Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica

dc.contributor.authorDussán Cuenca, Anderson
dc.contributor.authorQuiroz Gaitán, Heiddy Paola
dc.contributor.authorCalderón Cómbita, Jorge Arturo
dc.contributor.editorOlaya Murillo, Angélica María
dc.contributor.otherRojas Rodríguez, Hernán
dc.contributor.otherFernández Suárez, Leonardo
dc.contributor.otherCubides, Camilo
dc.date.accessioned2021-08-17T15:17:45Z
dc.date.available2021-08-17T15:17:45Z
dc.date.issued2020
dc.descriptionIlustraciones y tablasspa
dc.description.abstractEste libro contiene fundamentos importantes desarrollados en trabajos de investigación, análisis y documentación, que permiten conocer la incidencia positiva de nuevos materiales basados en nanoestructuras semiconductoras y sus potenciales aplicaciones en sistemas de resguardo de la información y en la revolución tecnológica marcada por la espintrónica. (Texto tomado de la fuente).spa
dc.description.editionPrimera ediciónspa
dc.description.notesIncluye apéndices, índice análitico y glosariospa
dc.description.notesISBN de la versión impresa 9789587941609spa
dc.format.extentxviii, 108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.isbn9789587941616spa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79954
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.departmentSede Bogotáspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationeditionPrimera ediciónspa
dc.relation.referencesA Dussan, HP Quiroz, JG Martínez A. Nano-columnar grain growth structure of boron-compensated silicon thin. Solar Energy Materials & Solar Cells. 2012; 100:53-56.spa
dc.relation.referencesF BenyeTtou, A Aissat, MA Benamar, JP Vilcot. Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia. 2015; 74:139-147.spa
dc.relation.referencesM Fitra, I Daut, M Irwanto, N Gomesh, YM Irwan. Effect of Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013; 36:278-286.spa
dc.relation.referencesA del Río-De Santiago et al. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy. Applied Surface Science. 2015; 333:92-95.spa
dc.relation.referencesY Sbai, A Ait Raiss, L Bahmad, A Benyoussef. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation. Superlattices and Microstructures. 2017; 106:163-169.spa
dc.relation.referencesW Han, RK Kawakami, M Gmitra, J Fabian. Graphene Spintronics. Nature Nanotechnology, 2014;9:794-807.spa
dc.relation.referencesZ Mo et al. Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells. Optik–International Journal for Light and Electron Optics. 2017; 149:63-68.spa
dc.relation.referencesY Zhang, Z-X Xie, Y-X Deng, X Yu. Impurity distribution and ferromagnetism in Mn-doped GaAs nanowires: A first-principle study. Physics Letters A. 2015;379(42):2745-2749.spa
dc.relation.referencesF Brieler. Nanostructured Diluted Magnetic Semiconductors within Mesoporous Silica. Alemania: Giessen; 2005.spa
dc.relation.referencesM Furis, N Rawat, JG Cherian, A Wetherby, R Waterman, S McGill. Organic analogues of diluted magnetic semiconductors: bridging quantum chemistry to condensed matter physics. Proc. SPIE 9551. 2015; Spintronics VIII:95512.spa
dc.relation.referencesJA Calderón. Estudio de las propiedades ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica [Tesis de Maestría]. Bogotá D. C.: Universidad Nacional de Colombia; 2016.spa
dc.relation.referencesT Shinjo. Nanomagnetism and Spintronics. Oxford: Elsevier; 2009.spa
dc.relation.referencesJP Liu, E Fullerton, O Gutfleisch, DJ Sellmyer. Nanoscale Magnetic Materials and applications. New York, USA: Springer; 2009.spa
dc.relation.referencesK Sato, E Saitoh. Spintronics for Next Generation Innovative Devices. 1. a ed. United Kingdom: John Wiley & Sons; 2015.spa
dc.relation.referencesMN Baibich et al. Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices. Physical Review Letters. 1988 nov;61(21):2472-2475.spa
dc.relation.referencesG Binasch, P Grünberg, F Saurenbach, W Zinn. Enhanced Magnetoresistance in Layered Magnetic Structures with antiferromagnetic interlayer exchange. Physical Review B. 1989 marzo;39(7):4828-4830.spa
dc.relation.referencesibm Reaserch. ibm Reaserch [Online]. Disponible en http://www.research.ibm. com/research/gmr.html (12 de marzo de 2020).spa
dc.relation.referencesT Matsuno, S Sugahara, M Tanaka. Novel Reconfigurable Logic Gates Using Spin Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics. 2004 sep;34(9A):6032-6037.spa
dc.relation.referencesV Dediu, M Murgia, MC Matacotta, C Taliani, S Barbanera. Room Temperature spin polarized injection in organic semiconductor. Solid State Communications. 2002; 122:181-184.spa
dc.relation.referencesM Ouyang, DD Awschalom. Coherent Spin Transfer Between Molecularly Bridged Quantum Dots. Science. 2003 ago; 301:1074-1078.spa
dc.relation.referencesFJ Wang, ZH Xiong, D Wu, J Shi, ZV Vardeny. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synthetic Metals. 2005; 155:172-175.spa
dc.relation.referencesJK Furdyna. Diluted Magnetic Semiconductors. Journal of Applied Physics. 1998 mar;64(4):29-54.spa
dc.relation.referencesT Dietl. Transport properties of ii-vi semimagnetic semiconductors. Journal of Crystal Growth. 1990;101(1-4):808-817.spa
dc.relation.referencesJ Kossut, JA Gaj. Basic Consequences of sp-d and d-d interactions in dms. J Kossut (ed.). Introduction to the Physics of Diluted Magnetic Semiconductors. New York, usa: Springer; 2010. ch. 1. Pp. 1-17.spa
dc.relation.referencesH Ohno et al. (GaMn)As: A New Diluted Magnetic Semiconductor Based on GaAs. Applied Physics Letters. 1996;69(3):363-365.spa
dc.relation.referencesH Ohno. Preparation and Properties of iii–v based New Diluted Magnetic Semiconductors. Advances in colloid and Interface Science. 1997;71-72:61-75.spa
dc.relation.referencesT Dielt, H Ohno, F Matsukura, J Cibert, D Ferrand. Zener Model Description of Ferromagnetism in Zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019-1022.spa
dc.relation.referencesK Sato et al. First-principles Theory of Dilute Magnetic Semiconductors. Reviews of Modern Physics. 2010 may; 82:1633-1690.spa
dc.relation.referencesT Dietl, H Ohno. Diluted Ferromagnetic Semiconductors: Physics and Spintronics Structures. Reviews of Modern Physics. 2014; 86:187-251.spa
dc.relation.referencesH Wang, L Chen, J Zhao. Enhancement of the Curie temperature of ferromagnetic Semiconductor (Ga,Mn)As. Science China Physics, Mechanics and Astronomy. 2013 ene;56(1):99-110.spa
dc.relation.referencesWZ Wang et al. Influence of Si doping on magnetic properties of (Ga,Mn)As. Physica E. 2008 jun;41:84-87.spa
dc.relation.referencesYJ Cho, KM Yu, X Liu, W Walukiewicz, JK Furdyna. Effects of donor doping on Ga1−xMnxAs. Applied Physics Letters. 2008 dic; 93:262505-1-262505-3.spa
dc.relation.referencesGM Schott et al. Doping of low-temperature GaAs and GaMnAs with carbon. Applied Physics Letters. 2008 nov;85(20):4678-4680.spa
dc.relation.referencesT Dietl, H Ohno, F Matsukura, J Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000 feb 11;287(5455):1019-1022.spa
dc.relation.referencesT Dietl, H Ohno, F Matsukura. Hole-mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Physical Review B. 2001 abr; 63:195205-1-195205-21.spa
dc.relation.referencesYD Park et al. Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C. Physical Review B. 2003;68:085210-1-085210-5.spa
dc.relation.referencesKY Wang et al. (Ga,Mn)As Grown on (311) GaAs Substrates: Modified Mn Incorporation and Magnetic Anisotropies. Physical Review B. 2005 sep; 72:115207-1-115207-6.spa
dc.relation.referencesU. Wurstbauer et al. Ferromagnetic GaMnAs grown on (110) faced GaAs. Applied Physics Letters. 2008 mar;92(102506):102506-1-102506-3.spa
dc.relation.referencesKY Wang et al. Magnetism in (Ga,Mn)As Thin Films With TC Up To 173K. aip Conference Proceedings. 2005; 772:333-334.spa
dc.relation.referencesK Khazen, HJ von Bardeleben, JL Cantin. Intrinsically limited critical temperatures of highly doped Ga1−xMnxAs thin films. Physical Review B. 2010 jun;81(235201):235201-1-235201-6.spa
dc.relation.referencesS Fukami and H Ohno. Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics. 2017 jun;56(08002A1):0802A1-1-0802A1-12.spa
dc.relation.referencesS Ikeda et al. Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters. 2008;93(082508):082508-1-082508-3.spa
dc.relation.referencesJM Albella. Láminas delgadas y recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid: Editorial csic; 2003.spa
dc.relation.referencesY Pauleau. Chemical Physics of Thin Film Deposition Processes for Micro- and Nano- Technologies. Lithuania: Springer; 2001.spa
dc.relation.referencesH Singh Nalwa. Deposition and Processing. San Diego Ca.: Academic Press, 2002.spa
dc.relation.referencesDM Mattox. Handbook of Physical Vapor Deposition (pvd) Processing. usa: William Andrew; 2010.spa
dc.relation.referencesJA Calderón, F Mesa, A Dussan. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys. Applied Surface Science. 2017; 396:1113-1118.spa
dc.relation.referencesA Fert. Espintrónica: Electrones, espines, ordenadores y teléfonos. Acto de Investidura del Grado de Doctor Honoris Causa. Zaragoza, España: Prensas Universitarias de Zaragosas; 2009. Pp. 31-49.spa
dc.relation.referencesK Takanashi, S Mizukami. Spintronic Properties and Advanced Materials. Spintronic Properties and Advanced Materials. New York, usa: Springer; 2013. ch. 5.spa
dc.relation.referencesZ Wilamowski, AM Werpachowska. Spintronics in semiconductors. Materials Science-Poland. 2006;24(3):1-5.spa
dc.relation.referencesN Badera et al. Photoconductivity of cobalt doped CdS thin films. Physics Procedia. 2013; 49:190-198.spa
dc.relation.referencesJ Ling, Y Shengjiao, J Yimin, W Chunming. Electrochemical Deposition of Diluted Magnetic Semiconductor ZnMnSe2 On Reduced Graphene Oxide polyimide Substrate and its Properties. Journal of Alloys and Compounds. 2014; 609:233-238.spa
dc.relation.referencesS Güner et al. The structural and magnetic properties of Co+ implanted ZnO films. Applied Surface Science. 2014;310:235-241.spa
dc.relation.referencesA Chtchelkanova, S Wolf, Y Idzerda. Magnetic Interactions and Spin Transport. New York: Springer; 2003. Pp. 343-348.spa
dc.relation.referencesNA Sobolev et al. Ferromagnetic Resonance and Hall Effect Characterization of GaMnSb Layers. Journal of Superconductivity and Novel Magnetism. 2007; 20:399-403.spa
dc.relation.referencesVR Singh et al. Bulk and surface magnetization of Co atoms in rutile Ti1−xCoxO2−δ thin films revealed by x-ray magnetic circular dichroism. Journal of Physics: Condensed Matter. 2011; 23:176001-176005.spa
dc.relation.referencesP Misra. Spintronics. Physics of Condensed Matter. 1ra ed. Londres: Elsevier; 2012, pp. 339-366.spa
dc.relation.references[58] L Sheng. Semiconductor Physical Electronics. New York: Springer; 2006.spa
dc.relation.referencesJ Singleton. Band Theory and Electronic Properties of Solids. Londres: Oxford University Press; 2012.spa
dc.relation.referencesPS Dutta, HL Bhat, V Kumar. The physics and technology of gallium antimonide: An emerging optoelectronic material. Applied Physics Review. 1997;81(9):5821-5870.spa
dc.relation.referencesP Klipstein. Physics and technology of antimonide heterostructure devices at scd: Proceedings of spie. The International Society for Optical Engineering. 2015; 9370:937020-1-937020-8.spa
dc.relation.referencesJM Albella, JM Martínez-Duart, JJ Jiménez Lidón. Optoelectrónica y comunicación óptica. Madrid: Consejo Superior de Investigaciones Científicas; 1988.spa
dc.relation.referencesLE Orgel. Introducción a la Química de los Metales de Transición: Teoría de Campo Ligando. Madrid: Editorial Reverté; 2003.spa
dc.relation.referencesH Munekata et al. Diluted magnetic iii-v semiconductors. Physical Review Letters. 1989;63(17):1849-1852.spa
dc.relation.referencesH Ohno. Preparation and properties of iii-v based new diluted magnetic semiconductors. Advances in Colloid and Interface Science. 1997;71-72:61-75.spa
dc.relation.references——. Preparation and properties of iii-v based new diluted magnetic semiconductor. Advances in Colloid and Interface Science, 1997.spa
dc.relation.referencesF Matsukura, E Abe, H Ohno. Magnetotransport properties of (GaMn)Sb. Journal of Applied Physics. 2000;87(9):6442-6444.spa
dc.relation.referencesS Yanagi, K Kuga, T Slupinski, H Munekata. Carrier-induced ferromagnetic order in the narrow gap iii–v magnetic alloy semiconductor (In,Mn)Sb. Physica E. 2004;20:333-337.spa
dc.relation.referencesT Adhikari, S Basu. Electrical properties of Gallium Manganese Antimonide: a New Diluted Magnetic Semiconductor. Japan Journal Applied Physics. 1994;33:4581-4582.spa
dc.relation.referencesM-Y Zhu et al. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline film. Acta Physica Sinica. 2015;64(7):077501.spa
dc.relation.referencesA Talantsev, O Koplak, R Morgunov. Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films. Superlattices and Microstructures. 2016;95:14-23.spa
dc.relation.referencesJ Kossut, JA Gaj. Introduction to the Physics of Diluted Magnetic Semiconductors. New York: Springer; 2010.spa
dc.relation.referencesS Basu, T Adhikari. Variation of band gap with Mn concentration in Ga1-xMnx Sb a new iii-v Diluted Magnetic Semiconductor. Solid State Comunications. 1995; 95(1):53-55.spa
dc.relation.referencesPK Sharma, RK Dutta, AC Pan. Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. Journal of Magnetism and Magnetic Materials.2009;321:3457-3461.spa
dc.relation.referencesSK Kamilla, BK Samantaray, S Basu. Effect of Ni concentrations on the microhardness of GaNiSb ternary alloys. Journal of Alloys and Compounds. 2006; 414:235-239.spa
dc.relation.referencesML Ferreira Nascimento. Brief history of X-ray tube patents. World Patent Information. 2014; 37:48-53.spa
dc.relation.referencesH Alloul. Introduction to the Physics of Electrons in Solids. New York: Springer; 2010.spa
dc.relation.referencesAH Compton, SK Allison. X-rays in Theory and Experiment. New York: D. Van Nostrand Company; 1935.spa
dc.relation.referencesY Waseda, E Matsubara, K Shinoda. X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. New York: Springer; 2011.spa
dc.relation.referencesHP Quiroz, JA Calderón, A Dussan. Estructura cristalina del compuesto Cu2 ZnSnSe4 depositado por co-evaporación: análisis comparativo estannitakesterita. Universitas Scientiarum. 2014;19(2):115-121.spa
dc.relation.referencesJA Pinilla Arismendy. Implementación de los métodos rir y Rietveld para análisis cuantitativo de fases cristalinas con y sin presencia de material amorfo por difracción de rayos-X de muestras policristalinas[Tesis de maestría]. Bucaramanga: Universidad Industrial de Santander; 2005.spa
dc.relation.referencesRA Young. Introduction to the Rietveld Method. Oxford: Oxford University Press; 1993.spa
dc.relation.referencesV Pecharsky, P Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials. New York: Springer; 2009.spa
dc.relation.referencesHP Quiroz. Preparación y estudio de las propiedades estructurales, ópticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia; 2014.spa
dc.relation.referencesVJ Esteve Cano. El método de Rietveld. España: Universitat Jaume I; 2006.spa
dc.relation.referencesHP Quiroz, A Dussan. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies. Journal of Applied Physics. 2016; 120:051703.spa
dc.relation.referencesHP Quiroz, A Dussan. Nanocrystalline Cu2 ZnSnSe4 thin films for solar cells application: Microdiffraction and structural characterization. Journal of Applied Physics. 2016; 120:051705.spa
dc.relation.referencesA Dussan, HP Quiroz, NJ Seña Gaibao. Identificación de una Nueva Fase en la Estructura Cristalina del Compuesto Cuaternario Cu2 ZnSnSe4 Durante la Etapa Incorporación del ZnSe. Revista EIA. 2014;11(1): E25-E29.spa
dc.relation.referencesN Seña, A Dussan, F Mesa, E Castaño, R González-Hernández. “Electronic Structure and Magnetism of Mn-Doped GaSb for Spintronic Applications: A dft Study. Journal Applied Physics. 2016; 120:051704.spa
dc.relation.referencesJA Calderón, HP Quiroz, A Dussan. Optical and Structural Properties of GaSbDoped Mn Based Diluted Magnetic Semiconductor Thin Films Grown via dc Magnetron Sputtering. Advanced Materials Letters. 2017;8(5):650-655.spa
dc.relation.referencesKV Shalímova. Física de los Semiconductores. Moscú: Mir; 1975.spa
dc.relation.referencesC Kittel. Introducción a la Física del Estado Sólido. Madrid: Editorial Reverté; 2003.spa
dc.relation.referencesCP Pool Jr., FJ Owens. Introducción a la Nanotecnología. Madrid: Editorial Reverté; 2007.spa
dc.relation.referencesPM Amirthara, DG Seiler. Optical and Physical Properties of Materials. New York: McGraw Hil; 2009.spa
dc.relation.referencesSR Bhattacharyya, RN Gayen, R Paul, AK Pal. Determination of optical constants of thin films from transmittance trace. Thin Solid Films. 2009; 517:5530–5536.spa
dc.relation.referencesR Swanepoel. Determination of the Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientific Instruments. 1983; 16:1214-1222.spa
dc.relation.referencesA Dussan, HP Quiroz. Optical and Morphological Properties of TiO2 Nanotubes for Sensor Applications. Advanced Materials Research. 2015; 1119:121-125.spa
dc.relation.referencesS Blundell. Magnetism in Condensed Matter. Londres: Oxford University Press; 2001.spa
dc.relation.referencesRA Salas Merino. Modelado Avanzado de Núcleos de Ferritas Comerciales en Simuladores de Circuitos [Tesis doctoral]. Madrid: Universidad Carlos iii de Madrid Escuela Politécnica Superior; 2011.spa
dc.relation.referencesPaul Hlawiczka. Introducción a la electrónica cuántica. New York: Editorial Reverté; 1977.spa
dc.relation.referencesN Nagaosa, J Sinova, S Onoda, AH MacDonald, NP Ong. Anomalous Hall Effect. Reviews of Modern Physics. 2010; 82:1540-1589.spa
dc.relation.referencesX Guo. Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science. 2001; 20:168-176.spa
dc.relation.referencesJJ Van Hapert. Hopping Conduction and Chemical Structure. Alemania: Faculteit Natuur- en Sterrenkunde Universiteit Utrecht; 1973.spa
dc.relation.referencesA Dussan, RH Buitrago. Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics. 2005;97(043711):043711-1-043711-5.spa
dc.relation.referencesM Thamilselvan, K Premnazeer, SK Narayandass, Field and temperaturedependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B. 2003; 337:404–412.spa
dc.relation.referencesPP Freitas et al. Spin Valves Sensor. Sensor and Actuartos. 2000; 81:2-8.spa
dc.relation.referencesC Hordequin, JP Nozieres, J Pierre. Half metallic NiMnSb-based spin-valve structures. Journal of Magnetism and Magnetic Materials. 1998; 183:225-231.spa
dc.relation.referencesZ Michael, JT Martin. Spin Electronics: Lecture Notes in Physics. Berlin: Springer; 2001.spa
dc.relation.referencesR Ferreira et al. Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection,” Journal Applied Physics, vol. 99, pp. 08K706:1- 08K706:3, 2006.spa
dc.relation.referencesAN Slavin, V Tiberkevich, ieee Trans. Magnetism. 2009; 45:1875.spa
dc.relation.referencesE Monteblanco, C Ortiz Pauyac, W Savero, JC Rojas Sánchez. Espintrónica: la Electrónica del Espín. Spintronics: Spin Electronics. Revista Tecnifica (Tecnia), 2017:5-16.spa
dc.relation.referencesRB Morgunov, GL L’vova, AD Talantsev, Y Lu, S Mangin. Ferromagnetic resonance of CoFeB/Ta/CoFeB spin valves versus CoFeB film. Thin Solid Films. 2017; 640:8-13.spa
dc.relation.referencesAV Svalovab, VO Vaskovskiy, I Orue, GV Kurlyandska. Tailoring of switching field in GdCo-based spin valves by inserting Co layer. Journal of Magnetism and Magnetic Materials. 2017; 441:795-798.spa
dc.relation.referencesK Tarawneh, N Al-Aqtash, R Sabiria. Large magnetoresistance of MnBi/Bi/MnBi spin valve. Journal of Magnetism and Magnetic Materials. 2014; 363:43-48.spa
dc.relation.referencesME Bernal, A Dussan, F Mesa. Structural, optical and morphological properties of Ga1−xMnx As thin films deposited by magnetron sputtering for spintronic device applications. Physica B: Condensed Matter. 2012;407(16):3210-3213.spa
dc.relation.referencesM Gryglas-Borysiewicz et al. Magnetotransport investigations of (Ga,Mn) As/GaAs Esaki diodes under hydrostatic pressure. Applied Surface Science. 2017; 396:1875-1879.spa
dc.relation.referencesSD Birajdar, RC Alange, SD More, VD Murumkar, KM Jadhav. Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manufacturing. 2018; 20:174-180.spa
dc.relation.referencesSA Ahmed. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics. 2017; 7:604-610.spa
dc.relation.referencesAA Raiss, Y Sbai, L Bahmad, A Benyoussef. Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. Journal of Magnetism and Magnetic Materials. 2015; 385:295-301.spa
dc.relation.referencesSP Nehra, MK Jangid, S Sri. Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films. International Journal of Hydrogen Energy. 2009;34(17):7306-7310.spa
dc.relation.referencesA Dussan, A Bohórquez, HP Quiroz. Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Applied Surface Science. 2017; 424:111-114.spa
dc.relation.referencesL Wang et al. Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials. 2018; 342:579-588.spa
dc.relation.referencesAD Talantsev, OV Koplak, RB Morgunov. Ferromagnetism and microwave magnetoresistance of GaMnSb films. Physics of the Solid State. 2015;57(2):322-330.spa
dc.relation.referencesVA Elyukhin. Self-assembling of 1Sb4Mn magnetic clusters in GaAs:(Mn, Sb). Superlattices and Microstructures. 2014; 70:7-12.spa
dc.relation.referencesU Ilyas et al. Enhanced ferromagnetic response in ZnO:Mn thin films by tailoring composition and defect concentration. Journal of Magnetism and Magnetic Materials. 2013; 344:171-175.spa
dc.relation.referencesC Ding, S Wu, L Wu, Y Xu, L Zhang. The investigation of the defect structures for Co2+ in ZnO microwires, thin films and bulks. Journal of Physics and Chemistry of Solids. 2017; 106:94-98.spa
dc.relation.referencesBK Meyer, H Alves, DM Hofmann, W Kriegseis, et al. Physica Status Solidi B. 2004;241(2): 231-260.spa
dc.relation.referencesO Madelung. Data in Science and Technology: Semiconductors. Berlín: Spring; 1992.spa
dc.relation.referencesHP Quiroz. Preparación y Estudio de las Propiedades Estructurales, Ópticas y Morfológicas de Nanotubos de TiO2 para su Aplicación en Sensores Ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia, 2014.spa
dc.relation.referencesI Tatlıdil, E Bacaksız, C Kurtuluş Buruk, C Breen, M Sökmen. A Short Literature Survey on Iron and Cobalt Ion Doped TiO2 Thin Films and Photocatalytic Activity of these Films Against Fungi. Journal of Alloys and Compounds. 2017; 517:80-86.spa
dc.relation.referencesD Sarkar, CK Ghosh, UN Maiti, KK Chattopadhyay. Effect of Spin Polarization on the Optical Properties of Co-doped TiO2 Thin Films. Physica B. 2011; 406:1429–1435.spa
dc.relation.referencesI Ganesh et al. Preparation and Characterization of Co-doped TiO2 Materials for Solar Light Induced Current and Photocatalytic Applications. Materials Chemistry and Physics. 2012; 135:220-234.spa
dc.relation.referencesY Matsumoto, M Murakami, T Shono, T Hasegawa, T Fukumura, M Kawasaki, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science. 2001; 291:854-856.spa
dc.relation.referencesAJ Bohórquez, HP Quiroz, A Dussan. Growth and Crystallization of Cobaltdoped TiO2 Alloys: Effect of Substrate and Annealing Temperature. Applied Surface Science. 2019; 474:97-101.spa
dc.relation.referencesHP Quiroz. Estudio de las Propiedades Físicas del TiO2:Co como un Semiconductor Magnético Diluido para Aplicaciones en Espintrónica [Tesis de doctorado]. Bogotá D.C.: Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesMV Kamalakar, C Groenveld, A Dankert, SP Dash. Long distance spin communication in chemical Vapor Deposited Graphene. Nature Communications [Internet]. 2015: 1-8. www.nature.com/naturecommunicationsspa
dc.relation.referencesAF Vincent et al. Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems. ieee Transactions on Biomedical Circuits and Systems. 2015 abr;9(2):166-174.spa
dc.rightsDerechos Reservados al Autor, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembEspintrónicaspa
dc.subject.lembElectrónica molecularspa
dc.subject.lembMicroelectrónicaspa
dc.subject.proposalNanomaterialesspa
dc.subject.proposalElectronesspa
dc.subject.proposalMateriales espintrónicosspa
dc.titleNanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónicaspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneral
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Nanomateriales que revolucionan la tecnología.pdf
Tamaño:
11.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro del Departamento de Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: