Caos robusto en un mapa estroboscópico discontinuo de dimensión dos

dc.contributor.advisorAmador Rodríguez, Andrés Felipe
dc.contributor.advisorCasanova Trujillo, Simeón
dc.contributor.authorPaz Paternina, Juan Fernando
dc.date.accessioned2023-03-06T13:36:27Z
dc.date.available2023-03-06T13:36:27Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractEn este trabajo se muestra la existencia de caos robusto en el mapa estroboscópico asociado a una forma canónica normalizada de sistemas lineales discontinuos definidos a trozos de dimensión dos (PWL por las siglas en ingles). El trabajo consta de 5 capítulos. En el primer capítulo damos un estudio riguroso de algunos conceptos y resultados esenciales de mapas discretos reportados en la literatura. En el segundo capítulo presentamos la forma canónica normalizada para sistemas lineales discontinuos definidos a trozos, estudiamos algunas propiedades de este sistema y presentamos algunos mecanismos para generar ciclos límite en este sistema reportados en la literatura. El tercer capítulo presenta el mapa estroboscópico asociado a la forma canónica normalizada y estudia algunas propiedades de este mapa dadas en la literatura, como la matriz exponencial, la estabilidad de sus ´orbitas y nuestros propios resultados sobre los exponentes de Lyapunov de este mapa. En el cuarto capítulo se utilizan los resultados presentados en los capítulos anteriores para estudiar la existencia de caos robusto en el mapa estroboscópico para el caso foco e introducimos a un pequeño estudio de caos robusto en el caso silla. Finalmente en el quinto capítulo presentamos una aplicación del caos robusto en mapas discretos a la encriptación de imágenes, diseñando un esquema de encriptación e implementándolo con el mapa estroboscópico en una región caótica de parámetros (Texto tomado de la fuente)spa
dc.description.abstractIn this work we show the ocurrence of robust chaos in the two dimensional stroboscopic map asociated at a canonical normal form of discontinuous piece-wise linear systems (PWL for short). The work consist in 5 chapters. In the first chapter we give a rigorous study of some essentials concepts and results of discrete maps reported in the literature. At the second chapter, we present the canonical normal form to discontinuous PWL systems, study some propieties of this system and present some mechanism to generate limit cycles in this system reported in the literature. The third chapter present the stroboscopic map asociated at the canonical normal form and study some propieties of this map given in the literature, like the exponential matrix, the stability of the orbits and our own results about the exponents of Lyapunov of this map. In the fourth chapter the results presented in the previous chapters are used to study the ocurrence of robust chaos in the stroboscopic map to the focus case and introduce little a study of robust chaos at the saddle case. Finally in the fifth chapter we present an application of robust chaos in discrete maps to image encryption, designing an encryption scheme and implementing this whit the stroboscopic map in a chaotic parameter region.eng
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.format.extentxiv, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83591
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesE. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130–141, 3 1963.spa
dc.relation.referencesE. N. Lorez, “Predictability: Does the flap of a butterfly’s wings in brazil set off a tornado in texas?,” American Association for the Advancement of Science, Dec. 1972.spa
dc.relation.referencesR. H. B. Puentes, “El Sistema y EL Atractor Geométrico de Lorenz,” Master’s thesis, Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Matemáticas, 2010.spa
dc.relation.referencesR. M. May and G. F. Oster, “Bifurcations and dynamic complexity in simple ecological models,” The American Naturalist, vol. 110, pp. 573–599, July 1976.spa
dc.relation.referencesC. G. Soumitro Banerjee, James A. Yorke, “Robust chaos,” Phys. Rev. Let, Mar. 1998.spa
dc.relation.referencesD. Dutta, R. Basu, S. Banerjee, V. Holmes, and P. Mather, “Parameter estimation for 1d pwl chaotic maps using noisy dynamics,” Nonlinear Dynamics, vol. 94, no. 4, pp. 2979–2993, 2018.spa
dc.relation.referencesG. Kaur, R. Agarwal, and V. Patidar, “Chaos based multiple order optical transform for 2d image encryption,” Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 998–1014, 2020.spa
dc.relation.referencesP. Ketthong and W. San-Um, “A robust signum-based piecewise-linaer chaotic map and its application to microcontroller-based cost-effective random-bit generator,” in 2014 International Electrical Engineering Congress (iEECON), IEEE, mar 2014.spa
dc.relation.referencesS. Li, G. Chen, and X. Mou, “On The Dynamical Degradation Of Digital Piecewise Linear Chaotic Maps,” International Journal of Bifurcation and Chaos, vol. 15, pp. 3119–3151, Oct. 2005.spa
dc.relation.referencesH. Liu and X.Wang, “Color image encryption based on one-time keys and robust chaotic maps,” Computers and Mathematics with Applications, vol. 59, no. 10, pp. 3320–3327, 2010.spa
dc.relation.referencesS. Mandal and S. Banerjee, “Analysis and CMOS implementation of a chaos-based communication system,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1708–1722, sep 2004.spa
dc.relation.referencesG. Millerioux and C. Mira, “Finite-time global chaos synchronization for piecewise linear maps,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 1, pp. 111–116, 2001.spa
dc.relation.referencesA. Potapov and M. Ali, “Robust chaos in neural networks,” Physics Letters A, vol. 277, pp. 310–322, Dec. 2000.spa
dc.relation.referencesT. Saito and K. Mitsubori, “Control of chaos from a piecewise linear hysteresis circuit,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp. 168–172, Mar. 1995.spa
dc.relation.referencesW. San-Um and P. Ketthong, “The generalization of mathematically simple and robust chaotic maps with absolute value nonlinearity,” in TENCON 2014 - 2014 IEEE Region 10 Conference, IEEE, Oct. 2014.spa
dc.relation.referencesA. Amador, Some contributions to the analysis of piecewise linear systems. PhD thesis, Universidad de Sevilla. Departamento de Matem´atica Aplicada II (ETSI), 2018.spa
dc.relation.referencesA. Amador, S. Casanova, H. A. Granada, G. Olivar, and J. Hurtado, “Codimension two big-bang bifurcation in a ZAD-controlled boost DC-DC converter,” International Journal of Bifurcation and Chaos, vol. 24, p. 1450150, Dec. 2014.spa
dc.relation.referencesS. Banerjee, D. Kastha, S. Das, G. Vivek, and C. Grebogi, “Robust chaos-the theoretical formulation and experimental evidence,” in ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), IEEE, 1999.spa
dc.relation.referencesM. Bernardo, C.J.Budd, A.R.Champneys, and P.Kowalczyk, Piecewise-smooth Dynamical Systems Theory and Applications. Springer Science, 2008.spa
dc.relation.referencesZ. Elhadj and J. C. Sprott, “On the robustness of chaos in dynamical systems: Theories and applications,” Frontiers of Physics in China, vol. 3, pp. 195–204, May 2008.spa
dc.relation.referencesE. Fossas and A. Granados, “Occurrence of big bang bifurcations in discretized sliding-mode control systems,” Differential Equations and Dynamical Systems, vol. 21, pp. 35–43, May 2012.spa
dc.relation.referencesL. Gardini, F. Tramontana, and S. Banerjee, “Bifurcation analysis of an inductorless chaos generator using 1d piecewise smooth map,” Mathematics and Computers in Simulation, vol. 95, pp. 137–145, Jan. 2014.spa
dc.relation.referencesLozi, R., “Un attracteur etrange du type attracteur de henon,” J. Phys. Colloques, vol. 39, no. C5, pp. C5–9–C5–10, 1978.spa
dc.relation.referencesJ. F. Paz, “Dinámica de un mapa estroboscópico discontinuo. Una aplicación al convertidor DC-DC Buck-Boost,” 2020.spa
dc.relation.referencesE. Freire, E. Ponce, and F. Torres, “A general mechanism to generate three limit cycles in planar filippov systems with two zones,” Nonlinear Dynamics, vol. 78, pp. 251–263, May 2014.spa
dc.relation.referencesE. Freire, E. Ponce, and F. Torres, “Canonical discontinuous planar piecewise linear systems,” SIAM Journal on Applied Dynamical Systems, vol. 11, pp. 181–211, Jan 2012.spa
dc.relation.referencesYuri.A.Kuznetsov, Elements of Applied Bifurcation Theory. Springer Science, 2004.spa
dc.relation.referencesA. C. P. K. M. di Bernardo, C.J.Budd, Piecewise-smooth Dynamical Systems Theory and Applications. Springer Science, 2008.spa
dc.relation.referencesR. L. Devaney, An introduction to Chaotic Dynamical Systems. Westview Press, 2003.spa
dc.relation.referencesR. A. Holmgre, A First Course in Discrete Dynamical System. Springer-Verlag, 1994.spa
dc.relation.referencesV. Avrutin, A. Granados, and M. Schanz, “Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps,” Nonlinearity, vol. 24, pp. 2575–2598, Aug. 2011.spa
dc.relation.referencesV. Avrutin, M. Schanz, and S. Banerjee, “Multi-parametric bifurcations in a piecewise–linear discontinuous map,” Nonlinearity, vol. 19, pp. 1875–1906, July 2006.spa
dc.relation.referencesD. Fournier-Prunaret, P. Charg´e, and L. Gardini, “Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, pp. 916–927, Feb. 2011.spa
dc.relation.referencesU. Kirchgraber and D. Stoffer, “On the definition of chaos,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik, vol. 69, no. 7, pp. 175–185, 1989.spa
dc.relation.referencesP. Glendinning, “Robust chaos revisited,” The European Physical Journal Special Topics, vol. 226, pp. 1721–1738, June 2017.spa
dc.relation.referencesP. A. Glendinning and D. J. W. Simpson, “A constructive approach to robust chaos using invariant manifolds and expanding cones,” Discrete & Continuous Dynamical Systems, vol. 41, no. 7, p. 3367, 2021.spa
dc.relation.referencesS. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer Science, 2003.spa
dc.relation.referencesG. S. Michael Brin, Introduction to Dynamical Systems. Cambridge University Press, 2002.spa
dc.relation.referencesC. Robinson, Dynamical systems. Stability, Symbolic Dynamics, and Chaos. Taylor and Francis Group, LLC, 1999.spa
dc.relation.referencesE. Glasner and B. Weiss, “Sensitive dependence on initial conditions,” Nonlinearity, vol. 6, pp. 1067–1075, Nov. 1993.spa
dc.relation.referencesY. A. Kuznetsov and H. E. Meijer, Numerical Bifurcation Analysis of Maps. Cambrisge University Press, 2019.spa
dc.relation.referencesA. Amador, E. Ponce, and F. Torres, “On the BB bifurcation in stroboscopic maps of planar DPWL systems. An application in discretized sliding-mode control systems.,”Manuscript in preparation., 2020.spa
dc.relation.referencesY. A. Kuznetsov, S. Rinaldi, and A. Gragnani, “One-parameter bifurcations in planar filippov systems,” International Journal of Bifurcation and Chaos, vol. 13, pp. 2157–2188, aug 2003.spa
dc.relation.referencesJ. Wang, X. Chen, and L. Huang, “The number and stability of limit cycles for planar piecewise linear systems of node–saddle type,” Journal of Mathematical Analysis and Applications, vol. 469, pp. 405–427, Jan. 2019.spa
dc.relation.referencesZ. Galias and X. Yu, “Study of periodic solutions in discretized two-dimensional sliding-mode control systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, pp. 381–385, June 2011.spa
dc.relation.referencesD. J. W. Simpson and J. D. Meiss, “Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps,” Nonlinearity, vol. 22, pp. 1123–1144, Apr. 2009.spa
dc.relation.referencesD. J. W. Simpson and J. D. Meiss, “Resonance near border-collision bifurcations in piecewise-smooth, continuous maps,” Nonlinearity, vol. 23, pp. 3091–3118, Nov. 2014.spa
dc.relation.referencesD. J. W. Simpson, “Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form,” International Journal of Bifurcation and Chaos, vol. 24, p. 1430018, June 2014.spa
dc.relation.referencesB. Wang, X. Yu, and X. Li, “ZOH discretization effect on higher-order sliding-mode control systems,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 4055–4064, Nov. 2008.spa
dc.relation.referencesH. E. Nusse and J. A. Yorke, “Border-collision bifurcations including “period two to period three” for piecewise smooth systems,” Physica D: Nonlinear Phenomena, vol. 57, pp. 39–57, jun 1992.spa
dc.relation.referencesP. Kowalczyk, “Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps,” Nonlinearity, vol. 18, pp. 485–504, Dec. 2004.spa
dc.relation.referencesZ. Elhadj, “Robust chaos in piecewise nonsmooth map of the plane,” Journal of Mathematical Sciences, vol. 177, pp. 366–372, Aug. 2009.spa
dc.relation.referencesC. E. Shannon, “Communication theory of secrecy systems,” Bell System Technical Journal, vol. 28, pp. 656–715, Oct. 1949.spa
dc.relation.referencesZ. Hua, Y. Zhou, C.-M. Pun, and C. P. Chen, “2D sine logistic modulation map for image encryption,” Information Sciences, vol. 297, pp. 80–94, Mar. 2015.spa
dc.relation.referencesA. Akhshani, S. Behnia, A. Akhavan, H. A. Hassan, and Z. Hassan, “A novel scheme for image encryption based on 2D piecewise chaotic maps,” Optics Communications, vol. 283, pp. 3259–3266, Sept. 2010.spa
dc.relation.referencesZ. Hua and Y. Zhou, “Image encryption using 2D logistic-adjusted-sine map,” Information Sciences, vol. 339, pp. 237–253, Apr. 2016.spa
dc.relation.referencesW. Liu, K. Sun, and C. Zhu, “A fast image encryption algorithm based on chaotic map,” Optics and Lasers in Engineering, vol. 84, pp. 26–36, Sept. 2016.spa
dc.relation.referencesN. Tsafack, S. Sankar, B. Abd-El-Atty, J. Kengne, J. K. C., A. Belazi, I. Mehmood, A. K. Bashir, O.-Y. Song, and A. A. A. El-Latif, “A new chaotic map with dynamic analysis and encryption application in internet of health things,” IEEE Access, vol. 8, pp. 137731–137744, 2020.spa
dc.relation.referencesX. Wang and J. Yang, “A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient,” Information Sciences,vol. 569, pp. 217–240, Aug. 2021.spa
dc.relation.referencesH. Zhu, Y. Zhao, and Y. Song, “2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption,” IEEE Access, vol. 7, pp. 14081–14098, 2019.spa
dc.relation.referencesG. Alvarez and S. Li, “Some basi cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, vol. 16, pp. 2129–2151, Aug 2006.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembAnálisis dinámicospa
dc.subject.proposalCaos robustospa
dc.subject.proposalMapa estroboscópicospa
dc.subject.proposalMapa dos dimensionalspa
dc.subject.proposalSistema discontinuo lineal a trozosspa
dc.subject.proposalAtractor caóticospa
dc.subject.proposalRobust chaoseng
dc.subject.proposalStroboscopic mapeng
dc.subject.proposalTwo dimensional mapeng
dc.subject.proposalDiscontinuous piece-wise linear systemseng
dc.subject.proposalUnstable periodic solutioneng
dc.subject.proposalChaotic attractoreng
dc.titleCaos robusto en un mapa estroboscópico discontinuo de dimensión dosspa
dc.title.translatedRobust chaos in a discontinuous stroboscopic planar mapeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1005964570.2022.pdf
Tamaño:
8.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: