Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis

dc.contributor.advisorContreras Rodríguez, Luis Ernestospa
dc.contributor.advisorTéllez Meneses, Jair Alexanderspa
dc.contributor.authorGutiérrez León, Jesús Estebanspa
dc.date.accessioned2024-09-09T16:26:35Z
dc.date.available2024-09-09T16:26:35Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLas Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas (CRISPR) junto con sus proteínas asociadas (Cas), constituyen un sistema de defensa adaptativo procariota para contrarrestar infecciones virales. El sistema se ha aprovechado como una herramienta de edición génica programable, posibilitando diversos estudios y aplicaciones biotecnológicas, incluyendo la edición génica de organismos patogénicos como Leishmania y Trypanosoma. En Leishmania, el sistema CRISPR-Cas9 ha permitido caracterizar diversos genes de virulencia, así como la obtención de parásitos atenuados con potencial vacunal. Sin embargo, su implementación aún no ha sido reportada para este parásito en Colombia. El presente trabajó abordó el desarrollo de herramientas relacionadas con la implementación del sistema CRISPR-Cas9 en L. braziliensis, una de las especies circulantes en nuestro país. Específicamente, se emprendió la producción de anticuerpos policlonales aviares (IgY) anti-SpCas9, utilizando como antígeno la proteína Cas9 recombinante de Streptococcus pyogenes (SpCas9-6xHis). Estos anticuerpos resultaron ser sensibles, específicos y útiles para inmunodetectar la proteína SpCas9 en promastigotes de L. braziliensis transfectados con el plásmido pTB007 Viannia, el cual codifica para esta proteína. Adicionalmente, se abordó la expresión y purificación de la enzima T7 RNA Polimerasa (6xHis-T7RNAP) desde Escherichia coli, resultando útil para sintetizar ARN guías (sgRNA) y preparar complejos ribonucleoproteicos (SpCas9-sgRNA) funcionales, capaces de efectuar cortes de ADN in vitro. Por último, se implementó el sistema CRISPR-Cas9 para realizar edición génica sobre la nicotinamida mononucleótido adenililtransferasa de L. braziliensis (LbNMNAT), que participa en la síntesis del NAD, insertando la secuencia CfPGKB5’-mCherry en el extremo 5’ del gen de interés en parásitos que expresan SpCas9 y T7RNAP. Los análisis funcionales del gen revelaron un aumento de sus niveles de expresión, mientras que los ensayos de susceptibilidad ante estrés oxidativo mostraron mayores valores IC50 en los parásitos editados en comparación con muestras control, lo que sugiere que la síntesis del NAD puede estar relacionada con fenotipos fármaco-resistentes. De esta manera, se obtuvieron herramientas que facilitan la implementación del sistema CRISPR-Cas9 en L. braziliensis, un patógeno de interés para la salud pública del país. Así mismo, se demostró la posibilidad de aprovechar sistemas avanzados de biología molecular para estudiar genes relacionados con la síntesis del NAD en el contexto de enfermedades tropicales desatendidas como la Leishmaniasis (Texto tomado de la fuente).spa
dc.description.abstractClustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas), constitute a prokaryotic adaptive defense system to counter viral infections. The system has been harnessed as a programmable gene-editing tool, enabling diverse biotechnological studies and applications, including gene editing of pathogenic organisms such as Leishmania and Trypanosoma. In Leishmania, the CRISPR-Cas9 system has made it possible to characterize several virulence genes and obtain attenuated parasites with vaccine potential. However, its implementation has not yet been reported for this parasite in Colombia. In this sense, the present work addressed the development of tools related to implementing the CRISPR-Cas9 system in L. braziliensis, one of the species circulating in our country. Specifically, the production of anti-SpCas9 avian polyclonal antibodies (IgY) was undertaken, using the recombinant Cas9 protein from Streptococcus pyogenes (SpCas9-6xHis) as antigen. The antibodies were sensitive, specific, and useful to immunodetect SpCas9 protein in L. braziliensis promastigotes transfected with plasmid pTB007 Viannia, which encodes for this protein. Additionally, the expression and purification of the enzyme T7 RNA Polymerase (6xHis-T7RNAP) from Escherichia coli were addressed, proving useful for synthesizing guide RNA (sgRNA) and preparing functional ribonucleoprotein complexes (SpCas9-sgRNA), capable of performing in vitro DNA cleavage. Finally, the gene coding for the L. braziliensis nicotinamide mononucleotide adenylyltransferase (LbNMNAT), which is involved in NAD synthesis, was targeted for editing. Using parasites expressing SpCas9 and T7RNAP proteins, the sequence CfPGKB5'-mCherry was inserted at the 5' end of the gene of interest, favoring the increase of LbNMNAT expression levels. Phenotypic assays of susceptibility to oxidative stress revealed higher IC50 values in the edited parasites compared to control samples, suggesting that NAD synthesis is related to drug tolerance. In this way, several tools were obtained that facilitate the implementation of the CRISPR-Cas9 system in L. braziliensis, a pathogen of public health interest in Colombia, demonstrating the possibility of taking advantage of advanced molecular biology systems to study genes related to NAD synthesis in the context of neglected tropical diseases such as Leishmaniasis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.methodsLa Figura 5.1 presenta la metodología general abordada en este trabajo. Inicialmente, se realizó la producción de anticuerpos policlonales tipo IgY dirigidos contra SpCas9 en modelos aviares, los cuales fueron caracterizados mediante ensayos de Western blot y ELISA, así como su uso sobre muestras biológicas de L. braziliensis (cepa de referencia MHOM/BR/75/M2903, denominada LbWT, y cepa que expresa de manera constitutiva SpCas9 y T7RNAP, denominada LbCas9T7). Seguidamente, se evaluó el ensamblaje de complejos ribonucleoproteicos, utilizando la proteína SpCas9-6xHis y el sgRNA sintetizado in vitro con la enzima 6xHis-T7RNAP. Luego, se ensayó la actividad nucleasa de los complejos ensamblados sobre ADN plasmídico y un producto de PCR, contra el gen Lbnmnat. Finalmente, se implementó el sistema CRISPR-Cas9 para editar mediante etiquetado (o tagging) el gen Lbnmnat en promastigotes de la cepa LbCas9T7, lo que permitió obtener una cepa editada, denominada LbNTag. Se estandarizaron los protocolos de transfección mediante electroporación para una eficiente entrega de casetes de reparación y plantillas de sgRNA. Mediante ensayos de PCR diagnósticos, se evaluó el éxito de la edición génica en los sitios genómicos de interés. Mediante ensayo de secuenciamiento Sanger, se comprobó la inserción de la plantilla de reparación en el sitio de interés. Finalmente, se caracterizó el efecto a nivel fenotípico de la edición realizada sobre la cepa editada, evaluando su respuesta a agentes causantes de estrés oxidativo como H2O2 y Sb3+.spa
dc.description.researchareaBioquímica y Biología Molecular de Parásitosspa
dc.format.extentxix, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86807
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAdaui, V., Kröber-Boncardo, C., Brinker, C., Zirpel, H., Sellau, J., Arévalo, J., Dujardin, J. C., & Clos, J. (2020). Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes 2020, Vol. 11, Page 1159, 11(10), 1159. https://doi.org/10.3390/genes11101159spa
dc.relation.referencesAllen, A. G., Chung, C. H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940spa
dc.relation.referencesAn, W., & Chin, J. W. (2011). Orthogonal gene expression in Escherichia coli. Methods in Enzymology, 497, 115–134. https://doi.org/10.1016/B978-0-12-385075-1.00005-6spa
dc.relation.referencesAnders, C., & Jinek, M. (2014). In vitro enzymology of Cas9. Methods in Enzymology, 546(C), 1–20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5spa
dc.relation.referencesAnders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM- dependent target DNA recognition by the Cas9 endonuclease. Nature 2014 513:7519, 513(7519), 569–573. https://doi.org/10.1038/nature13579spa
dc.relation.referencesAnderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., & Karikó, K. (2010). Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 38(17), 5884. https://doi.org/10.1093/NAR/GKQ347spa
dc.relation.referencesAnzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019 576:7785, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4spa
dc.relation.referencesAronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256spa
dc.relation.referencesAsencio, C., Hervé, P., Morand, P., Oliveres, Q., Morel, C. A., Prouzet ‐ Mauleon, V., Biran, M., Monic, S., Bonhivers, M., Robinson, D. R., Ouellette, M., Rivière, L., Bringaud, F., & Tetaud, E. (2024). Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15256spa
dc.relation.referencesAzevedo, A., Toledo, J. S., Defina, T., Pedrosa, A. L., & Cruz, A. K. (2015). Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Experimental Parasitology, 159, 222–226. https://doi.org/10.1016/J.EXPPARA.2015.09.008spa
dc.relation.referencesBae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England), 30(10), 1473–1475. https://doi.org/10.1093/BIOINFORMATICS/BTU048spa
dc.relation.referencesBaron, N., Tupperwar, N., Dahan, I., Hadad, U., Davidov, G., Zarivach, R., & Shapira, M. (2021). Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLOS Neglected Tropical Diseases, 15(3), e0008352. https://doi.org/10.1371/JOURNAL.PNTD.0008352spa
dc.relation.referencesBarrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140spa
dc.relation.referencesBell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/S13321-019-0362-7spa
dc.relation.referencesBeneke, T., Dobramysl, U., Catta-Preta, C. M. C., Mottram, J. C., Gluenz, E., & Wheeler, R. J. (2023). Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Research, 7, 294. https://doi.org/10.12688/WELLCOMEOPENRES.18575.2spa
dc.relation.referencesBeneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. Methods in Molecular Biology (Clifton, N.J.), 1971, 189–210. https://doi.org/10.1007/978-1-4939-9210-2_9spa
dc.relation.referencesBeneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/RSOS.170095spa
dc.relation.referencesBerger, F., Lau, C., Dahlmann, M., & Ziegler, M. (2005). Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. The Journal of Biological Chemistry, 280(43), 36334– 36341. https://doi.org/10.1074/JBC.M508660200spa
dc.relation.referencesBhattacharya, A., Leprohon, P., Bigot, S., Padmanabhan, P. K., Mukherjee, A., Roy, G., Gingras, H., Mestdagh, A., Papadopoulou, B., & Ouellette, M. (2019). Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nature Communications 2019 10:1, 10(1), 1–14. https://doi.org/10.1038/s41467-019-13344-6spa
dc.relation.referencesBolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0spa
dc.relation.referencesBorkotoky, S., & Murali, A. (2018). The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49–56. https://doi.org/10.1016/J.IJBIOMAC.2018.05.198spa
dc.relation.referencesBraidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxidants & Redox Signaling, 30(2), 251–294. https://doi.org/10.1089/ARS.2017.7269spa
dc.relation.referencesBrouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (New York, N.Y.), 321(5891), 960. https://doi.org/10.1126/SCIENCE.1159689spa
dc.relation.referencesCarmignotto, G. P., & Azzoni, A. R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70. https://doi.org/10.1016/J.JBIOTEC.2019.09.012spa
dc.relation.referencesCastro, H., Rocha, M. I., Duarte, M., Vilurbina, J., Gomes-Alves, A. G., Leao, T., Dias, F., Morgan, B., Deponte, M., & Tomás, A. M. (2024). The cytosolic hyperoxidation- sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biology, 71. https://doi.org/10.1016/J.REDOX.2024.103122spa
dc.relation.referencesCheetham, G. M. T., Jeruzalmi, D., & Steltz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature 1999 399:6731, 399(6731), 80–83. https://doi.org/10.1038/19999spa
dc.relation.referencesChen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 2017 1:10, 1(10), 1–15. https://doi.org/10.1038/s41570- 017-0078spa
dc.relation.referencesChen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J., & Ji, Q. (2019). Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 17(10). https://doi.org/10.1371/JOURNAL.PBIO.3000496spa
dc.relation.referencesCong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143spa
dc.relation.referencesContreras, L. E., Neme, R., & Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expression and Purification, 115, 26–33. https://doi.org/10.1016/J.PEP.2015.08.022spa
dc.relation.referencesContreras Rodríguez, L. E., Ziegler, M., & Ramírez Hernández, M. H. (2020). Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 6(4), e03733. https://doi.org/10.1016/J.HELIYON.2020.E03733spa
dc.relation.referencesCovarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology, 22(2), 119–141. https://doi.org/10.1038/S41580-020-00313-Xspa
dc.relation.referencesDas, S., Banerjee, A., Kamran, M., Ejazi, S. A., Asad, M., Ali, N., & Chakrabarti, S. (2020). A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. Journal of Biological Chemistry, 295(29), 9934–9947. https://doi.org/10.1074/jbc.ra120.014587spa
dc.relation.referencesDe Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C., & Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031/78270spa
dc.relation.referencesDeltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 2011 471:7340, 471(7340), 602–607. https://doi.org/10.1038/nature09886spa
dc.relation.referencesDharmasena, W. G. B. P., & Munasinghe, D. H. H. (2021). Identification of potential TALEN and CRISPR/Cas9 targets of selected genes of some human pathogens which cause persistent infections. Journal of the National Science Foundation of Sri Lanka, 49(3), 451–465. https://doi.org/10.4038/jnsfsr.v49i3.10074spa
dc.relation.referencesDi Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F., & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl_2), W13–W17. https://doi.org/10.1093/NAR/GKR245spa
dc.relation.referencesDias da Silva, W., & Tambourgi, D. V. (2010). IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 135(3–4), 173–180. https://doi.org/10.1016/J.VETIMM.2009.12.011spa
dc.relation.referencesDonzé, O., & Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Research, 30(10). https://doi.org/10.1093/NAR/30.10.E46spa
dc.relation.referencesDu, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/J.AJPS.2023.100854spa
dc.relation.referencesDueñas, E., Nakamoto, J. A., Cabrera-Sosa, L., Huaihua, P., Cruz, M., Arévalo, J., Milón, P., & Adaui, V. (2022). Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 13, 2828. https://doi.org/10.3389/fmicb.2022.958693spa
dc.relation.referencesEberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203spa
dc.relation.referencesEbrahimi, S., Kalantari, M., Alipour, H., Azizi, K., Asgari, Q., & Bahreini, M. S. (2021). In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis. Microbial Pathogenesis, 161, 105281. https://doi.org/10.1016/j.micpath.2021.105281spa
dc.relation.referencesEid, A., & Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine 2016 48:10, 48(10), e265–e265. https://doi.org/10.1038/emm.2016.111spa
dc.relation.referencesEngstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 12. https://doi.org/10.7554/ELIFE.85605spa
dc.relation.referencesEspada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849–858. https://doi.org/10.1021/acsinfecdis.0c00857spa
dc.relation.referencesEspada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311spa
dc.relation.referencesFernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., & Ouellette, M. (2018). High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 165–173. https://doi.org/10.1016/J.IJPDDR.2018.03.004spa
dc.relation.referencesFoss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide- mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/S41551-023-01032-2spa
dc.relation.referencesGaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004spa
dc.relation.referencesGaravaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., & Rizzi, M. (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of Biological Chemistry, 277(10), 8524–8530. https://doi.org/10.1074/JBC.M111589200spa
dc.relation.referencesGarneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71. https://doi.org/10.1038/NATURE09523spa
dc.relation.referencesGasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39). https://doi.org/10.1073/pnas.1208507109spa
dc.relation.referencesGaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551:7681, 551(7681), 464–471. https://doi.org/10.1038/nature24644spa
dc.relation.referencesGazanion, E., Garcia, D., Silvestre, R., Gérard, C., Guichou, J. F., Labesse, G., Seveno, M., Cordeiro-Da-Silva, A., Ouaissi, A., Sereno, D., & Vergnes, B. (2011). The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Molecular Microbiology, 82(1), 21–38. https://doi.org/10.1111/J.1365- 2958.2011.07799.Xspa
dc.relation.referencesGoes, W. M., Brasil, C. R. F., Reis-Cunha, J. L., Coqueiro-dos-Santos, A., Grazielle-Silva, V., de Souza Reis, J., Souto, T. C., Laranjeira-Silva, M. F., Bartholomeu, D. C., Fernandes, A. P., & Teixeira, S. M. R. (2023). Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics, 110661. https://doi.org/10.1016/J.YGENO.2023.110661spa
dc.relation.referencesGoldman-Pinkovich, A., Kannan, S., Nitzan-Koren, R., Puri, M., Pawar, H., Bar-Avraham, Y., McDonald, J., Sur, A., Zhang, W. W., Matlashewski, G., Madhubala, R., Michaeli, S., Myler, P. J., & Zilberstein, D. (2020). Sensing host arginine is essential for leishmania parasites’ intracellular development. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02023-20spa
dc.relation.referencesGonçalves, S. V. C. B., & Costa, C. H. N. (2018). Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. Anais Brasileiros de Dermatologia, 93(3), 347. https://doi.org/10.1590/ABD1806-4841.20186415spa
dc.relation.referencesGreen, M. R., & Sambrook, J. (2021). Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. Cold Spring Harbor Protocols, 2021(1), pdb.prot101766. https://doi.org/10.1101/PDB.PROT101766spa
dc.relation.referencesHaft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR- associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474–0483. https://doi.org/10.1371/JOURNAL.PCBI.0010060spa
dc.relation.referencesHerrera, G., Barragán, N., Luna, N., Martínez, D., De Martino, F., Medina, J., Niño, S., Páez, L., Ramírez, A., Vega, L., Velandia, V., Vera, M., Zúñiga, M. F., Bottin, M. J., & Ramírez, J. D. (2020). An interactive database of Leishmania species distribution in the Americas. Scientific Data, 7(1). https://doi.org/10.1038/S41597-020-0451-5spa
dc.relation.referencesHerrera T., E. A., Contreras, L. E., Suárez, A. G., Diaz, G. J., & Ramírez, M. H. (2019). GlSir2.1 of Giardia lamblia is a NAD + -dependent cytoplasmic deacetylase. Heliyon, 5(4), e01520. https://doi.org/10.1016/j.heliyon.2019.e01520spa
dc.relation.referencesHornbeck, P. V. (2015). Enzyme-Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1), 2.1.1-2.1.23. https://doi.org/10.1002/0471142735.IM0201S110spa
dc.relation.referencesHuang, C., & Yu, Y. T. (2013). Synthesis and Labeling of RNA In Vitro. Current Protocols in Molecular Biology, 102(1), 4.15.1-4.15.14. https://doi.org/10.1002/0471142727.MB0415S102spa
dc.relation.referencesIshemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723spa
dc.relation.referencesIshino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987spa
dc.relation.referencesJesus-Santos, F. H., Lobo-Silva, J., Ramos, P. I. P., Descoteaux, A., Lima, J. B., Borges, V. M., & Farias, L. P. (2020). LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 10, 408. https://doi.org/10.3389/fcimb.2020.00408spa
dc.relation.referencesJiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys- 062215-010822spa
dc.relation.referencesJiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 69(1), 209–228. https://doi.org/10.1146/ANNUREV-MICRO-091014-104441spa
dc.relation.referencesJinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829spa
dc.relation.referencesJoung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/NRM3486spa
dc.relation.referencesJúnior, Á. F., Ge, S., Wu, R., & Zhang, X. (2021). Immunization of hens. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 117–134. https://doi.org/10.1007/978-3-030-72688-1_10spa
dc.relation.referencesJúnior, Á. F., Morgan, P. M., Zhang, X., & Schade, R. (2021). Biology and molecular structure of Avian IgY Antibody. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 59–70. https://doi.org/10.1007/978-3-030-72688-1_5spa
dc.relation.referencesKampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657spa
dc.relation.referencesKar, S., & Ellington, A. D. (2018). Construction of synthetic T7 RNA polymerase expression systems. Methods (San Diego, Calif.), 143, 110–120. https://doi.org/10.1016/J.YMETH.2018.02.022spa
dc.relation.referencesKarachaliou, C.-E., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243spa
dc.relation.referencesKarimian, A., Azizian, K., Parsian, H., Rafieian, S., Shafiei-Irannejad, V., Kheyrollah, M., Yousefi, M., Majidinia, M., & Yousefi, B. (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology, 234(8), 12267–12277. https://doi.org/10.1002/JCP.27972spa
dc.relation.referencesKawe, M., Horn, U., & Plückthun, A. (2009). Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microbial Cell Factories, 8(1), 1–8. https://doi.org/10.1186/1475- 2859-8-8spa
dc.relation.referencesKellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 2019 14:10, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2spa
dc.relation.referencesKevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections: A Practical Review. Dermatologic Clinics, 33(3), 579–593. https://doi.org/10.1016/J.DET.2015.03.018spa
dc.relation.referencesKoonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/J.MIB.2017.05.008spa
dc.relation.referencesKorencić, D., Söll, D., & Ambrogelly, A. (2002). A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Research, 30(20). https://doi.org/10.1093/NAR/GNF104spa
dc.relation.referencesKumar, K., Basak, R., Rai, A., & Mukhopadhyay, A. (2024). GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15255spa
dc.relation.referencesLedford, H. (2020). CRISPR treatment inserted directly into the body for first time. Nature, 579(7798), 185. https://doi.org/10.1038/D41586-020-00655-8spa
dc.relation.referencesLee, C. H., Lee, Y. C., Lee, Y. L., Leu, S. J., Lin, L. T., Chen, C. C., Chiang, J. R., Fellow, P., Tsai, B. Y., Hung, C. S., & Yang, Y. Y. (2017). Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins, 9(11). https://doi.org/10.3390/TOXINS9110347spa
dc.relation.referencesLee, L., Samardzic, K., Wallach, M., Frumkin, L. R., & Mochly-Rosen, D. (2021). Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Frontiers in Immunology, 12, 2257. https://doi.org/10.3389/fimmu.2021.696003spa
dc.relation.referencesLeón, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273spa
dc.relation.referencesLi, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–23. https://doi.org/10.1038/s41392-023- 01309-7spa
dc.relation.referencesLieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181– 211. https://doi.org/10.1146/ANNUREV.BIOCHEM.052308.093131spa
dc.relation.referencesLiu, L., Siuda, I., Richards, M. R., Renaud, J., Kitova, E. N., Mayer, P. M., Tieleman, D. P., Lowary, T. L., & Klassen, J. S. (2016). Structure and Stability of Carbohydrate– Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 17(16), 1571–1578. https://doi.org/10.1002/CBIC.201600123spa
dc.relation.referencesLópez-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/S12879-016-1663-3spa
dc.relation.referencesLorenzon, L., Quilles, J. C., Campagnaro, G. D., Azevedo Orsine, L., Almeida, L., Veras, F., Miserani Magalhães, R. D., Alcoforado Diniz, J., Rodrigues Ferreira, T., & Kaysel Cruz, A. (2022). Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infectious Diseases, 8(3), 516–532. https://doi.org/10.1021/acsinfecdis.1c00509spa
dc.relation.referencesLouradour, I., Ghosh, K., Inbar, E., & Sacks, D. L. (2019). CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 10(4). https://doi.org/10.1128/MBIO.01941-19spa
dc.relation.referencesMadusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1–14. https://doi.org/10.1017/S0031182023001129spa
dc.relation.referencesMakarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., Van Der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology, 13(11), 722– 736. https://doi.org/10.1038/NRMICRO3569spa
dc.relation.referencesMallapaty, S. (2022). How to protect the first “CRISPR babies” prompts ethical debate. Nature, 603(7900), 213–214. https://doi.org/10.1038/D41586-022-00512-Wspa
dc.relation.referencesMao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle (Georgetown, Tex.), 7(18), 2902. https://doi.org/10.4161/CC.7.18.6679spa
dc.relation.referencesMartel, D., Beneke, T., Gluenz, E., Späth, G. F., & Rachidi, N. (2017). Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit. BioMed Research International, 2017. https://doi.org/10.1155/2017/4635605spa
dc.relation.referencesMcCoy, C. J., Paupelin-Vaucelle, H., Gorilak, P., Beneke, T., Varga, V., & Gluenz, E. (2023). ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell, 34(7), ar66. https://doi.org/10.1091/MBC.E22-06-0222spa
dc.relation.referencesMedeiros, L. C. S., South, L., Peng, D., Bustamante, J. M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., & Tarleton, R. L. (2017). Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 8(6). https://doi.org/10.1128/MBIO.01788-17spa
dc.relation.referencesMeng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/PRO.4792spa
dc.relation.referencesMichels, P. A. M., & Avilán, L. (2011). The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy. Molecular Microbiology, 82(1), 4–8. https://doi.org/10.1111/J.1365-2958.2011.07810.Xspa
dc.relation.referencesMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/S41592-022-01488-1spa
dc.relation.referencesMojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246. https://doi.org/10.1046/J.1365-2958.2000.01838.Xspa
dc.relation.referencesMorgan, P. M., Freire, M. G., Tavares, A. P. M., Michael, A., & Zhang, X. (2021). Extraction and purification of IgY. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 135–160. https://doi.org/10.1007/978-3-030-72688-1_11spa
dc.relation.referencesNilsen, T. W., Rio, D. C., & Ares, M. (2013). High-Yield Synthesis of RNA Using T7 RNA Polymerase and Plasmid DNA or Oligonucleotide Templates. Cold Spring Harbor Protocols, 2013(11), pdb.prot078535. https://doi.org/10.1101/PDB.PROT078535spa
dc.relation.referencesNussenzweig, P. M., & Marraffini, L. A. (2020). Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 54, 93–120. https://doi.org/10.1146/ANNUREV-GENET-022120-112523spa
dc.relation.referencesPeng, D., & Tarleton, R. (2015). EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4). https://doi.org/10.1099/MGEN.0.000033spa
dc.relation.referencesPereira, E. P. V., van Tilburg, M. F., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303. https://doi.org/10.1016/J.INTIMP.2019.05.015spa
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), E45. https://doi.org/10.1093/NAR/29.9.E45spa
dc.relation.referencesPolson, A., von Wechmar, M. B., & van Regenmortel, M. H. V. (1980). Isolation of viral IgY antibodies from yolks of immunized hens. Immunological Communications, 9(5), 475–493. https://doi.org/10.3109/08820138009066010spa
dc.relation.referencesPonomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-514spa
dc.relation.referencesPotvin, J. E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2021). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases, 72(10), e526–e532. https://doi.org/10.1093/CID/CIAA1236spa
dc.relation.referencesPradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. https://doi.org/10.1111/CED.14919spa
dc.relation.referencesRajagopalan, N., Kagale, S., Bhowmik, P., & Song, H. (2018). A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols 2018, Vol. 1, Page 17, 1(2), 17. https://doi.org/10.3390/MPS1020017spa
dc.relation.referencesRamírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6. https://doi.org/10.1038/srep28266spa
dc.relation.referencesRibeiro, J. M., Silva, P. A., Costa-Silva, H. M., Santi, A. M. M., & Murta, S. M. F. (2024). Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/JOURNAL.PNTD.0011880spa
dc.relation.referencesRio, D. C. (2013). Expression and Purification of Active Recombinant T7 RNA Polymerase from E. coli. Cold Spring Harbor Protocols, 2013(11), pdb.prot078527. https://doi.org/10.1101/PDB.PROT078527spa
dc.relation.referencesRoberts, A. J., Ong, H. B., Clare, S., Brandt, C., Harcourt, K., Franssen, S. U., Cotton, J. A., Müller-Sienerth, N., & Wright, G. J. (2022). Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLOS Pathogens, 18(2), e1010364. https://doi.org/10.1371/JOURNAL.PPAT.1010364spa
dc.relation.referencesRojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11). https://doi.org/10.1098/RSOB.200302spa
dc.relation.referencesRomero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14spa
dc.relation.referencesSalgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312spa
dc.relation.referencesSamnuan, K., Blakney, A. K., McKay, P. F., & Shattock, R. J. (2022). Design-of- experiments in vitro transcription yield optimization of self-amplifying RNA. F1000Research 2022 11:333, 11, 333. https://doi.org/10.12688/f1000research.75677.1spa
dc.relation.referencesSánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 2015 15:7, 15(7), 387–393. https://doi.org/10.1038/nrc3950spa
dc.relation.referencesShaddel, M., Sharifi, I., Karvar, M., Keyhani, A., & Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42. https://doi.org/10.4103/0972-9062.234625spa
dc.relation.referencesSharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9- Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.790418spa
dc.relation.referencesShimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 2001 19:8, 19(8), 751–755. https://doi.org/10.1038/90802spa
dc.relation.referencesShis, D. L., & Bennett, M. R. (2014). Synthetic biology: the many facets of T7 RNA polymerase. Molecular Systems Biology, 10(7), 745. https://doi.org/10.15252/MSB.20145492spa
dc.relation.referencesShmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology, 15(3), 169–182. https://doi.org/10.1038/NRMICRO.2016.184spa
dc.relation.referencesShrivastava, R., Tupperwar, N., Drory-Retwitzer, M., & Shapira, M. (2019). Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania . MSphere, 4(5). https://doi.org/10.1128/mSphere.00450-19spa
dc.relation.referencesSinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342. https://doi.org/10.1038/EMBOJ.2011.41spa
dc.relation.referencesSollelis, L., Ghorbal, M., Macpherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J. J., & Sterkers, Y. (2015). First efficient CRISPR- Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405–1412. https://doi.org/10.1111/cmi.12456spa
dc.relation.referencesSousa, R. (2013). T7 RNA Polymerase. Encyclopedia of Biological Chemistry: Second Edition, 355–359. https://doi.org/10.1016/B978-0-12-378630-2.00267-Xspa
dc.relation.referencesStaak, C., Schwarzkopf, C., Behn, I., Hommel, U., Hlinak, A., Schade, R., & Erhard, M. (2001). Isolation of IgY from Yolk. Chicken Egg Yolk Antibodies, Production and Application, 65–107. https://doi.org/10.1007/978-3-662-04488-9_4spa
dc.relation.referencesSteitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001spa
dc.relation.referencesStothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01spa
dc.relation.referencesTamulaitis, G., Venclovas, Č., & Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends in Microbiology, 25(1), 49–61. https://doi.org/10.1016/J.TIM.2016.09.012spa
dc.relation.referencesTan, S. H., Mohamedali, A., Kapur, A., Lukjanenko, L., & Baker, M. S. (2012). A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 380(1–2), 73–76. https://doi.org/10.1016/J.JIM.2012.03.003spa
dc.relation.referencesTan, S. I., & Ng, I. S. (2020). New Insight into Plasmid-Driven T7 RNA Polymerase in Escherichia coli and Use as a Genetic Amplifier for a Biosensor. ACS Synthetic Biology, 9(3), 613–622. https://doi.org/10.1021/acssynbio.9b00466spa
dc.relation.referencesTeixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS Pathogens, 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003594spa
dc.relation.referencesTetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., & Fairlamb, A. H. (2002). A new expression vector for Crithidia fasciculata and Leishmania. Molecular and Biochemical Parasitology, 120(2), 195–204. https://doi.org/10.1016/S0166-6851(02)00002-6spa
dc.relation.referencesThuring, R. W. J., Sanders, J. P. M., & Borst, P. (1975). A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry, 66(1), 213–220. https://doi.org/10.1016/0003-2697(75)90739-3spa
dc.relation.referencesTong, C., Geng, F., He, Z., Cai, Z., & Ma, M. (2015). A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 94(1), 104–110. https://doi.org/10.3382/PS/PEU005spa
dc.relation.referencesTrott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334spa
dc.relation.referencesTsai, K. C., Chang, C. Di, Cheng, M. H., Lin, T. Y., Lo, Y. N., Yang, T. W., Chang, F. L., Chiang, C. W., Lee, Y. C., & Yen, Y. (2019). Chicken-Derived Humanized Antibody Targeting a Novel Epitope F2pep of Fibroblast Growth Factor Receptor 2: Potential Cancer Therapeutic Agent. ACS Omega, 4(1), 2387–2397. https://doi.org/10.1021/acsomega.8b03072spa
dc.relation.referencesTurra, G. L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J., Koncarevic, S., Schroda, M., Mühlhaus, T., & Deponte, M. (2021). In Vivo Structure-Function Analysis and Redox Interactomes of Leishmania tarentolae Erv. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00809-21spa
dc.relation.referencesTurra, G. L., Schneider, L., Liedgens, L., & Deponte, M. (2021). Testing the CRISPR- Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical Parasitology, 241, 111336. https://doi.org/10.1016/J.MOLBIOPARA.2020.111336spa
dc.relation.referencesUrnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9, 11(9), 636–646. https://doi.org/10.1038/nrg2842spa
dc.relation.referencesVergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J. J., Sterkers, Y., & Bañuls, A. L. (2019). A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 74(11), 3231–3239. https://doi.org/10.1093/JAC/DKZ334spa
dc.relation.referencesWalker, S. E., & Lorsch, J. (2013). RNA purification--precipitation methods. Methods in Enzymology, 530, 337–343. https://doi.org/10.1016/B978-0-12-420037-1.00019-1spa
dc.relation.referencesWang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014607spa
dc.relation.referencesWang, J. Y., & Doudna, J. A. (2023). CRISPR technology: A decade of genome editing is only the beginning. Science, 379(6629). https://doi.org/10.1126/science.add8643spa
dc.relation.referencesWang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/SCIENCE.1246981spa
dc.relation.referencesXue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9- Mediated Genome Editing. Trends in Genetics, 37(7), 639–656. https://doi.org/10.1016/J.TIG.2021.02.008spa
dc.relation.referencesYagoubat, A., Crobu, L., Berry, L., Kuk, N., Lefebvre, M., Sarrazin, A., Bastien, P., & Sterkers, Y. (2020). Universal highly efficient conditional knockout system in Leishmania, with a focus on untranscribed region preservation. Cellular Microbiology, 22(5), e13159. https://doi.org/10.1111/CMI.13159spa
dc.relation.referencesZarei, Z., Mohebali, M., Dehghani, H., Khamesipour, A., Tavakkol-Afshari, J., Akhoundi, B., Abbaszadeh-Afshar, M. J., Alizadeh, Z., Skandari, S. E., Asl, A. D., & Razmi, G. R. (2023). Live attenuated Leishmania infantum centrin deleted mutant (LiCen-/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 97. https://doi.org/10.1016/J.CIMID.2023.101984spa
dc.relation.referencesZhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648. https://doi.org/10.7150/THNO.47007spa
dc.relation.referencesZhang, W. W., Karmakar, S., Gannavaram, S., Dey, R., Lypaczewski, P., Ismail, N., Siddiqui, A., Simonyan, V., Oliveira, F., Coutinho-Abreu, I. V., DeSouza-Vieira, T., Meneses, C., Oristian, J., Serafim, T. D., Musa, A., Nakamura, R., Saljoughian, N., Volpedo, G., Satoskar, M., … Nakhasi, H. L. (2020). A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications 2020 11:1, 11(1), 1–14. https://doi.org/10.1038/s41467-020-17154-zspa
dc.relation.referencesZhang, W. W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), 861–876. https://doi.org/10.1128/mBio.00861-15spa
dc.relation.referencesZhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms . MSphere, 2(1). https://doi.org/https://doi.org/10.1128/mSphere.00340-16spa
dc.relation.referencesZhang, W.-W., & Matlashewski, G. (2019). Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. MSphere, 4(4). https://doi.org/10.1128/mSphere.00408-19spa
dc.relation.referencesZhang, X., Li, T., Ou, J., Huang, J., & Liang, P. (2021). Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein & Cell 2021 13:5, 13(5), 316–335. https://doi.org/10.1007/S13238-021-00838-7spa
dc.relation.referencesZhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/NAR/GKI524spa
dc.relation.referencesZor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/ABIO.1996.0171spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.lembVIROSISspa
dc.subject.lembVirus diseaseseng
dc.subject.lembESTREPTOCOCOSspa
dc.subject.lembStreptococcuseng
dc.subject.lembREACCION EN CADENA DE LA POLIMERASAspa
dc.subject.lembPolimerase chain reactioneng
dc.subject.proposalCRISPR-Cas9spa
dc.subject.proposalCRISPR-Cas9eng
dc.subject.proposalLeishmania braziliensisspa
dc.subject.proposalLeishmania braziliensiseng
dc.subject.proposalAnticuerpos policlonales IgYspa
dc.subject.proposalPolyclonal IgY antibodieseng
dc.subject.proposalT7 RNA Polimerasaspa
dc.subject.proposalT7 RNA Polymeraseeng
dc.subject.proposalNMNATspa
dc.subject.proposalNMNATeng
dc.subject.proposalEstrés oxidativospa
dc.subject.proposalOxidative stresseng
dc.titleDesarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensisspa
dc.title.translatedDevelopment of molecular tools for the implementation of the CRISPR-Cas9 system in Leishmania braziliensiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024588797.2024.pdf
Tamaño:
9.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: