Caracterización morfológica, bioquímica y molecular de cepas de bacterias ácido-lácticas del género Lactobacillus aisladas a partir de la fermentación del mucílago de cacao (Theobroma cacao L.) al norte del departamento del Huila

dc.contributor.advisorDiaz Moreno, Amanda Consuelospa
dc.contributor.advisorBernal Castro, Camila Andreaspa
dc.contributor.authorRamírez Martínez, María Gorettispa
dc.contributor.cvlacRamírez Martínez María [0001429179]spa
dc.contributor.cvlacDiaz Moreno Consuelo [0000218537]spa
dc.contributor.orcidRamírez Martínez María [0009000132327038]spa
dc.contributor.orcidMoreno Diaz Consuelo [0000000223676519]spa
dc.contributor.orcidBernal Castro Camila [0000000229388868]spa
dc.contributor.researchgroupBioalimentosspa
dc.coverage.countryColombiaspa
dc.coverage.regionHuilaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000640
dc.date.accessioned2025-09-08T20:52:05Z
dc.date.available2025-09-08T20:52:05Z
dc.date.issued2025-07-10
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste estudio analizó la dinámica microbiana y los parámetros fisicoquímicos durante la fermentación espontánea de tres variedades de cacao (clones CCN-51, ICS-95 y un híbrido) cultivadas en el norte del Huila, Colombia. Durante 120 horas se monitorearon variables como temperatura, pH, grados Brix y densidad poblacional de bacterias ácido-lácticas (BAL). El clon ICS-95 mostró un comportamiento fermentativo eficiente, alcanzando temperaturas superiores a 39 °C, incremento de pH de 4,3 a 5,8 y reducción de Brix de 15 a 1, con un crecimiento máximo de BAL de log₁₀ (46.5 × 10⁶) ≈ 7.67 UFC/g a las 48 horas. El clon CCN-51 presentó una fermentación más gradual (de 17 a 2 °Brix, pH de 3,4 a 4,9), alcanzando log₁₀ (133.5 × 10⁶) ≈ 8.13 UFC/g. El híbrido mostró un crecimiento acelerado (log₁₀ 1800 × 10⁶ ≈ 9.26 UFC/g en el cajón B), pero con una rápida disminución hacia las 120 horas. Esto sugiere que requiere condiciones más estables para sostener la actividad microbiana. La identificación bioquímica (API 50 CH) y molecular (16S rRNA) confirmó la presencia predominante de Lactiplantibacillus plantarum en CCN-51 e ICS-95, y la coexistencia de L. plantarum y L. brevis en el híbrido. Estas BAL podrían emplearse como cultivos iniciadores, dada su capacidad para mejorar la eficiencia fermentativa y aportar compuestos que influyen en la calidad sensorial y funcional del cacao fermentado. (Texto tomado de la fuente).spa
dc.description.abstractThis study analyzed microbial dynamics and physicochemical parameters during the spontaneous fermentation of three cocoa varieties (clones CCN-51, ICS-95, and a hybrid) cultivated in northern Huila, Colombia. For 120 hours, variables such as temperature, pH, Brix degrees, and population density of lactic acid bacteria (LAB) were monitored. Clone ICS-95 showed an efficient fermentative performance, reaching temperatures above 39 °C, a pH increase from 4.3 to 5.8, and a Brix reduction from 15 to 1, with maximum LAB growth of log₁₀ (46.5 × 10⁶) ≈ 7.67 CFU/g at 48 hours. Clone CCN-51 exhibited a more gradual fermentation (17 to 2 °Brix, pH 3.4 to 4.9), reaching log₁₀ (133.5 × 10⁶) ≈ 8.13 CFU/g. The hybrid showed accelerated growth (log₁₀ 1800 × 10⁶ ≈ 9.26 CFU/g in box B), followed by a sharp population decline by 120 hours. This suggests that more stable environmental conditions are required to sustain microbial activity. Biochemical identification (API 50 CH) and molecular analysis (16S rRNA) confirmed the predominant presence of Lactiplantibacillus plantarum in clones CCN-51 and ICS-95, and the coexistence of L. plantarum and L. brevis in the hybrid. These LAB strains show potential as starter cultures due to their fermentative efficiency and ability to contribute functional and sensory quality attributes to fermented cocoa.eng
dc.description.degreelevelMaestríav
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCalidad de los alimentosspa
dc.format.extentxiv, 123 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88655
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdel-Nasser, A., Hathout, A. S., Badr, A. N., Barakat, O. S., & Fathy, H. M. (2023). Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. biotechnology reports, 38, e00799. *https://doi.org/10.1016/j.btre.2023.e00799*
dc.relation.referencesAfoakwa, E. O. (2014). Changes in biochemical and physico-chemical qualities during drying of pulp preconditioned and fermented cocoa (theobroma cacao) beans. journal of nutritional health & food science, 2(3). *https://doi.org/10.15226/jnhfs.2014.00121*
dc.relation.referencesAkalaare Adombila. (2025). Ghana delayed delivery of 370,000 t of cocoa in the 2023/24 season, official says. reuters. *https://www.reuters.com/markets/commodities/ghana-delayed-delivery-370000-t-cocoa-202324-season-official-says-2025-01-20/*
dc.relation.referencesAlava Zambrano. (2020). Caracterización física – química del mucílago de cacao (theobroma cacao l.) con énfasis en los azúcares que lo componen. *Universidad Agraria del Ecuador.*
dc.relation.referencesAlmeida, O. G. G., & De Martinis, E. C. P. (2021). Los genomas ensamblados mediante metagenomas contribuyen al desentrañamiento del microbioma de la fermentación del cacao. Applied and Environmental Microbiology, 87(16), e00584-21. https://doi.org/10.1128/AEM.00584-21
dc.relation.referencesAlmeida, O. G. G., Pereira, M. G., Bighetti-Trevisan, R. L., Santos, E. S., De Campos, E. G., Felis, G. E., Guimarães, L. H. S., Polizeli, M. L. T. M., De Martinis, B. S., & De Martinis, E. C. P. (2024). Investigating luxs gene expression in lactobacilli along lab-scale cocoa fermentations. food microbiology, 119. *https://doi.org/10.1016/j.fm.2023.104429*
dc.relation.referencesArteaga Estrella. (2013). Estudio del desperdicio del mucilago de cacao en el cantón naranjal (provincia del guayas). revista eca sinergia. facultad de ciencias administrativas y económicas. *U.T.M.*
dc.relation.referencesBastos, V. S., Santos, M. F., Gomes, L. P., Leite, A. M., Flosi Paschoalin, V. M., & Del Aguila, E. M. (2018). Analysis of the cocobiota and metabolites of moniliophthora perniciosa ‐resistant theobroma cacao beans during spontaneous fermentation in southern brazil. journal of the science of food and agriculture, 98(13), 4963–4970. *https://doi.org/10.1002/jsfa.9029*
dc.relation.referencesCalderon, D., Tejedor, W., Melgar, O., & Franco, A. (2022). Effect of the type of fermenter on the cocoa fermentation process and quality of the cacao beans. 2022 8th international engineering, sciences and technology conference (iestec), 413–419. *https://doi.org/10.1109/IESTEC54539.2022.00071*
dc.relation.referencesCalvo, A. M., Botina, B. L., García, M. C., Cardona, W. A., Montenegro, A. C., & Híbrido, J. (2021). Dynamics of cocoa fermentation and its effect on quality. scientific reports, 11(1), 16746. *https://doi.org/10.1038/s41598-021-95703-2*
dc.relation.referencesCámara de Comercio del Huila. (2021). Industria cacaotera en el departamento del huila. cadena de valor del cacao. *https://www.cchuila.org/wp-content/uploads/Industria-cacaotera-en-el-departamento-del-Huila.pdf*
dc.relation.referencesCarmona Rojas, L. M., Gutiérrez Rodríguez, E. A., Henao Ramirez, A. M., & Urrea Trujillo, A. I. (2022). Nutrition in cacao (theobroma cacao l.) crops: what determining factors should be considered? revista de la facultad de agronomía, 121(especial 2), 101. *https://doi.org/10.24215/16699513e101*
dc.relation.referencesCastillo, J., Belupú, I., & Ipanaqué, W. (2021). Implementation of a stainless steel prototype to improve the fermentation of cocoa beans. 2021 ieee international conference on automation/xxiv congress of the chilean association of automatic control (ica-acca), 1–7. *https://doi.org/10.1109/ICAACCA51523.2021.9465312*
dc.relation.referencesChagas Junior, G. C. A., Ferreira, N. R., Gloria, M. B. A., Martins, L. H. da S., & Lopes, A. S. (2021). Chemical implications and time reduction of on-farm cocoa fermentation by saccharomyces cerevisiae and pichia kudriavzevii. food chemistry, 338, 127834. *https://doi.org/10.1016/j.foodchem.2020.127834*
dc.relation.referencesDa Costa Fonseca, Y., Bahule, C. E., Herrera, H., da Silva Martins, L. H., Lopes, A. S., Cassoli, J. S., Trindade, F. C., Chagas da Costa, I. R., Henrique de Oliveira Costa, P., Oliveira, G., & Borges da Silva Valadares, R. (2024). Multiomics analysis reveals microbial diversity and activity through spontaneous fermentation of theobroma cacao. heliyon, 10(23), e40542. *https://doi.org/10.1016/j.heliyon.2024.e40542*
dc.relation.referencesDe Vuyst, L., & Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. fems microbiology reviews, 44(4), 432–453. *https://doi.org/10.1093/femsre/fuaa014*
dc.relation.referencesEdo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Onoharigho, F. O., Oghenegueke, O., Nwachukwu, S. C., Rapheal, O. A., Ajokpaoghene, M. O., Okolie, M. C., Ajakaye, R. S., Ndudi, W., & Igbodo, P. chukwuemeziozor. (2023). Review on the biological and bioactive components of cocoa (theobroma cacao). insight on food, health and nutrition. natural resources for human health, 3(4), 426–448. *https://doi.org/10.53365/nrfhh/174302*
dc.relation.referencesFalconí, C. E., Yánez-Mendizábal, V., Haro, R. J., & Claudio, D. R. (2023). Inoculum of a native microbial starter cocktail to optimize fine-aroma cocoa (theobroma cacao) bean fermentation. agronomy, 13(10), 2572. *https://doi.org/10.3390/agronomy13102572*
dc.relation.referencesFanche, S. A. Y., Tchokonthe, A. L. W., Diguță, C. F., Kamdem, S. L. S., Israel-Roming, F., Matei, F., & Ngang, J.-J. E. (2020). Antifungal properties of lactic acid bacteria isolated from cocoa beans fermentation in the centre region of cameroon. romanian biotechnological letters, 25(2), 1407–1417. *https://doi.org/10.25083/rbl/25.2/1407.1417*
dc.relation.referencesFedecacao. (2023). Producción cacaotera presentó una reducción del 10% en 2022 por lluvias.*https://www.fedecacao.com.co/post/producci%C3%B3n-cacaotera-present%C3%B3-una-reducci%C3%B3n-del-10-en-2022-por-lluvias*
dc.relation.referencesFederación Nacional de Cacaoteros. (2007). Implementación de nuevas áreas e implementación del cultivo del cacao en el departamento del huila. *Gobernación del Departamento del Huila Secretaría de Agricultura y Minería.*
dc.relation.referencesFerraz, P., Brandão, R. L., Cássio, F., & Lucas, C. (2021). Moniliophthora perniciosa, the causal agent of cacao witches’ broom disease is killed in vitro by saccharomyces cerevisiae and wickerhamomyces anomalus yeasts. frontiers in microbiology, 12. *https://doi.org/10.3389/fmicb.2021.706675*
dc.relation.referencesFerreira, O. de S., Chagas‐Junior, G. C. A., Chisté, R. C., Martins, L. H. da S., Andrade, E. H. de A., Nascimento, L. D. do, & Lopes, A. S. (2022). Saccharomyces cerevisiae and pichia manshurica from amazonian biome affect the parameters of quality and aromatic profile of fermented and dried cocoa beans. journal of food science, 87(9), 4148–4161. *https://doi.org/10.1111/1750-3841.16282*
dc.relation.referencesFonseca Blanco, J., Del Pilar López Hernandez, M., Sabrina Ortiz Galeano, L., Híbrido Nuñez, J., & Denis Lozano Tovar, M. (2020). Effect of addition of a specific mixture of yeast, lactic and acetic bacteria in the fermentation process to improve the quality and flavor of cocoa beans in colombia. pelita perkebunan (a coffee and cocoa research journal), 36(2), 154–172. *https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i2.438*
dc.relation.referencesGarcía González, E., Milena Serna Murillo, A., Armando Córdoba Pantoja, D., Gabriel Marín Aricapa, J., Montalvo Rodríguez, C., & Alejandra Ordoñez Narváez Garcia, G. (2018). Study of the spontaneous cocoa fermentation (theobroma cacao l.) and evaluation of bean quality in a productive unit in small-scale (vol. *5, Número 2).*
dc.relation.referencesGarcía González, E., Ochoa Muñoz, A. F., Montalvo Rodríguez, C., Ordoñez Narvaéz, G. A., & Londoño Hernández, L. (2021). Sucesión microbiana durante la fermentación espontánea de cacao en unidades productivas. ciencia en desarrollo, 12(2). *https://doi.org/10.19053/01217488.v12.n2.2021.12242*
dc.relation.referencesGhisolfi, R., Bandini, F., Vaccari, F., Bellotti, G., Bortolini, C., Patrone, V., Puglisi, E., & Morelli, L. (2023). Bacterial and fungal communities are specifically modulated by the cocoa bean fermentation method. foods, 12(10), 2024. *https://doi.org/10.3390/foods12102024*
dc.relation.referencesGonzález Orjuela, S. (2021). Revisión de métodos para la fermentación de cacao y análisis de la fermentación combinada de cacao híbrido y forastero. *Universidad de Bogotá Jorge Tadeo Lozano.*
dc.relation.referencesGumiel, M., Rollano-Peñaloza, O., Peralta-Rivero, C., Tejeda, L., Palma, V., Cartagena, P., Mollinedo, P., & Peñarrieta, J. (2021). Whole chloroplast genomes reveals the uniqueness of bolivian native cacao ( theobroma cacao ) from the northern part of bolivia. *https://doi.org/10.1101/2021.04.16.440153*
dc.relation.referencesHamdaoui, N., Rokni, Y., Asehraou, A., Mouncif, M., Mennane, Z., Omari, A., Sellam, A., Hammouti, B., & Meziane, M. (2022). Technological aptitude and sensitivity of lactic acid bacteria leuconostoc isolated from raw milk of cows: from step-by-step experimental procedure to the results. indonesian journal of science and technology, 8(2), 157–170. *https://doi.org/10.17509/ijost.v8i2.53730*
dc.relation.referencesICCO. (2024). Production of Cocoa Beans. https://www.icco.org/
dc.relation.referencesKamel, A., El-Sayed, A., Youssef, B., & Amin, S. (2020). Antibacterial bioactivity of some lactic acid bacteria isolated from various egyptian products. arab universities journal of agricultural sciences, 0(0), 0–0. *https://doi.org/10.21608/ajs.2020.38231.1236*
dc.relation.referencesKim-Ngoc, V.-T., Cong-Hau, N., Bui-Phuc, T., & Thang, N. (2022a). Quality Assessment During the Fermentation of Cocoa Beans: Effects of Partial Mucilage Removal. Journal of Applied Sciences and Environmental Management, 26(8), 1369–1374. https://doi.org/10.4314/jasem.v26i8.8
dc.relation.referencesKim-Ngoc, V.-T., Cong-Hau, N., Bui-Phuc, T., & Thang, N. (2022b). Quality Assessment During the Fermentation of Cocoa Beans: Effects of Partial Mucilage Removal. Journal of Applied Sciences and Environmental Management, 26(8), 1369–1374. https://doi.org/10.4314/jasem.v26i8.8
dc.relation.referencesKorcari, D., Fanton, A., Ricci, G., Rabitti, N. S., Laureati, M., Hogenboom, J., Pellegrino, L., Emide, D., Barbiroli, A., & Fortina, M. G. (2023). Fine cocoa fermentation with selected lactic acid bacteria: fermentation performance and impact on chocolate composition and sensory properties. foods, 12(2), 340. *https://doi.org/10.3390/foods12020340*
dc.relation.referencesKouitcheu Mabeku, L. B., Ngue, S., Bonsou Nguemo, I., & Leundji, H. (2020). Potential of selected lactic acid bacteria from theobroma cacao fermented fruit juice and cell-free supernatants from cultures as inhibitors of helicobacter pylori and as good probiotic. bmc research notes, 13(1), 64. *https://doi.org/10.1186/s13104-020-4923-7*
dc.relation.referencesKresnowati, M. T. A. P., Gunawan, A. Y., & Muliyadini, W. (2015). Kinetics model development of cocoa bean fermentation. 030004. *https://doi.org/10.1063/1.4938289*
dc.relation.referencesLevai, L. D., Afoh, R. O., Tah, Y., Monono, E. Y., Enow, L., Tatsinkou, F. B., Akoachere, J.-F. K., & Titanji, V. P. K. (2021). Isolation and identification of lactic acid bacteria and acetic acid bacteria playing a lead role in the fermentation of cocoa in fako division of cameroon. journal of advances in microbiology, 28–41. *https://doi.org/10.9734/jamb/2021/v21i1130399*
dc.relation.referencesLópez Hernández, M. del P., & Híbrido Nuñez, J. (2022). Cambios fisicoquímicos en la fermentación y secado de materiales de cacao en colombia. ciencia en desarrollo, 13(2), 25–34. *https://doi.org/10.19053/01217488.v13.n2.2022.14140*
dc.relation.referencesLópez, M., Gori, M., Bini, L., Ordoñez, E., Durán, E., Gutierrez, O., Masoni, A., Giordani, E., Biricolti, S., & Palchetti, E. (2021). Genetic purity of cacao híbrido from honduras is revealed by ssr molecular markers. agronomy, 11(2), 225. *https://doi.org/10.3390/agronomy11020225*
dc.relation.referencesLópez-Pérez, P. A., Cuervo-Parra, J. A., Robles-Olvera, V. J., Del C Rodriguez Jimenes, G., Pérez España, V. H., & Romero-Cortes, T. (2018). Development of a novel kinetic model for cocoa fermentation applying the evolutionary optimization approach. international journal of food engineering, 14(5–6). *https://doi.org/10.1515/ijfe-2017-0206*
dc.relation.referencesLucas F., Q. F., Mariela, H., Maria E., R., & Edith, M. M. (2018). Evaluation of the fermentation time on the physical characteristics of cocoa (theobroma cacao l), clones fedecacao tame 2, fedecacao lebrija 3 and fedecacao saravena 12 in the town of san vicente de chucuri. advance journal of food science and technology, 15(spl), 184–190. *https://doi.org/10.19026/ajfst.14.5892*
dc.relation.referencesMa, X., Wang, Y., Liu, Y., Li, X., Wang, F., Huang, Y., Shi, P., Brennan, C. S., & Wang, M. (2024). Mechanisms and factors influencing the ability of lactic acid bacteria on reducing biogenic amines in fermented food: a mini review. lwt, 197, 115890. *https://doi.org/10.1016/j.lwt.2024.115890*
dc.relation.referencesMárquez Coronel, & Salazar Román. (2015). Análisis de los niveles de desperdicio del mucílago de cacao y su aprovechamiento como alternativa de biocombustible. *Universidad Estatal de Milagro .*
dc.relation.referencesMarwati, T., Djaafar, T. F., Hatmi, R. U., Prestyaning, Y., Wanita, Fahmi, D. A., Naziha, T., & Rahayu, E. S. (2024). Fungal contamination, peroxide value, and quality of cocoa bean: effect of lactic acid bacteria starter and packaging techniques during storage. aip conference proceedings, 2957(1). *https://doi.org/10.1063/5.0185181*
dc.relation.referencesMarwati, T., Purwaningsih, Djaafar, T. F., Sari, A. B. T., & Hernani. (2021a). Inhibition the growth of fungi and improving the quality of cocoa beans through fermentation using lactic acid bacteria. IOP Conference Series: Earth and Environmental Science, 807(2), 022048. https://doi.org/10.1088/1755-1315/807/2/022048
dc.relation.referencesMarwati, T., Purwaningsih, Djaafar, T. F., Sari, A. B. T., & Hernani. (2021b). Inhibition the growth of fungi and improving the quality of cocoa beans through fermentation using lactic acid bacteria. IOP Conference Series: Earth and Environmental Science, 807(2), 022048. https://doi.org/10.1088/1755-1315/807/2/022048
dc.relation.referencesMasuku, M. A., Bahri, S., Albaar, N., & Makarunggala, I. (2022). The effect of container type and fermentation period towards cocoa beans quality in tidore island. techno jurnal penelitian, 11(2), 137–146. *https://doi.org/10.33387/tjp.v11i2.5205*
dc.relation.referencesMateus-Rodríguez, J. F., Lahive, F., Hadley, P., & Daymond, A. J. (2023). Effects of simulated climate change conditions of increased temperature and [co2] on the early growth and physiology of the tropical tree crop, theobroma cacao l. tree physiology, 43(12), 2050–2063. *https://doi.org/10.1093/treephys/tpad116*
dc.relation.referencesMazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. biotechnology advances, 32(7), 1216–1236. *https://doi.org/10.1016/j.biotechadv.2014.07.005*
dc.relation.referencesMenezes, A. G. T., Batista, N. N., Ramos, C. L., Silva, A. R. de A. e, Efraim, P., Pinheiro, A. C. M., & Schwan, R. F. (2016). Investigation of chocolate produced from four different brazilian varieties of cocoa ( theobroma cacao l.) inoculated with saccharomyces cerevisiae. food research international, 81, 83–90. *https://doi.org/10.1016/j.foodres.2015.12.036*
dc.relation.referencesMoez, E., Sahar, T., Donia, W., & Montet, D. (2023). Overview of traditional, emerging, and future applications of lab and most important contributions of genome editing tools for food, feed, and pharmaceuticals. en lactic acid bacteria as cell factories (pp. 29–48). elsevier. *https://doi.org/10.1016/B978-0-323-91930-2.00007-9*
dc.relation.referencesMohamad Zin, N., Abd Rashid, A. N., Zulkhairi, N. A., Ridzman, N. A., Sulaiman, K. B., Abu Bakar, N. F., & Sukri, A. (2022). Isolation of lactic acid bacteria from cocoa bean fermentation as potential antibacterial agent against eskape pathogens. sains malaysiana, 51(10), 3401–3414. *https://doi.org/10.17576/jsm-2022-5110-23*
dc.relation.referencesNandha, M. C., & Shukla, R. M. (2023). Exploration of probiotic attributes in lactic acid bacteria isolated from fermented theobroma cacao l. fruit using in vitro techniques. frontiers in microbiology, 14. *https://doi.org/10.3389/fmicb.2023.1274636*
dc.relation.referencesNursyirwani, N., Asmara, W., Wahyuni, A. E. T. H., Triyanto, T., Fauzi, M., & Muchlisin, Z. A. (2017). Phenotype and genotype of lactic acid bacteria (lab) isolated from the tiger grouper epinephelus fuscoguttatus alimentary tract. f1000research, 6, 1984. *https://doi.org/10.12688/f1000research.12734.1*
dc.relation.referencesOrozco Ortiz. (2021). Caracterización de la mezcla de cacao variedades ccn 51 (colección castro naranjal) e ics 39 (imperial college selections) producido en la finca garcía ubicada en la vereda casiano del municipio de floridablanca. *Universidad Nacional Abierta y a Distancia - UNAD.*
dc.relation.referencesOuattara, H. G., Elias, R. J., & Dudley, E. G. (2020). Microbial synergy between pichia kudriazevii ys201 and bacillus subtilis bs38 improves pulp degradation and aroma production in cocoa pulp simulation medium. heliyon, 6(1), e03269. *https://doi.org/10.1016/j.heliyon.2020.e03269*
dc.relation.referencesPapalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O. S., Daniel, H.-M., & De Vuyst, L. (2013). Hanseniaspora opuntiae, saccharomyces cerevisiae, Limosilactobacillus fermentum, and acetobacter pasteurianus predominate during well-performed malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. food microbiology, 35(2), 73–85. *https://doi.org/10.1016/j.fm.2013.02.015*
dc.relation.referencesParrado, & Becerra. (2018). Optimización de los micronutrientes hierro, cobre y manganeso en dos medios de cultivo alternativos , evaluando su efecto en la producción de ácido láctico. *Universidad Nacional de Colombia.*
dc.relation.referencesPelicaen, R., Gonze, D., De Vuyst, L., & Weckx, S. (2020). Genome-scale mtabolic modeling of acetobacter pasteurianus 386b reveals its metabolic adaptation to cocoa fermentation conditions. food microbiology, 92, 103597. *https://doi.org/10.1016/j.fm.2020.103597*
dc.relation.referencesPeralta, J. G. B., Elegado, F. B., Simbahan, J. F., Pajares, I. G., & Dizon, E. I. (2021). Microbial and metabolite profiles of spontaneous and adjunct-inoculated cacao (theobroma cacao l.) fermentation. food research, 5(2), 331–339. *https://doi.org/10.26656/fr.2017.5(2).526*
dc.relation.referencesPiracoca Robles, M. (2022). Caracterización del mucílago de cacao ( theobroma cacao l., clon tsh 565) como fuente de pectina y azúcares para el aprovechamiento en la industria de alimentos.. *Universidad Nacional de Colombia.*
dc.relation.referencesRahayu, E. S., Triyadi, R., Khusna, R. N. B., Djaafar, T. F., Utami, T., Marwati, T., & Hatmi, R. U. (2021). Indigenous yeast, lactic acid bacteria, and acetic acid bacteria from cocoa bean fermentation in indonesia can inhibit fungal-growth-producing mycotoxins. fermentation, 7(3), 192. *https://doi.org/10.3390/fermentation7030192*
dc.relation.referencesSantos, J. P. N., Rodrigues, G. V. P., Ferreira, L. Y. M., Monteiro, G. P., Fonseca, P. L. C., Lopes, Í., Florêncio, B. S., da Silva Junior, A. B., Ambrósio, P. E., Pirovani, C. P., Pirovani, C. P., & Aguiar, E. R. G. R. (2024). The virome of cocoa fermentation-associated microorganisms. viruses, 16(8). *https://doi.org/10.3390/v16081226*
dc.relation.referencesSerra, J. L., Moura, F. G., Pereira, G. V. de M., Soccol, C. R., Rogez, H., & Darnet, S. (2019). Determination of the microbial community in amazonian cocoa bean fermentation by illumina-based metagenomic sequencing. lwt, 106, 229–239. *https://doi.org/10.1016/j.lwt.2019.02.038*
dc.relation.referencesShi, Z., Li, X., Fan, X., Xu, J., Liu, Q., Wu, Z., & Pan, D. (2022). Pma-qpcr method for the selective quantitation of viable lactic acid bacteria in fermented milk. frontiers in microbiology, 13. *https://doi.org/10.3389/fmicb.2022.984506*
dc.relation.referencesSoumahoro, S., Ouattara, H. G., Droux, M., Nasser, W., Niamke, S. L., & Reverchon, S. (2020). Acetic acid bacteria (aab) involved in cocoa fermentation from ivory coast: species diversity and performance in acetic acid production. journal of food science and technology, 57(5), 1904–1916. *https://doi.org/10.1007/s13197-019-04226-2*
dc.relation.referencesSviridenko, G., Shukhalova, O., & Mamykin, D. (2023). Development and acid formation of lactococci at technically significant temperatures: comparative analysis. dairy industry, 71–76. *https://doi.org/10.21603/1019-8946-2023-6-18*
dc.relation.referencesTeusink, B., Kuipers, O. P., & Moineau, S. (2021). Symposium on lactic acid bacteria—reading while waiting for a meeting [article]. fems microbiology reviews, 45(2), 1. *https://doi.org/10.1093/femsre/fuaa049*
dc.relation.referencesTigrero-Vaca, J., Maridueña-Zavala, M. G., Liao, H.-L., Prado-Lince, M., Zambrano-Vera, C. S., Monserrate-Maggi, B., & Cevallos-Cevallos, J. M. (2022). Microbial diversity and contribution to the formation of volatile compounds during fine-flavor cacao bean fermentation. foods, 11(7), 915. *https://doi.org/10.3390/foods11070915*
dc.relation.referencesTikapunya, T. (2021). Changes in physico-chemical and microbiological properties in thai cocoa bean fermentation. walailak journal of science and technology (wjst), 18(14). *https://doi.org/10.48048/wjst.2021.21443*
dc.relation.referencesTorres, C., Ogata, K., & Msc, G. (2021). Innovación tecnológica en cacao andino producto 5. *Informe con banco de aislamientos de microrganismos asociados a procesos fermentativos de cacao.*
dc.relation.referencesVerce, M., Schoonejans, J., Hernandez Aguirre, C., Molina-Bravo, R., De Vuyst, L., & Weckx, S. (2021). A combined metagenomics and metatranscriptomics approach to unravel costa rican cocoa box fermentation processes reveals yet unreported microbial species and functionalities. frontiers in microbiology, 12. *https://doi.org/10.3389/fmicb.2021.641185*
dc.relation.referencesViesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Vandenberghe, L. P. de S., Azevedo, V., Brenig, B., Rogez, H., Góes-Neto, A., & Soccol, C. R. (2020). Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: isolation, selection and evaluation. food research international, 136, 109478. *https://doi.org/10.1016/J.FOODRES.2020.109478*
dc.relation.referencesWahyuni, N. L., Sunarharum, W. B., Muhammad, D. R. A., & Saputro, A. D. (2021). Formation and development of flavour of cocoa (theobroma cacao l.) cultivar híbrido and forastero: a review. iop conference series: earth and environmental science, 733(1), 012078. *https://doi.org/10.1088/1755-1315/733/1/012078*
dc.relation.referencesXu, Y., Zhang, F., Mu, G., & Zhu, X. (2024). Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: a review. comprehensive reviews in food science and food safety, 23(1). *https://doi.org/10.1111/1541-4337.13257*
dc.relation.referencesYunita, D., Yusriana, Y., Aisyah, Y., Indarti, E., Wahyuni, M. F., & Yani, P. (2021). Characteristics of lactic acid bacteria and acetic acid bacteria isolated before and after fermentation of cacao beans from pidie, indonesia and detection of the flavour compounds. iop conference series: earth and environmental science, 711(1), 012001. *https://doi.org/10.1088/1755-1315/711/1/012001*
dc.relation.referencesZadi, A. L., Koua, G., Doue, G. G., & Niamke, S. L. (2018). Investigation on potential starter of bacillus spp. for ivorian cocoa beans fermentation improvement. turkish journal of agriculture - food science and technology, 6(12), 1758–1767. *https://doi.org/10.24925/turjaf.v6i12.1758-1767.2078*
dc.relation.referencesAhmad Bustamam, ’Aina Nabilah Faizah, Daud, N. S., Mohamad Azam, Z., Rosli, M. A., Ramli, S., Zainol, N., Nadri, M. H., Leong, H. Y., & Othman, N. Z. (2023). Production and functional characteristics of exopolysaccharide by Lactiplantibacillus plantarum co-cultivation with saccharomyces cerevisiae. asia pacific journal of molecular biology and biotechnology, 14–25. *https://doi.org/10.35118/apjmbb.2023.031.1.02*
dc.relation.referencesBatista, N. N., Ramos, C. L., Ribeiro, D. D., Pinheiro, A. C. M., & Schwan, R. F. (2015). Dynamic behavior of saccharomyces cerevisiae, pichia kluyveri and hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. lwt - food science and technology, 63(1), 221–227. https://doi.org/10.1016/j.lwt.2015.03.051 biomérieux® sa. (2002). *REF 50 300 api 50 CH Carbohydrates.*
dc.relation.referencesCost, B. (2024). Global chocolate supply under ‘real threat’ from rapidly spreading virus: expert. new york post. *https://nypost.com/2024/04/24/lifestyle/global-chocolate-supply-under-real-threat-from-virus-expert/*
dc.relation.referencesDas, P., Dhar, K., Pal, S., & Bhattacharya, S. (2023). Development and evaluation of a 16S ribosomal RNA-based polymerase chain reaction followed by Sanger sequencing assay for the identification of bacterial pathogens: Three years' experience from a clinical microbiology laboratory in Eastern India. Journal of The Academy of Clinical Microbiologists, 25(2), 35–43
dc.relation.referencesDo, T. B. T., Tran, B. K., Tran, T. V. T., Le, T. H., Cnockaert, M., Vandamme, P., Nguyen, T. H. C., Nguyen, C. C., Hong, S. H., Kim, S. Y., & Van Le, Q. (2020). Decoding the capability of Lactiplantibacillus plantarum w1 isolated from soybean whey in producing an exopolysaccharide. acs omega, 5(51), 33387–33394. *https://doi.org/10.1021/acsomega.0c05256*
dc.relation.referencesDorit, R., Ohara, O., Hwang, C., Blackshaw, S., & Kim, J. (1991). Direct DNA sequencing of PCR products. Environmental and Molecular Mutagenesis, 18(4), 274–276. https://doi.org/10.1002/em.2850180413
dc.relation.referencesGarcía-González, D. L., Rodríguez, A., Durán, C., & Delgado-Ospina, J. (2021). Microbial succession during fermentation of Colombian Criollo and Forastero cacao beans. Food Microbiology, 94, 103657. https://doi.org/10.1016/j.fm.2020.103657
dc.relation.referencesGavrilova, N. G. (2021). Contemporary global production and consumption of cocoa: an assessment. iop conference series: earth and environmental science, 839(2), 022095. *https://doi.org/10.1088/1755-1315/839/2/022095*
dc.relation.referencesGe, Y., Yu, X., Zhao, X., Liu, C., Li, T., Mu, S., Zhang, L., Chen, Z., Zhang, Z., Song, Z., Zhao, H., Yao, S., & Zhang, B. (2024). Fermentation characteristics and postacidification of yogurt by streptococcus thermophilus cicc 6038 and lactobacillus delbrueckii ssp. bulgaricus cicc 6047 at optimal inoculum ratio. journal of dairy science, 107(1), 123–140. *https://doi.org/10.3168/jds.2023-23817*
dc.relation.referencesJeon, S., Kim, H., Choi, Y., Cho, S., Seo, M., & Kim, H. (2021). Complete genome sequence of the newly developed lactobacillus acidophilus strain with improved thermal adaptability. frontiers in microbiology, 12. *https://doi.org/10.3389/fmicb.2021.697351*
dc.relation.referencesLevai, L. D., Van Kerrebroeck, S., Camu, N., De Vuyst, L., & Weckx, S. (2021). Fine cocoa fermentation with selected lactic acid bacteria: Influence on pH, temperature, and flavor precursor development. Foods, 10(4), 804. https://doi.org/10.3390/foods10040804
dc.relation.referencesKorcari, D., Pereira, G. V. D. M., Miguel, M. G. D. C. P., & Schwan, R. F. (2023). Application of starter cultures for the control of cocoa fermentation: A review of advances and prospects. Current Opinion in Food Science, 49, 100951. https://doi.org/10.1016/j.cofs.2023.100951
dc.relation.referencesLozano Tovar, M. D., Tibasosa, G., González, C. M., Ballestas Alvarez, K., Lopez Hernandez, M. D. P., & Rodríguez Villamizar, F. (2020). Isolation and identification of microbial species found in cocoa fermentation as microbial starter culture candidates for cocoa bean fermentation in colombia. pelita perkebunan (a coffee and cocoa research journal), 36(3), 236–248. *https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.443*
dc.relation.referencesNoda, M., Danshiitsoodol, N., Sakaguchi, T., Kanno, K., & Sugiyama, M. (2021). Exopolysaccharide produced by plant-derived <i>Lactiplantibacillus plantarum</i> sn35n exhibits antiviral activity. biological and pharmaceutical bulletin, 44(12), b21-00517. *https://doi.org/10.1248/bpb.b21-00517*
dc.relation.referencesQiagen. (2023). DNeasy Blood & Tissue Kit handbook [Manual técnico]
dc.relation.referencesRegueira‐Iglesias, A., Balsa‐Castro, C., Blanco‐Pintos, T., & Tomás, I. (2023). Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Molecular Oral Microbiology, 38(5), 347–399
dc.relation.referencesRomanens, E., Pedan, V., Meile, L., & Miescher Schwenninger, S. (2020). Influence of two anti-fungal Limosilactobacillus fermentum-saccharomyces cerevisiae co-cultures on cocoa bean fermentation and final bean quality. plos one, 15(10), e0239365. *https://doi.org/10.1371/journal.pone.0239365*
dc.relation.referencesSalazar, D. E., Añamuro, V. M., & Vargas, A. R. (2021). Aislamiento e identificación de bacterias ácido lácticas a partir del mucílago de cacao nativo "Chuncho" (Theobroma cacao L.). Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(2), 61–68. https://doi.org/10.53591/ria.2021.8.2.61
dc.relation.referencesTao, T., Zhang, L., Yu, T., Ma, J., Lu, S., Ren, J., Li, X., & Guo, X. (2024). Exopolysaccharide production by Lactiplantibacillus plantarum t10 is responsible for the probiotic activity in enhancing intestinal barrier function in vitro and in vivo. food & function, 15(7), 3583–3599. *https://doi.org/10.1039/D4FO00526K*
dc.relation.referencesUgo, U. A., Hamzat, M. O., Aisida, S. O., Udoh, I., Saha, G. C., Airenobuwa, N. A., ... & Nwaneri, M. G. U. (2024). Phylogenetic analysis on 16S rRNA of Pseudomonas species isolated from clinical specimens in Nigeria and other regions. Open Access Research Journal of Biology and Pharmacy, 11(1), 13–30
dc.relation.referencesVisintin, S., Alessandria, V., Valente, A., Dolci, P., & Cocolin, L. (2016). Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in west africa. international journal of food microbiology, 216, 69–78. *https://doi.org/10.1016/j.ijfoodmicro.2015.09.004*
dc.relation.referencesYunita, D., Arief, I. I., Wresdiyati, T., & Astawan, M. (2021). Characteristics of lactic acid bacteria and acetic acid bacteria isolated before and after fermentation of cacao beans from Pidie, Indonesia and detection of the flavour compounds. IOP Conference Series: Earth and Environmental Science, 711(1), 012001. https://doi.org/10.1088/1755-1315/711/1/012001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.agrovocTheobroma cacaospa
dc.subject.agrovocTheobroma cacaoeng
dc.subject.agrovocPropiedad fisicoquímicaspa
dc.subject.agrovocchemicophysical propertieseng
dc.subject.agrovocLactobacillusspa
dc.subject.agrovocLactobacilluseng
dc.subject.agrovocPulpa de cacaospa
dc.subject.agrovoccocoa pulpeng
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalFermentaciónspa
dc.subject.proposalFermentationeng
dc.subject.proposalAislamientospa
dc.subject.proposalIsolationeng
dc.subject.proposalBacterias ácido-lácticasspa
dc.subject.proposalLactic acid bacteriaeng
dc.subject.proposalCalidad del cacaospa
dc.subject.proposalCacao qualityeng
dc.subject.proposalMicrobiotaspa
dc.titleCaracterización morfológica, bioquímica y molecular de cepas de bacterias ácido-lácticas del género Lactobacillus aisladas a partir de la fermentación del mucílago de cacao (Theobroma cacao L.) al norte del departamento del Huilaspa
dc.title.translatedMorphological, Biochemical, and Molecular Characterization of Lactic Acid Bacteria Strains of the Lactobacillus Genus Isolated from the Fermentation of Cacao (Theobroma cacao L.) Mucilage in the Northern Region of the Huila Departmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameSena. Centro de Formación Agroindustrial La Angostura Regional Huilaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: