, G.-C. (2019). High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chemical Communications. doi:10.1039/c8cc08700hspa
dc.relation.referencesMirkovic, I., Lei, L., Ljubic, D., & Zhu, S. (2019). Crystal Growth of Metal–Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega, 4(1), 169–175. doi:10.1021/acsomega.8b02332spa
dc.relation.referencesYang, H., Bright, J., Kasani, S., Zheng, P., Musho, T., Chen, B, Wu, N. (2018). Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Research. doi:10.1007/s12274-019-2272-4spa
dc.relation.referencesHuan, W., Xing, M., Cheng, C., & Li, J. (2018). Facile Fabrication of Magnetic Metal-Organic Framework Nanofibers for Specific Capture of Phosphorylated peptides. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.8b04928spa
dc.relation.referencesMohaghegh, N., Faraji, M., & Abedini, A. (2018). Highly efficient multifunctional Ag/TiO2 nanotubes/Ti plate coated with MIL-88B(Fe) as a photocatalyst, adsorbent, and disinfectant in water treatment. Applied Physics A, 125(1). doi:10.1007/s00339-018-2324-8spa
dc.relation.referencesKim, M.-K., Kim, S. H., Park, M., Ryu, S. G., & Jung, H. (2018). Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH2. RSC Advances, 8(72), 41633–41638. doi:10.1039/c8ra06805dspa
dc.relation.referencesShen, J., Wang, N., Wang, Y., Yu, D., & Ouyang, X. (2018). Efficient Adsorption of Pb(II) from Aqueous Solutions by Metal Organic Framework (Zn-BDC) Coated Magnetic Montmorillonite. Polymers, 10(12), 1383. doi:10.3390/polym10121383spa
dc.relation.referencesEsmaeilzadeh, M. (2018). A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchimica Acta, 186(1). doi:10.1007/s00604-018-3093-yspa
dc.relation.referencesZhang, L., Li, S., Xin, J., Ma, H., Pang, H., Tan, L., & Wang, X. (2018). A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchimica Acta, 186(1). doi:10.1007/s00604-018-3128-4spa
dc.relation.referencesHenrique, A., Rodrigues, A. E., & Correia Silva, J. A. (2018). Separation of Hexane Isomers in ZIF-8 by Fixed Bed Adsorption. Industrial & Engineering Chemistry Research. doi:10.1021/acs.iecr.8b05126spa
dc.relation.referencesSafaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and Applications. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2019.06.007.spa
dc.relation.referencesChen, X.-Y., Zhao, B., Shi, W., Xia, J., Cheng, P., Liao, D.-Z., Jiang, Z.-H. (2005). Microporous Metal−Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. Chemistry of Materials, 17(11), 2866–2874. doi:10.1021/cm050526ospa
dc.relation.referencesWang, D., He, H., Chen, X., Feng, S., Niu, Y., & Sun, D. (2010). A 3D porous metal–organic framework constructed of 1D zigzag and helical chains exhibiting selective anion exchange. CrystEngComm, 12(4), 1041–1043. doi:10.1039/b910988aspa
dc.relation.referencesWu, J.-Y., Chao, T.-C., & Zhong, M.-S. (2013). Influence of Counteranions on the Structural Modulation of Silver–Di(3-pyridylmethyl)amine Coordination Polymers. Crystal Growth & Design, 13(7), 2953–2964. doi:10.1021/cg400363espa
dc.relation.referencesLi, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3•6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186–2187. doi:10.1021/ja974172gspa
dc.relation.referencesPiñeiro-López, L., Arcís-Castillo, Z., Muñoz, M. C., & Real, J. A. (2014). Clathration of Five-Membered Aromatic Rings in the Bimetallic Spin Crossover Metal–Organic Framework [Fe (TPT)2/3{MI (CN)2}2]•G (MI = Ag, Au). Crystal Growth & Design, 14(12), 6311–6319. doi:10.1021/cg5010616spa
dc.relation.referencesQiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23-24), 2891–2911. doi:10.1016/j.ccr.2009.07.020spa
dc.relation.referencesShen, L., Wu, W., Liang, R., Lin, R., & Wu, L. (2013). Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 5(19), 9374. doi:10.1039/c3nr03153espa
dc.relation.referencesSerre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)- Based solids: MIL-53 or CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x.H2Oy. Journal of the American Chemical Society, 124(45), 13519–13526. doi:10.1021/ja0276974spa
dc.relation.referencesZhang, Y., Bo, X., Nsabimana, A., Han, C., Li, M., & Guo, L. (2015). Electrocatalytically active cobalt-based metal–organic framework with incorporated macroporous carbon composite for electrochemical applications. Journal of Materials Chemistry A, 3(2), 732–738. doi:10.1039/c4ta04411hspa
dc.relation.referencesMueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626–636. doi:10.1039/b511962fspa
dc.relation.referencesVan Assche, T. R. C., Desmet, G., Ameloot, R., De Vos, D. E., Terryn, H., & Denayer, J. F. M. (2012). Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous and Mesoporous Materials, 158, 209–213. doi:10.1016/j.micromeso.2012.03.029spa
dc.relation.referencesCampagnol, N., Souza, E. R., De Vos, D. E., Binnemans, K., & Fransaer, J. (2014). Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun., 50(83), 12545–12547. doi:10.1039/c4cc05742bspa
dc.relation.referencesMacGillivray, L.R. (2010) Metal-organic frameworks: Design and application. Hoboken, NJ: Wiley.spa
dc.relation.referencesPichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3), 211. doi:10.1039/b513750kspa
dc.relation.referencesJames, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 41(1), 413–447. doi:10.1039/c1cs15171aspa
dc.relation.referencesMasoomi, M. Y., Morsali, A., & Junk, P. C. (2015). Rapid mechanochemical synthesis of two new Cd(ii)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm, 17(3), 686–692. doi:10.1039/c4ce01783hspa
dc.relation.referencesPhang, W. J., Lee, W. R., Yoo, K., Ryu, D. W., Kim, B., & Hong, C. S. (2014). pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material. Angewandte Chemie International Edition, 53(32), 8383–8387. doi:10.1002/anie.201404164spa
dc.relation.referencesJhung, S. H., Yoon, J. W., Hwang, J.-S., Cheetham, A. K., & Chang, J.-S. (2005). Facile Synthesis of Nanoporous Nickel Phosphates without Organic Templates under Microwave Irradiation. Chemistry of Materials, 17(17), 4455–4460. doi:10.1021/cm047708nspa
dc.relation.referencesJhung, S. H., Chang, J.-S., Hwang, J. S., & Park, S.-E. (2003). Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 64(1-3), 33–39. doi:10.1016/s1387-1811(03)00501-8spa
dc.relation.referencesHwang, Y. K., Chang, J.-S., Park, S.-E., Kim, D. S., Kwon, Y.-U., Jhung, S. H., Park, M. S. (2005). Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angewandte Chemie International Edition, 44(4), 556–560. doi:10.1002/anie.200461403spa
dc.relation.referencesNi, Z., & Masel, R. I. (2006). Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. doi:10.1021/ja0635231spa
dc.relation.referencesSabouni, R., Kazemian, H., & Rohani, S. (2012). Microwave Synthesis of the CPM-5 Metal Organic Framework. Chemical Engineering & Technology, 35(6), 1085–1092. doi:10.1002/ceat.201100626spa
dc.relation.referencesMorsali, A., Monfared, H. H., Morsali, A., & Janiak, C. (2015). Ultrasonic irradiation assisted syntheses of one-dimensional di(azido)-dipyridylamine Cu(II) coordination polymer nanoparticles. Ultrasonics Sonochemistry, 23, 208–211. doi:10.1016/j.ultsonch.2014.06.005spa
dc.relation.referencesJung, D.-W., Yang, D.-A., Kim, J., Kim, J., & Ahn, W.-S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39(11), 2883. doi:10.1039/b925088cspa
dc.relation.referencesSon, W.-J., Kim, J., Kim, J., & Ahn, W.-S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, (47), 6336. doi:10.1039/b814740jspa
dc.relation.referencesHaque, E., Khan, N. A., Park, J. H., & Jhung, S. H. (2009). Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 16(3), 1046–1052. doi:10.1002/chem.200902382spa
dc.relation.referencesJin, L.-N., Liu, Q., & Sun, W.-Y. (2014). An introduction to synthesis and application of nanoscale metal–carboxylate coordination polymers. CrystEngComm, 16(19), 3816. doi:10.1039/c3ce41962bspa
dc.relation.referencesKraft, A., Roth, P., Schmidt, D., Stangl, J., Müller-Buschbaum, K., & Beuerle, F. (2016). Three-Dimensional Metal-Fullerene Frameworks. Chemistry - A European Journal, 22(17), 5982–5987. doi:10.1002/chem.201505137spa
dc.relation.referencesKraft, A., Stangl, J., Krause, A.-M., Müller-Buschbaum, K., & Beuerle, F. (2017). Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic Chemistry, 13, 1–9. doi:10.3762/bjoc.13.1spa
dc.relation.referencesLerma‐Berlanga, B., Ganivet, C. R., Almora‐Barrios, N., Vismara, R., Navarro, J. A., Tatay, S., Martí‐Gastaldo, C. (2022). Tetrazine linkers as Plug‐and‐play tags for general metal‐organic framework functionalization and C60 conjugation. Angewandte Chemie International Edition, 61(41). doi:10.1002/anie.202208139spa
dc.relation.referencesMoosavi, S. M., Nandy, A., Jablonka, K. M., Ongari, D., Janet, J. P., Boyd, P. G., Kulik, H. J. (2020). Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 11(1). doi:10.1038/s41467-020-17755-8spa
dc.relation.referencesHabicher, T., Nierengarten, J. F., Gramlich, V., & Diederich, F. (1998). PtII‐Directed Self‐Assembly of a Dinuclear Cyclophane Containing Two Fullerenes. Angewandte Chemie International Edition, 37(13‐14), 1916-1919.spa
dc.relation.referencesFan, J., Wang, Y., Blake, A. J., Wilson, C., Davies, E. S., Khlobystov, A. N., & Schröder, M. (2007). Controlled Assembly of Silver(I)-Pyridylfullerene Networks. Angewandte Chemie International Edition, 46(42), 8013–8016. doi:10.1002/anie.200700769spa
dc.relation.referencesMuller, T., Bräse, S., Pierrat, P., & Réthoré, C. (2008). Design and Efficient Synthesis of Fullerene Bismalonates as Building Blocks for Metal Organic Frameworks and Organic Nanostructures. Synlett, 2008(11), 1706–1710. doi:10.1055/s-2008-1077880spa
dc.relation.referencesPeng, P., Li, F.-F., Bowles, F. L., Neti, V. S. P. K., J. Metta-Magana, A., Olmstead, M. M., Echegoyen, L. (2013). High yield synthesis of a new fullerene linker and its use in the formation of a linear coordination polymer by silver complexation. Chemical Communications, 49(31), 3209. doi:10.1039/c3cc40697kspa
dc.relation.referencesSun, D., Tham, F. S., Reed, C. A., & Boyd, P. D. W. (2002). Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks. Proceedings of the National Academy of Sciences, 99(8), 5088–5092. doi:10.1073/pnas.072602399spa
dc.relation.referencesChae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523–527. doi:10.1038/nature02311spa
dc.relation.referencesConstable, E. C., Zhang, G., Housecroft, C. E., & Zampese, J. A. (2012). Bucky-blocks: templating a coordination network with C60. CrystEngComm, 14(5), 1770–1774. doi:10.1039/c2ce06156bspa
dc.relation.referencesHolm, R., & Elder, D. P. (2016). Analytical advances in pharmaceutical impurity profiling. European Journal of Pharmaceutical Sciences, 87, 118–135. doi:10.1016/j.ejps.2015.12.007spa
dc.relation.referencesGupta, D., Bhatia, D., Dave, V., Sutariya, V., & Varghese Gupta, S. (2018). Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules, 23(7), 1719. doi:10.3390/molecules2307171spa
dc.relation.referencesTilborg, A., Norberg, B., & Wouters, J. (2014). Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. European Journal of Medicinal Chemistry, 74, 411–426. doi:10.1016/j.ejmech.2013.11.045spa
dc.relation.referencesAlbert, A. (1984). Determination of ionization constants by Potentiometric titration using a glass electrode. In The determination of ionization constants (3rd ed., pp. 14–68). essay, Chapman and Hall. doi:10.1007/978-94-009-5548-6spa
dc.relation.referencesGarrett, R. H., &amp; Grisham, C. M. (2017). Amino Acids and the Peptide Bond. In Biochemistry (5th ed., p. 77-100). Australia: Cengage Learning. ISBN-13: 9781305636231spa
dc.relation.referencesReijenga, J., van Hoof, A., van Loon, A., & Teunissen, B. (2013). Development of Methods for the Determination of pKa Values. Analytical Chemistry Insights, 8, ACI.S12304. doi:10.4137/aci.s12304spa
dc.relation.referencesIsom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno E., B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences, 108(13), 5260–5265. doi:10.1073/pnas.1010750108spa
dc.relation.referencesAllen, R. I., Box, K. J., Comer, J. E. A., Peake, C., & Tam, K. Y. (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17(4-5), 699–712. doi:10.1016/s0731-7085(98)00010-7spa
dc.relation.referencesMartínez, C. H. R., & Dardonville, C. (2012). Rapid Determination of Ionization Constants (pKa) by UV Spectroscopy Using 96-Well Microtiter Plates. ACS Medicinal Chemistry Letters, 4(1), 142–145. doi:10.1021/ml300326vspa
dc.relation.referencesMansouri, K., Cariello, N. F., Korotcov, A., Tkachenko, V., Grulke, C. M., Sprankle, C. S., Williams, A. J. (2019). Open-source QSAR models for pKa prediction using multiple machine learning approaches. Journal of Cheminformatics, 11(1). doi:10.1186/s13321-019-0384-1spa
dc.relation.referencesPliego, J. R., & Riveros, J. M. (2002). Theoretical Calculation of pKaUsing the Cluster−Continuum Model. The Journal of Physical Chemistry A, 106(32), 7434–7439. doi:10.1021/jp025928nspa
dc.relation.referencesGibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.spa
dc.relation.referencesLara, J. C. O., & López, A. B. (2017). Importancia de las sales orgánicas en la industria farmacéutica. Revista Mexicana de Ciencias Farmacéuticas, 48(1), 18-42.spa
dc.relation.referencesStahl, P.H. and Wermuth, C.G. (2011) Handbook of Pharmaceutical Salts: Properties, selection, and use. Zürich: Verlag Helvetica Chimica Acta. ISBN 3-906390-26-8spa
dc.relation.referencesGiron, D. (2003). Characterisation of salts of drug substances. Journal of thermal analysis and calorimetry, 73(2), 441-457. doi:10.1023/a:1025461625782spa
dc.relation.referencesAttia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025spa
dc.relation.referencesGabbott, P. (Ed.). (2008). Principles and applications of thermal analysis. John Wiley & Sons. ISBN 9780470698129spa
dc.relation.referencesHaines, J.P. (1995) Thermal methods of analysis: Principles, applications and Problems. Dordrecht: Springer-Science+Business Media, B.V. ISBN 9780470698129spa
dc.relation.referencesGiron, D. (1995). Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochimica Acta, 248, 1–59. doi:10.1016/0040-6031(94)01953-espa
dc.relation.referencesBartolomei, M., Bertocchi, P., Cotta Ramusino, M., & Ciranni Signoretti, E. (1998). Thermal studies on the polymorphic modifications of (R,S) propranolol hydrochloride. Thermochimica Acta, 321(1-2), 43–52. doi:10.1016/s0040-6031(98)00438-9spa
dc.relation.referencesWhite, J. D., Kranemann, C. L., &amp; Kuntiyong, P. (2002). [4-Oxazolecarboxylic acid, 2-methyl-, methyl éster]. Organic Syntheses, 10(799), 244. doi:10.15227/orgsyn.spa
dc.relation.referencesAnanda, K., & Suresh Babu, V. V. (2001). Deprotonation of hydrochloride salts of amino acid ésters and peptide ésters using commercial zinc dust. Journal of Peptide Research, 57(3), 223–226. doi:10.1111/j.1399-3011.2001.00790.xspa
dc.relation.referencesPhillips, R. E., & Soulen, R. L. (1995). Propylene Oxide Addition to Hydrochloric Acid: A Textbook Error. Journal of Chemical Education, 72(7), 624. doi:10.1021/ed072p624spa
dc.relation.referencesD, F. (1973). U.S. Patent No. US5227483A. Washington, DC: U.S. Patent and Trademark Office.spa
dc.relation.referencesFleck, M., Petrosyan, A. M. (2014). Chapter 2 Amino Acid Structures. In Salts of amino acids crystallization, structure and properties (1st ed., pp. 21-72). Cham: Springer International Publishing. doi:10.1007/978-3-319-06299-0spa
dc.relation.referencesBoeyens, J. C. A., & Ogilvie, J. F. (Eds.). (2008). Models, Mysteries and Magic of Molecules. doi:10.1007/978-1-4020-5941-4spa
dc.relation.referencesLangan, P., Mason, S. A., Myles, D., & Schoenborn, B. P. (2002). Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallographica Section B Structural Science, 58(4), 728–733. doi:10.1107/s0108768102004263spa
dc.relation.referencesDrebushchak, T. N., Boldyreva, E. V., & Shutova, E. S. (2002). β-Glycine. Acta Crystallographica Section E Structure Reports Online, 58(6), o634–o636. doi:10.1107/s160053680200836xspa
dc.relation.referencesMatei, A., Drichko, N., Gompf, B., & Dressel, M. (2005). Far-infrared spectra of amino acids. Chemical Physics, 316(1-3), 61–71. doi:10.1016/j.chemphys.2005.04.03spa
dc.relation.referencesSchieber, M. (1971). The growth of single crystals. Journal of Crystal Growth, 11(3), 358–359. doi:10.1016/0022-0248(71)90111-4spa
dc.relation.referencesAnbu Chudar Azhagan, S., & Ganesan, S. (2017). Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals. Arabian Journal of Chemistry, 10, S2615–S2624. doi:10.1016/j.arabjc.2013.09.041spa
dc.relation.referencesRodríguez, J. S., Costa, G., da Silva, M. B., Silva, B. P., Honório, L. J., de Lima-Neto, P., Freire, V. N. (2019). Structural and Optoelectronic Properties of the α-, β-, and γ-Glycine Polymorphs and the Glycine Dihydrate Crystal: A DFT Study. Crystal Growth & Design, 19(9), 5204–5217. doi:10.1021/acs.cgd.9b00593spa
dc.relation.referencesBastiat, G., & Leroux, J.-C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry, 19(23), 3867. doi:10.1039/b822657aspa
dc.relation.referencesTriboni, E.R.; Moraes, T.B.F.; Politi, M.J. Supramolecular Gels. In: Nano Design for Smart Gels; Elsevier, 2019; pp. 35–69. ISBN 9780128148266spa
dc.relation.referencesSangeetha, N. M., & Maitra, U. (2005). Supramolecular gels: Functions and uses. Chemical Society Reviews, 34(10), 821. doi:10.1039/b417081bspa
dc.relation.referencesNaota, T., & Koori, H. (2005). Molecules That Assemble by Sound: An Application to the Instant Gelation of Stable Organic Fluids. Journal of the American Chemical Society, 127(26), 9324–9325. doi:10.1021/ja050809hspa
dc.relation.referencesNúñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742aspa
dc.relation.referencesLiao, L., Liu, R., Hu, S., Jiang, W., Chen, Y., Zhong, J., ... & Luo, X. (2022). Self-assembled sonogels formed from 1, 4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC advances, 12(31), 20218-20226. doi: 10.1039/D2RA01391Fspa
dc.relation.referencesIchihara, K., Sugahara, T., Akamatsu, M., Sakai, K., & Sakai, H. (2021). Rheology of α-Gel Formed by Amino Acid-Based Surfactant with Long-Chain Alcohol: Effects of Inorganic Salt Concentration. Langmuir, 37(23), 7032–7038. doi:10.1021/acs.langmuir.1c00626spa
dc.relation.referencesYu, G., Yan, X., Han, C., & Huang, F. (2013). Characterization of supramolecular gels. Chemical Society Reviews, 42(16), 6697. doi:10.1039/c3cs60080gspa
dc.relation.referencesChivers, P. R. A., & Smith, D. K. (2019). Shaping and structuring supramolecular gels. Nature Reviews Materials. doi:10.1038/s41578-019-0111-6spa
dc.relation.referencesStenzel, K., & Fleck, M. (2004). Poly[[[diaquacobalt(II)]-di-μ-glycine] dichloride]. Acta Crystallographica Section E Structure Reports Online, 60(10), m1470–m1472. doi:10.1107/s1600536804022573spa
dc.relation.referencesYang, W., Greenaway, A., Lin, X., Matsuda, R., Blake, A. J., Wilson, C., Schröder, M. (2010). Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 132(41), 14457–14469. doi:10.1021/ja1042935spa
dc.relation.referencesWang, B., Lin, R.-B., Zhang, Z., Xiang, S., & Chen, B. (2020). Hydrogen-Bonded Organic Frameworks as A Tunable Platform for Functional Materials. Journal of the American Chemical Society. doi:10.1021/jacs.0c06473spa
dc.relation.referencesArmer, R., Belfield, A., Binghman, M., Johnson, A., Margathe, J., Avery, C., Hughes, S., &amp; Morrison, A. (2016). U.S. Patent No. WO2016051193A1. Washington, DC: U.S. Patent and Trademark Office.spa
dc.relation.referencesVogel, A. I. ; Furniss, B. S. (1989). Chapter 5.11.2: Hydrolysis of alkyl cyanides. In Vogel's textbook of Pratical Organic Chemistry (5th ed., pp. 671-673). Harlow: Pearson Education.spa
dc.relation.referencesBosi, S., Da Ros, T., Spalluto, G., Balzarini, J., & Prato, M. (2003). Synthesis and Anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic & Medicinal Chemistry Letters, 13(24), 4437–4440. doi:10.1016/j.bmcl.2003.09.016spa
dc.relation.referencesSmith, C. (2009). Activated Zinc Dust. Synlett, 2009(09), 1522–1523. doi:10.1055/s-0029-1217181spa
dc.relation.referencesKumar, P., & Lokanatha Rai, K. (2012). Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation. Chemical Papers, 66(8). doi:10.2478/s11696-012-0195-6spa
dc.relation.referencesHidalgo, T., Cooper, L., Gorman, M., Lozano-Fernández, T., Simón-Vázquez, R., Mouchaham, G, Horcajada, P. (2017). Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. Journal of Materials Chemistry B, 5(15), 2813–2822. doi:10.1039/c6tb03101cspa
dc.relation.referencesPourbaix, M. (1974). Atlas of Electrochemical Equilibria in aqueous solutions. Houston, TX: National Association of Corrosion Engineers.spa
dc.relation.referencesCampbell, J. A., & Whiteker, R. A. (1969). A periodic table based on potential-pH diagrams. Journal of Chemical Education, 46(2), 90. doi:10.1021/ed046p90spa
dc.relation.referencesWorkman, J., Weyer, L. (2008). Practical guide to interpretive near-infrared spectroscopy (1st ed.). Boca Raton: CRC Press. doi:10.1201/9781420018318spa
dc.relation.referencesJacobsen, N. E. (2017). NMR Data Interpretation explained: Understanding 1D and 2D NMR spectra of organic compounds and natural products. Hoboken, NJ: John Wiley & Sons. ISBN: 978-1-118-37022-3spa
dc.relation.referencesAbu Hassan, Noor & Mohtar, Norlia & Mohamad Fauzi, Siti & Yeong, Shoot & Hassan, Hazimah & Idris, Zainab. (2017). Synthesis of dimerate ésters by solvent-free method. Journal of oil palm research. 29. 110-119. doi: 10.21894/jopr.2017.2901.12.spa
dc.relation.referencesJason L. Moore, Stephen M. Taylor, and Vadim A. (2005). An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Huenig’s base. Soloshonok Arkivoc (EJ-1549C) pp 287-292 2005. doi: 10.3998/ark.5550190.0006.624spa
dc.relation.referencesAleksandrov, A. L. (1980). Oxidation of amines by molecular oxygen. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 29(11), 1740–1744. doi:10.1007/bf00949211spa
dc.relation.referencesKostamovaara, J., Tenhunen, J., Kögler, M., Nissinen, I., Nissinen, J., & Keränen, P. (2013). Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD. Optics Express, 21(25), 31632. doi:10.1364/oe.21.031632spa
dc.relation.referencesVarghese, R. S., Zhou, B., Ranjbar, M., Zhao, Y., & Ressom, H. W. (2012). Ion annotation-assisted analysis of LC-MS based metabolomic experiment. Proteome Science, 10(Suppl 1), S8. doi:10.1186/1477-5956-10-s1-s8spa
dc.relation.referencesMarina Konon, Tatiana Antropova, Nikita Zolotov, Tatiana Simonenko, Nikolay Simonenko, Elena Brazovskaya, Valery Kreisberg, Irina Polyakova. (2022). Chemical durability of the iron-containing sodium borosilicate glasses. Journal of Non-Crystalline Solids, Volume 584, 121519. doi:10.1016/j.jnoncrysol.2022.121519spa
dc.relation.referencesHicham Jabraoui, Stéphane Gin, Thibault Charpentier, Rodolphe Pollet, and Jean-Marc Delaye (2021). Leaching and Reactivity at the Sodium Aluminosilicate Glass–Water Interface: Insights from a ReaxFF Molecular Dynamics Study. The Journal of Physical Chemistry C, 125 (49), 27170-27184. doi: 10.1021/acs.jpcc.1c07266spa
dc.relation.referencesBirdsall, R. E., Gilar, M., Shion, H., Yu, Y. Q., & Chen, W. (2016). Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 30(14), 1667–1679. doi:10.1002/rcm.7596spa
dc.relation.referencesMurray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609. doi:10.1351/pac-rec-06-04-06spa
dc.relation.referencesAshcroft, A. E. (1997). Electrospray Ionization. In Ionization methods in organic mass spectrometry (pp. 38-40). Cambridge: Royal Society of Chemistry.spa
dc.relation.referencesLong, J., Gong, H., Zhang, D., Liu, M., & Li, H. (2018). Determination of carboxyl groups in pulp via ultraviolet spectrophotometry. Bioresources, 13(2), 2670-2677.spa
dc.relation.referencesAkash, M. S. H., Rehman, K., Akash, M. S. H., & Rehman, K. (2020). Ultraviolet-visible (UV-VIS) spectroscopy. Essentials of pharmaceutical analysis, pp. 29-56. doi: 10.1007/978-981-15-1547-7_3spa
dc.relation.referencesMocanu, M. N., & Yan, F. (2018). Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 208–214. doi:10.1016/j.saa.2017.09.017spa
dc.relation.referencesWang, Q., Byrnes, L. J., Shui, B., Röhrig, U. F., Singh, A., Chudakov, D. M., Sondermann, H. (2011). Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant. PLoS ONE, 6(8), e23513. doi:10.1371/journal.pone.002351spa
dc.relation.referencesKhalil, G. E., Daddario, P., Lau, K. S. F., Imtiaz, S., King, M., Gouterman, M., Brückner, C. (2010). meso-Tetraarylporpholactones as high pH sensors. The Analyst, 135(8), 2125. doi:10.1039/c0an00018cspa
dc.relation.referencesBeaven, G. H., & Holiday, E. R. (1952). Ultraviolet Absorption Spectra of Proteins and Amino Acids. Advances in Protein Chemistry Volume 7, 319–386. doi:10.1016/s0065-3233(08)60022-4spa
dc.relation.referencesShimono, K., Kitami, M., Iwamoto, M., & Kamo, N. (2000). Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophysical Chemistry, 87(2-3), 225–230. doi:10.1016/s0301-4622(00)00195-2spa
dc.relation.referencesTan, L., Du, W., Zhang, Y., Tang, L. J., Jiang, J. H., & Yu, R. Q. (2020). Rayleigh scattering correction for fluorescence spectroscopy analysis. Chemometrics and Intelligent Laboratory Systems, 203, 104028. doi:10.1016/j.chemolab.2020.104028spa
dc.relation.referencesLakowicz, J.R (2006). Introduction to Fluorescence. Principles of Fluorescence Spectroscopy. Springer, Boston, MA. doi:10.1007/978-0-387-46312-4_1spa
dc.relation.referencesBabić, S., Horvat, A. J., Pavlović, D. M., & Kaštelan-Macan, M. (2007). Determination of pKa values of active pharmaceutical ingredients. TrAC Trends in Analytical Chemistry, 26(11), 1043-1061. doi:10.1016/j.trac.2007.09.004spa
dc.relation.referencesKordatos, K., Bosi, S., Da Ros, T., Zambon, A., Lucchini, V., & Prato, M. (2001). Isolation and characterization of all eight bisadducts of fulleropyrrolidine derivatives. The Journal of organic chemistry, 66(8), 2802-2808. doi:10.1021/jo001708zspa
dc.relation.referencesTsuge, O., & Kanemasa, S. (1989). Recent advances in azomethine ylide chemistry. Advances in heterocyclic chemistry, 45, 231-349. doi:10.1016/S0065-2725(08)60332-3spa
dc.relation.referencesTanimura, M., Watanabe, N., Ijuin, H. K., & Matsumoto, M. (2011). Intramolecular charge-transfer-induced decomposition promoted by an aprotic polar solvent for bicyclic dioxetanes bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. The Journal of Organic Chemistry, 76(3), 902-908. doi:10.1021/jo1021822spa
dc.relation.referencesMatsumoto, M., Tanimura, M., Akimoto, T., Watanabe, N., & Ijuin, H. K. (2008). Solvent-promoted chemiluminescent decomposition of a bicyclic dioxetane bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. Tetrahedron Letters, 49(26), 4170-4173. doi:10.1016/j.tetlet.2008.04.110spa
dc.relation.referencesPetersen, R. C., Markgraf, J. H., & Ross, S. D. (1961). Solvent Effects in the Decomposition of 1, 1'-Diphenylazoethane and 2, 2'-Azobis-(2-methylpropionitrile). Journal of the American Chemical Society, 83(18), 3819-3823. doi:10.1021/ja01479a021spa
dc.relation.referencesNikolay O. Mchedlov-Petrossyan, Mykyta O. Marfunin, Vladislav A. Tikhonov, and Sergey V. Shekhovtsov (2022). Unexpected Colloidal Stability of Fullerenes in Dimethyl Sulfoxide and Related Systems. Langmuir. 38 (32), 10000-10009 doi: 10.1021/acs.langmuir.2c01408spa
dc.relation.referencesStumm, W. (1993). Aquatic colloids as chemical reactants: surface structure and reactivity. Colloids in the Aquatic Environment, 1–18. doi:10.1016/b978-1-85861-038-2.50004-8spa
dc.relation.referencesSaadatkhah, N., Garcia, A. C., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Chaouki, J. (2019). Experimental Methods in Chemical Engineering: Thermogravimetric Analysis—TGA. The Canadian Journal of Chemical Engineering. doi:10.1002/cjce.23673spa
dc.relation.referencesC. Tsioptsias. (2022). On the latent limit of detection of thermogravimetric análisis. Measurement. Volume 204, 112136. doi:10.1016/j.measurement.2022.112136.spa
dc.relation.referencesBlaine, R. L., & Rose, J. E. (2009). Validation of Thermogravimetric analysis performance using mass loss reference materials. TA Instruments, 1-10.spa
dc.relation.referencesR.L. Danley, J.W. Schaefer. (2008). U.S. Patent No. US20060140246A1 System and method for a thermogravimetric analyzer having improved dynamic weight baseline. Washington, DC: U.S. Patent and Trademark Office.spa
dc.relation.referencesCeylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. doi:10.1007/s10570-013-9936-0spa
dc.relation.referencesMachatha, S. G., Sanghvi, T., & Yalkowsky, S. H. (2005). Structure determination and characterization of carbendazim hydrochloride dihydrate. AAPS PharmSciTech, 6(1), E115–E119. doi:10.1208/pt060118spa
dc.relation.referencesGibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.spa
dc.relation.referencesAttia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025spa
dc.relation.referencesCervini, P., Machado, L. C. M., Ferreira, A. P. G., Ambrozini, B., & Cavalheiro, ÿder T. G. (2016). Thermal decomposition of tetracycline and chlortetracycline. Journal of Analytical and Applied Pyrolysis, 118, 317–324. doi:10.1016/j.jaap.2016.02.015spa
dc.relation.referencesPisharath, S., & Ang, H. G. (2007). Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer. Polymer Degradation and Stability, 92(7), 1365–1377. doi:10.1016/j.polymdegradstab.200spa
dc.relation.referencesKhan, N., Dollimore, D., Alexander, K., & Wilburn, F. . (2001). The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367-368, 321–333. doi:10.1016/s0040-6031(00)00669-9spa
dc.relation.referencesGan, L., Zhou, D., Luo, C., Tan, H., Huang, C., Lü, M., … Wu, Y. (1996). Synthesis of Fullerene Amino Acid Derivatives by Direct Interaction of Amino Acid Éster with C60. The Journal of Organic Chemistry, 61(6), 1954–1961. doi:10.1021/jo951933uspa
dc.relation.referencesCheng, J., Lu, T., Wu, X., Zhang, H., Zhang, C., Peng, C.-A., & Huang, S. (2019). Extraction of cobalt(ii) by methyltrioctylammonium chloride in nickel(ii)-containing chloride solution from spent lithium ion batteries. RSC Advances, 9(39), 22729–22739. doi:10.1039/c9ra02719jspa
dc.relation.referencesPandey, B. K., Sukla, A., Sinha, A. K., & Gopal, R. (2015). Synthesis and Characterization of Cobalt Oxalate Nanomaterial for Li-Ion Battery. Materials Focus, 4(5), 333–337. doi:10.1166/mat.2015.1267spa
dc.relation.referencesRaveendra, R. S., Prashanth, P. A., & Nagabhushana, B. M. (2016). Synthesis and spectral characterization studies of bio-active cobalt (II) complexes with clomipramine ligand. Journal of Advanced Chemical Sciences, 334-336.spa
dc.relation.referencesF. R. Dollish, W. G. Fateley, and F. F. Bentley, (1974). Characteristic Raman Frequencies of Organic Compounds, John Wiley & Sons Inc., New York.spa
dc.relation.referencesLiu, Y., Wang, C., Ju, S., Li, M., Yuan, A., & Zhu, G. (2020). FeCo-based hybrid MOF derived active species for effective oxygen evolution. Progress in Natural Science: Materials International. doi:10.1016/j.pnsc.2020.02.006spa
dc.relation.referencesYoon, H., Xu, A., Sterbinsky, G. E., Arena, D. A., Wang, Z., Stephens, P. W., Carroll, K. J. (2015). In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Physical Chemistry Chemical Physics, 17(2), 1070–1076. doi:10.1039/c4cp04451gspa
dc.relation.referencesKaur, R., Chhibber, M., Mahata, P., & Mittal, S. K. (2018). Induction of Catalytic Activity in ZnO Loaded Cobalt Based MOF for the Reduction of Nitroarenes. ChemistrySelect, 3(12), 3417–3425. doi:10.1002/slct.201702703spa
dc.relation.referencesMilekhin, A. G., Cherkasova, O., Kuznetsov, S. A., Milekhin, I. A., Rodyakina, E. E., Latyshev, A. V., Zahn, D. R. T. (2017). Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules. Beilstein Journal of Nanotechnology, 8, 975–981. doi:10.3762/bjnano.8.99spa
dc.relation.referencesBasile, L. J. (1971). Metal-Nitrogen Vibrations. Low-Frequency Vibrations of Inorganic and Coordination Compounds, 191–246. doi:10.1007/978-1-4684-1809-5_7spa
dc.relation.referencesNúñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742aspa
dc.relation.referencesGoyal, N., Mangunuru, H. P. R., Parikh, B., Shrestha, S., & Wang, G. (2014). Synthesis and characterization of pH responsive D-glucosamine based molecular gelators. Beilstein Journal of Organic Chemistry, 10, 3111–3121. doi:10.3762/bjoc.10.328spa
dc.relation.referencesLi, Y., Young, D. J., & Loh, X. J. (2019). Fluorescent gels: a review of synthesis, properties, applications and challenges. Materials Chemistry Frontiers, 3(8), 1489-1502. doi: 10.1039/C9QM00127Aspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.decsAminoácidosspa
dc.subject.decsAmino Acidseng
dc.subject.proposalFulleropirrolidinaspa
dc.subject.proposalIluro de azometinospa
dc.subject.proposalSintesis de α-aminoacidosspa
dc.subject.proposalFulleropyrrolidineeng
dc.subject.proposalAzomethine ylideeng
dc.subject.proposalSynthesis of α-amino acidseng
dc.subject.proposalIleto de azometinapor
dc.subject.proposalSíntese de α-aminoácidospor
dc.subject.proposalFuleropirrolidinapor
dc.titleSíntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60spa
dc.title.translatedSynthesis of 5-(carboxymethylamino)isopthalic acid for the synthesis of a new fullerene C60 monoadducteng
dc.title.translatedSíntese do ácido 5-(carboximetilamino)isoftálico para a síntese de um novo monoaduto de fulereno C60por
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSÍNTESIS DE DERIVADOS DE FULLERENO C60 PARA SU EVALUACIÓN EN PROCESOS DE AUTOENSAMBLAJE Y CELDAS SOLARESspa
oaire.fundernameFacultad de Ciencias, Universidad Nacional de Colombiaspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación-MINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.032.506.172.2023.pdf
Tamaño:
7.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: