Secuenciación dirigida de nueva generación como estrategia para el diagnóstico de tuberculosis resistente a medicamentos en Colombia
dc.contributor.advisor | Puerto Castro, Gloria Mercedes | spa |
dc.contributor.advisor | Murcia Aranguren, Martha Isabel | spa |
dc.contributor.author | Vasquez Chaves, Luisa Fernanda | spa |
dc.contributor.cvlac | Luisa Fernanda Vasquez Chaves | spa |
dc.contributor.researchgroup | Grupo de Micobacterias – Instituto Nacional de Salud | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000050 | |
dc.date.accessioned | 2025-09-23T22:15:17Z | |
dc.date.available | 2025-09-23T22:15:17Z | |
dc.date.issued | 2025-08-26 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Introducción: La tuberculosis continúa siendo un problema de salud pública de gran magnitud a nivel global; a pesar de que es una enfermedad prevenible y curable, para el año 2023, se convirtió en la principal causa de muerte en el mundo ocasionada por un solo agente infeccioso, superando al COVID-19. La Organización Mundial de la Salud (OMS) reportó 400 mil casos de tuberculosis resistente a rifampicina (RR) y multirresistente (TB-RR/MDR), con un incremento notable para América y el Sudeste Asiático. En la región de las Américas, se estima que se presentan hasta 15 mil casos de TB-RR/MDR anualmente; sin embargo, solo el 61% de los casos nuevos y el 68% de los previamente tratados tienen acceso a pruebas de susceptibilidad para rifampicina, y menos del 20% acceden a pruebas de susceptibilidad para fluoroquinolonas a pesar de que existen sistemas de vigilancia utilizando pruebas a susceptibilidad a fármacos usando métodos fenotípicos y genotípicos basados en PCR, que presentan limitaciones de masificación, implementación y tiempos de respuesta. Colombia está entre los diez países de América con mayor número de casos notificados de TB- RR/MDR. En 2022, el Instituto Nacional de Salud (INS) informó que, de 17.595 casos de tuberculosis identificados, 473 (2,7%) fueron de TB farmacorresistente, lo que representa un incremento del 33% en comparación con 2021. Objetivo: Evaluar un panel de secuenciación dirigida de próxima generación por Oxford Nanopore para el diagnóstico de tuberculosis resistente a medicamentos en Colombia, como método complementario a la vigilancia de la resistencia a los medicamentos. Metodología: se realizó un estudio experimental para el diseño y estandarización de un panel de secuenciación de nueva generación usando la tecnología Oxford Nanopore para la determinación de susceptibilidad a medicamentos usados para el tratamiento de la TB sensible y farmacorresistente en Colombia. El panel fue comparado con los métodos de referencia para pruebas de susceptibilidad en TB (pruebas fenotípicas en medio líquido) y para secuenciación de genoma por la tecnología de Illumina. Resultados: Se realizó la estandarización de un panel para secuenciación dirigida por Oxford Nanopore que comprende 24 genes asociados con farmacorresistencia en TB e involucra más de mil mutaciones, para todos los medicamentos usados en el tratamiento, incluidos los de primera línea y los de los grupos A, B y C de la OMS. El panel tuvo un desempeño comparado con la prueba fenotípica así, en concordancia para la identificación de mutaciones asociadas a resistencia del 89% con las mejores fuerzas de concordancia en la identificación de mutaciones asociadas a resistencia para Clofazimina y Bedaquilina con índices Kappa de 0.78 y 0.79 respectivamente. La sensibilidad se ubicó entre el 58 y el 80% y la especificidad entre el 82 y el 100%. Al comparar el desempeño del panel estandarizado con la secuenciación de genoma completo por Illumina, la concordancia fue del 94% con una alta fuerza de concordancia para Rifampicina, Linezolid, Bedaquilina y Clofazimina, con índices Kappa de 1 para cada antibiótico respectivamente. La sensibilidad se presentó del 67 al 100% y la especificidad del 85 al 100%. Se presentaron resultados no concordantes con una frecuencia del 8.3% entre el panel de secuenciación y los resultados fenotípicos indicando la posible presencia de mecanismos de resistencia intrínsecos que no son detectados por metodologías moleculares. Conclusión: el panel estandarizado tiene un buen desempeño y concordancia para identificar las mutaciones asociadas a todos los fármacos utilizados para el tratamiento de la TB en Colombia, superando las limitaciones de las pruebas fenotípicas y permitiendo al Laboratorio Nacional de Referencia de Colombia en el Instituto Nacional de Salud disponer de nuevas herramientas con tecnología de punta para la vigilancia de la farmacorresistencia con miras al mejoramiento de la salud pública. (Texto tomado de la fuente). | spa |
dc.description.abstract | Introduction: Tuberculosis continues to be a major global public health problem. Despite being a preventable and curable disease, by 2023, it had become the leading cause of death worldwide caused by a single infectious agent, surpassing COVID-19. The World Health Organization (WHO) reported 400,000 cases of rifampicin-resistant (RR) and multidrug-resistant tuberculosis (RR/MDR-TB), with a notable increase in the Americas and Southeast Asia. In the Americas, it is estimated that up to 15,000 cases of RR/MDR-TB occur annually; However, only 61% of new cases and 68% of previously treated cases have access to rifampicin susceptibility testing, and less than 20% have access to fluoroquinolone susceptibility testing, despite existing surveillance systems that use drug susceptibility testing using PCR-based phenotypic and genotypic methods, which present limitations in terms of massification, implementation, and response times. Colombia is among the ten countries in the Americas with the highest number of reported cases of RR/MDR-TB. In 2022, the National Institute of Health (INS) reported that of 17,595 identified tuberculosis cases, 473 (2.7%) were drug-resistant TB, representing a 33% increase compared to 2021. Objective: To evaluate a targeted next-generation sequencing panel using Oxford Nanopore for the diagnosis of drug-resistant tuberculosis in Colombia, as a complementary method to drug resistance surveillance. Methodology: An experimental study was conducted to design and standardize a next-generation sequencing panel using Oxford Nanopore technology for determining susceptibility to drugs used for the treatment of sensitive and drug-resistant TB in Colombia. The panel was compared with reference methods for TB susceptibility testing (liquid-based phenotypic testing) and for genome sequencing using Illumina technology. Results: An Oxford Nanopore-directed sequencing panel comprising 24 genes associated with drug resistance in TB and involving more than a thousand mutations was standardized for all drugs used in treatment, including first-line drugs and those in WHO groups A, B, and C. The panel performed well compared to the phenotypic test, achieving 89% concordance for the identification of resistance-associated mutations, with the highest strengths of concordance for clofazimine and bedaquiline, with Kappa indices of 0.78 and 0.79, respectively. Sensitivity ranged from 58% to 80%, and specificity from 82% to 100%. Comparing the performance of the standardized panel with Illumina whole-genome sequencing, concordance was 94%, with high strengths of concordance for rifampin, linezolid, bedaquiline, and clofazimine, with Kappa indices of 1 for each antibiotic, respectively. Sensitivity ranged from 67% to 100%, and specificity from 85% to 100%. Non-concordant results were present, with a frequency of 8.3% between the sequencing panel and the phenotypic results, indicating the possible presence of intrinsic resistance mechanisms not detected by molecular methodologies. Conclusion: The standardized panel has good performance and concordance in identifying mutations associated with all drugs used for TB treatment in Colombia, overcoming the limitations of phenotypic testing and allowing the Colombian National Reference Laboratory at the National Institute of Health to have new, cutting-edge tools for drug resistance surveillance, thus improving public health. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.researcharea | Epidemiología molecular de las micobacterias | spa |
dc.format.extent | 105 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88948 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, et al. Clinical manifestations and immune response to tuberculosis. Vol. 39, World Journal of Microbiology and Biotechnology. Springer Science and Business Media B.V.; 2023. | |
dc.relation.references | Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, et al. Physiology of Mycobacteria. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728839/pdf/nihms489107.pdf | |
dc.relation.references | Deretic V, Singh S, Master S, Harris J, Roberts E, Kyei G, et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol [Internet]. 1 de mayo de 2006; 8(5):719-27. Disponible en: http://doi.wiley.com/10.1111/j.1462-5822.2006.00705.x | |
dc.relation.references | Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC154363/pdf/pq0903005437.pdf | |
dc.relation.references | Mottola G. The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol [Internet]. 2014; 4:180. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25566515 | |
dc.relation.references | Luna JAC. La vieja batalla entre la especie humana y el bacilo de Koch. ¿Es posible soñar con erradicar la tuberculosis? An Sist Sanit Navar [Internet]. 2007; 30(2):163-80. Disponible en: http://scielo.isciii.es/pdf/asisna/v30s2/original11.pdf | |
dc.relation.references | Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436706/pdf/nihms-689653.pdf | |
dc.relation.references | Gorocica P, Del M, Jiménez-Martínez C, Garfias Y, Sada I, Lascurain R. Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénesis de la tuberculosis. Segunda Época [Internet]. 2005; 18(2). Disponible en: www.iner.gob.mx | |
dc.relation.references | Maulén NP. Factores de virulencia de Mycobacterium tuberculosis. Rev Med Chile [Internet]. 2011 [citado 12 de octubre de 2017]; 139:1605-10. Disponible en: http://www.scielo.cl/pdf/rmc/v139n12/art12.pdf | |
dc.relation.references | Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. [citado 13 de octubre de 2017]; Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314449/pdf/nihms634612.pdf | |
dc.relation.references | Reiling N, Homolka S, Kohl TA, Steinhäuser C, Kolbe Schütze S, et al. Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. International Journal of Medical Microbiology [Internet]. 2017; 1-0. Disponible en: www.elsevier.com/locate/ijmm | |
dc.relation.references | Hoal EG, Dippenaar A, Kinnear C, Van Helden PD, Möller M. The arms race between man and Mycobacterium tuberculosis: Time to regroup. 2017; Disponible en: www.elsevier.com/locate/meegid | |
dc.relation.references | Bottai D, Frigui W, Sayes F, Di Luca M, Spadoni D, Pawlik A, et al. TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat Commun. 1 de diciembre de 2020;11(1). | |
dc.relation.references | Ramirez LMN, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One. 1 de abril de 2020;15(4). | |
dc.relation.references | Arráiz, Bermúdez, Urdaneta. Resistencia a drogas en M. Tuberculosis: Bases moleculares. Archivos Venezolanos de Farmacología y Terapéutica [Internet]. 2005; 24(1):23-31. Disponible en: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0798-02642005000100004 | |
dc.relation.references | Organización Panamericana de la Salud. Directrices unificadas de la OMS sobre la tuberculosis. Módulo 4: Tratamiento. Tratamiento de la tuberculosis farmacosensible. 2023 | |
dc.relation.references | World Health Organization. Meeting Report of the WHO Expert Consultation on the Definition of Extensively Drug- Resistant Tuberculosis, 27-29 October 2020. | |
dc.relation.references | OMS. Tratamiento de la tuberculosis farmacorresistente Módulo 4: Tratamiento Manual operativo de la OMS sobre la tuberculosis Actualización del 2022. Disponible en: https://doi. | |
dc.relation.references | Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. Vol. 128, Journal of Applied Microbiology. John Wiley and Sons Inc; 2020. p. 1547-67. | |
dc.relation.references | Mabhula, Singh. Drug-resistance in: Mycobacterium tuberculosis: Where we stand. Vol. 10, MedChemComm. Royal Society of Chemistry; 2019. p. 1342-60. | |
dc.relation.references | WHO. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance first edition. 2023. | |
dc.relation.references | WHO. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance Second edition. 2024. | |
dc.relation.references | WHO. Treatment of tuberculosis Guidelines. Fourth edition; 2010 | |
dc.relation.references | WHO. Treatment Of Tuberculosis Guidelines for treatment of drug-susceptible tuberculosis and patient care. 2017 | |
dc.relation.references | Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. INT J TUBERC LUNG DIS [Internet]. 2015; 19(11):1276-89. Disponible en: http://dx.doi.org/10.5588/ijtld.15.0389 | |
dc.relation.references | Caminero JA. State Of The Art State Of The Art Series Drug-resistant tuberculosis, Edited by C-Y. Chiang Number 4 In The Series Multidrug-resistant tuberculosis: epidemiology, risk factors and case fi nding. INT J TUBERC LUNG DIS [Internet]; 14(4):382-90. Disponible en: http://www.ingentaconnect.com/content/iuatld/ijtld/2010/00000014/00000004/art00003 ?crawler=true | |
dc.relation.references | Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2006; 50(8):2640-9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16870753 | |
dc.relation.references | Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution [Internet]. noviembre de 2016; 45:474-92. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27612406 | |
dc.relation.references | Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res [Internet]. 2001; 2(3):164-8. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/11686881 | |
dc.relation.references | Guo H, Seet Q, Denkin S, Parsons L, Zhang Y. Molecular characterization of isoniazid- resistant clinical isolates of Mycobacterium tuberculosis from the USA. J Med Microbiol [Internet]. 1 de noviembre de 2006; 55(11):1527-31. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17030912 | |
dc.relation.references | Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution. noviembre de 2016; 45:474-92 | |
dc.relation.references | Jagielski T, BakuŁa Z, Roeske K, Kamiński M, Napiórkowska A, Augustynowicz-Kopeć E, et al. Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy. 2014; 69(9):2369-75 | |
dc.relation.references | Campbell PJ, Morlock GP, Sikes RD, Dalton TL, Metchock B, Starks AM, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother [Internet]. mayo de 2011; 55(5):2032-41. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21300839 | |
dc.relation.references | Campbell E, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A DSA. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell [Internet]. 23 de marzo de 2001; 104(6):901-12. Disponible en: http://www.sciencedirect.com/science/article/pii/S0092867401002860 | |
dc.relation.references | Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: ¿what can we learn from rifampicin? Emerg Microbes Infect [Internet]. marzo de 2014; 3(3):e17. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26038512 | |
dc.relation.references | Ameeruddin Nusrath Unissa a LEH. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis [Internet]. 1 de julio de 2017; 105:96-107. Disponible en: http://www.sciencedirect.com/science/article/pii/S1472979216303705 | |
dc.relation.references | Xu G, Liu H, Jia X, Wang X, Xu P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Vol. 128, Tuberculosis. Churchill Livingstone; 2021. | |
dc.relation.references | Zhang S, Chen J, Shi W, Liu W, Zhang W, Zhang Y. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis [Internet]. Junio de 2013; 2(6): e34. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26038471 | |
dc.relation.references | Karmakar M, Rodrigues CHM, Horan K, Denholm JT, Ascher DB. Structure guided prediction of Pyrazinamide resistance mutations in pncA. Sci Rep. 1 de diciembre de 2020; 10(1). | |
dc.relation.references | Shrestha D, Maharjan B, Thapa J, Akapelwa ML, Bwalya P, Chizimu JY, et al. Detection of Mutations in pncA in Mycobacterium tuberculosis Clinical Isolates from Nepal in Association with Pyrazinamide Resistance. Curr Issues Mol Biol. 1 de septiembre de 2022; 44(9):4132- 41. | |
dc.relation.references | Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr [Internet]. 2013; 2(4):1-12. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25530919 | |
dc.relation.references | Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. Journal of Antimicrobial Chemotherapy [Internet]. 30 de septiembre de 2003; 52(5):790-5. Disponible en: https://academic.oup.com/jac/article- lookup/doi/10.1093/jac/dkg446 | |
dc.relation.references | Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis [Internet]. enero de 2003; 7(1):6-21. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12701830 | |
dc.relation.references | Islam MM, Hameed HMA, Mugweru J, Chhotaray C, Wang C, Tan Y, et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. Journal of Genetics and Genomics [Internet]. enero de 2017; 44(1):21-37. Disponible en: http://linkinghub.elsevier.com/retrieve/pii/S1673852716301497 | |
dc.relation.references | Da Silva PEA, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. Vol. 66, Journal of Antimicrobial Chemotherapy. 2011. p. 1417-30. | |
dc.relation.references | D Jain S, Prachand S, K Gupta A, Jain S. Fluoroquinolones for the Treatment of Tuberculosis: An Overview. Asian Journal of Research in Pharmaceutical Sciences. 20 de noviembre de 2023;333-7. | |
dc.relation.references | Mdluli K, Ma Z. Mycobacterium tuberculosis DNA Gyrase as a Target for Drug Discovery. Vol. 7, Infectious Disorders-Drug Targets. 2007. | |
dc.relation.references | Mayer C, Takiff H. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis. Microbiol Spectr. 15 de agosto de 2014;2(4). | |
dc.relation.references | Yadav S, Rawal G, Baxi M. Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Journal of Clinical and Diagnostic Research. 1 de agosto de 2016; 10(8):FM01-2. | |
dc.relation.references | Deshkar AT, Shirure PA. Bedaquiline: A Novel Diarylquinoline for Multidrug-Resistant Pulmonary Tuberculosis. Cureus. 29 de agosto de 2022. | |
dc.relation.references | Zharova T V., Grivennikova VG, Borisov VB. F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023. | |
dc.relation.references | Briffotaux J, Huang W, Wang X, Gicquel B. MmpS5/MmpL5 as an eflux pump in Mycobacterium species. Tuberculosis. 1 de diciembre de 2017;107:13-9. | |
dc.relation.references | Islam MM, Alam MS, Liu Z, Khatun MS, Yusuf B, Hameed HMA, et al. Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Vol. 10, Frontiers in Medicine. Frontiers Media SA; 2023. | |
dc.relation.references | Goulooze SC, Cohen AF, Rissmann R. Bedaquiline. Br J Clin Pharmacol. 1 de agosto de 2015; 80(2):182-4. | |
dc.relation.references | Bozdogan B, Appelbaum PC. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Vol. 23, International Journal of Antimicrobial Agents. Elsevier; 2004. p. 113-9. | |
dc.relation.references | Gan WC, Ng HF, Ngeow YF. Mechanisms of Linezolid Resistance in Mycobacteria. Vol. 16, Pharmaceuticals. Multidisciplinary Digital Publishing Institute (MDPI); 2023. | |
dc.relation.references | Stadler JAM, Maartens G, Meintjes G, Wasserman S. Clofazimine for the treatment of tuberculosis. Front Pharmacol. 2 de febrero de 2023; 14:1100488. | |
dc.relation.references | Park S, Jung J, Kim J, Han SB, Ryoo S. Investigation of Clofazimine Resistance and Genetic Mutations in Drug-Resistant Mycobacterium tuberculosis Isolates. J Clin Med. 1 de abril de 2022; 11(7). | |
dc.relation.references | Fekadu G, Tolossa T, Turi E, Bekele F, Fetensa G. Pretomanid development and its clinical roles in treating tuberculosis. Vol. 31, Journal of Global Antimicrobial Resistance. Elsevier Ltd; 2022. p. 175-84. | |
dc.relation.references | Nguyen TVA, Nguyen QH, Nguyen TNT, Anthony RM, Vu DH, Alffenaar JWC. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice. Vol. 62, International Journal of Antimicrobial Agents. Elsevier B.V.; 2023. | |
dc.relation.references | Khoshnood S, Taki E, Sadeghifard N, Kaviar VH, Haddadi MH, Farshadzadeh Z, et al. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Vol. 12, Frontiers in Microbiology. Frontiers Media S.A.; 2021. | |
dc.relation.references | Nguyen TVA, Anthony RM, Cao TTH, Bañuls AL, Nguyen VAT, Vu DH, et al. Delamanid Resistance: Update and Clinical Management. Vol. 71, Clinical Infectious Diseases. Oxford University Press; 2020. p. 3252-9. | |
dc.relation.references | Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis. 1 de enero de 2018;108:186-94. | |
dc.relation.references | Vale N, Gomes P, Santos HA. Send Orders of Reprints at bspsaif@emirates.net.ae Metabolism of the Antituberculosis Drug Ethionamide. 2013. | |
dc.relation.references | Ushtanit A, Kulagina E, Mikhailova Y, Makarova M, Safonova S, Zimenkov D. Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics. 2022;11(2). | |
dc.relation.references | Rivera DF, Gómez Camargo D. Genes del Mycobacterium tuberculosis involucrados en la patogenicidad y resistencia a antibióticos durante la tuberculosis pulmonar y extrapulmonar. Disponible en: http://www.scielo.org.co/pdf/muis/v28n1/v28n1a04.pdf | |
dc.relation.references | Javaid A, Hasan R, Zafar A, Chaudry MA, Qayyum S, Qadeer E, et al. Pattern of first- and second-line drug resistance among pulmonary tuberculosis retreatment cases in Pakistan. The International Journal of Tuberculosis and Lung Disease [Internet]. 1 de marzo de 2017;21(3):303-8. Disponible en: http://www.ingentaconnect.com/content/10.5588/ijtld.16.0444 | |
dc.relation.references | Alangaden GJ, Kreiswirth BN, Aouad A, Khetarpal M, Igno FR, Moghazeh SL, et al. Mechanism of Resistance to Amikacin and Kanamycin in Mycobacterium tuberculosis; 42(5):1295-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC105813/pdf/ac001295.pdf | |
dc.relation.references | World Health Organization. Global Tuberculosis Report 2024. 2024. | |
dc.relation.references | INSTITUTO NACIONAL DE SALUD. Informe de Evento 2023 Tuberculosis Farmacorresistente 2024. | |
dc.relation.references | INSTITUTO NACIONAL DE SALUD. Informe de Evento 2023 Tuberculosis. 2024 | |
dc.relation.references | World Health Organization. Guidance for the Surveillance of Drug Resistance in Tuberculosis, Sixth Edition. 2021. | |
dc.relation.references | Instituto de Salud pública de Chile. Guía Técnica Para Cultivo De Micobacterias En Medio Líquido. Documentos Técnicos Para El Laboratorio Clínico. 2018 | |
dc.relation.references | Ministerio de Chile. Manual operativo Implementación del GeneXpert MTB/ RIF en el Programa de Tuberculosis. 2017 | |
dc.relation.references | Seegene. AnyplexTM_II_MTB_MDR_XDR_Detection. | |
dc.relation.references | Cole, S., Brosch, R., Parkhill, J. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence 1. primera cepa secuenciada | |
dc.relation.references | Koleske BN, Jacobs WR, Bishai WR. The mycobacterium tuberculosis genome at 25 years: Lessons and lingering questions. Vol. 133, Journal of Clinical Investigation. American Society for Clinical Investigation; 2023. | |
dc.relation.references | Rao M, Wollenberg K, Harris M, Kulavalli S, Thomas L, Chawla K, et al. Lineage classification and antitubercular drug resistance surveillance of Mycobacterium tuberculosis by whole- genome sequencing in Southern India . Microbiol Spectr. 17 de octubre de 2023;11(5). | |
dc.relation.references | Rukmana A, Gozali C, Erlina L. Mycobacterium tuberculosis Lineage Distribution Using Whole-Genome Sequencing and Bedaquiline, Clofazimine, and Linezolid Phenotypic Profiles among Rifampicin-Resistant Isolates from West Java, Indonesia. Int J Microbiol. 2024;2024. | |
dc.relation.references | Sahal MR, Senelle G, La K, Panda TW, Taura DW, Guyeux C, et al. Mycobacterium tuberculosis complex drugresistance, phylogenetics, and evolution in Nigeria: Comparison with Ghana and Cameroon. PLoS Negl Trop Dis. 1 de octubre de 2023;17(10 October). | |
dc.relation.references | Sánchez-Corrales L, Tovar-Aguirre OL, Galeano-Vanegas NF, Jiménez PAC, Martínez-Vega RA, Maldonado-Londoño CE, et al. Phylogenomic analysis and Mycobacterium tuberculosis antibiotic resistance prediction by whole-genome sequencing from clinical isolates of Caldas, Colombia. PLoS One. 1 de octubre de 2021;16(10 October). | |
dc.relation.references | Mejía-Ponce PM, Ramos-González EJ, Ramos-García AA, Lara-Ramírez EE, Soriano-Herrera AR, Medellín-Luna MF, et al. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS One. 1 de octubre de 2023;18(10 October). | |
dc.relation.references | Morey-León G, Andrade-Molina D, Fernández-Cadena JC, Berná L. Comparative genomics of drug-resistant strains of Mycobacterium tuberculosis in Ecuador. BMC Genomics. 1 de diciembre de 2022;23(1). | |
dc.relation.references | Anselmo LMP, Gallo JF, Pinhata JMW, Peronni KC, da Silva Junior WA, Ruy P de C, et al. New insights on tuberculosis transmission dynamics and drug susceptibility profiles among the prison population in Southern Brazil based on whole-genome sequencing. Rev Soc Bras Med Trop. 2023;56. | |
dc.relation.references | Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Vol. 13, Frontiers in Microbiology. Frontiers Media S.A.; 2022. | |
dc.relation.references | GenoScreen. From clinical samples to drug resistance profile Deeplex ® Myc-TB. 2022. | |
dc.relation.references | World Health Organization. Information_sheet_ampore_tb_oxford Diagnostics test | |
dc.relation.references | World Health Organization. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis. 2023. | |
dc.relation.references | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection, third edition. 2024 | |
dc.relation.references | World Health Organization. The use of next-generation sequencing for the surveillance of drug-resistant tuberculosis: an implementation manual. Geneva; 2023 (https://www.who.int/publications/i/item/9789240078079). | |
dc.relation.references | Instituto Nacional de Salud. Extracción de ADN DE Micobacterias. MEN-R03.3120-003 | |
dc.relation.references | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva; 2018. | |
dc.relation.references | Abraira V. ce kappa. Unidad de Bioestadística Clínica. Hospital Ramón y Cajal. Madrid. SEMERGEN: 2000; 27: 247-249. Disponible en: http://www.hrc.es/bioest/Intro_errores.html | |
dc.relation.references | Carla López Causapé C, González Candelas F, Tomás Carmona M, Oliver Palomo A. Aplicaciones de las técnicas de secuenciación masiva en la Microbiología Clínica. 2021. 71. Antonio Oliver Palomo (coordinador). Procedimientos en Microbiología Clínica. Cercenado Mansilla E, Cantón Moreno R (editores). Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC). 2021. | |
dc.relation.references | Goossens SN, Sampson SL, Rie A Van. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. 2020; Disponible en: https://doi.org/10.1128/CMR | |
dc.relation.references | Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, et al. Correlating Minimum Inhibitory Concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis. 1 de marzo de 2015;95(2):137-41 | |
dc.relation.references | Gamberale A, et al. Un Desafío Terapéutico: La Heterorresistencia En Mycobacterium Tuberculosis. ISSN 1669-9106 MEDICINA (Buenos Aires) 2023: 83: 799-803 | |
dc.relation.references | Tafess K, Ting Leung TN, Yin LAO H, Siu Sing K, King Gee TAM K, Rajwani R, et al. Targeted Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis cultures using Illumina MiSeq and Nanopore MinION: Comparison of analytical and diagnostic performance, turnaround time and cost. Disponible en: https://doi.org/10.1101/760462 | |
dc.relation.references | Mariner-Llicer C, Goig GA, Zaragoza-Infante L, Torres-Puente M, Villamayor L, Navarro D, et al. Accuracy of an amplicon-sequencing nanopore approach to identify variants in tuberculosis drug-resistance- associated genes. Microb Genom. 2021;7(12). | |
dc.relation.references | Su J, Lui WW, Lee YL, Zheng Z, Siu GKH, Ng TTL, et al. Evaluation of Mycobacterium tuberculosis enrichment in metagenomic samples using ONT adaptive sequencing and amplicon sequencing for identification and variant calling. Sci Rep. 1 de diciembre de 2023;13(1). | |
dc.relation.references | Flack, Afifi, Lachenbruch, & Schouten. Sample size determinations for the two-rater kappa statistic. Psychometrika, 53, 321–325. 1988. DOI: 10.1007/BF02294394 | |
dc.relation.references | McHugh ML. Interrater reliability: the kappa statistic. Biochemia Medica 2012; 22(3):276-82) | |
dc.relation.references | Sander N Goossens, Tim H Heupink, Elise De Vos, Anzaan Dippenaar, Margaretha De Vos, Rob Warren, Annelies Van Rie, Detection of minor variants in Mycobacterium tuberculosis whole genome sequencing data, Briefings in Bioinformatics, Volume 23, Issue 1, January 2022, bbab541, https://doi.org/10.1093/bib/bbab541 | |
dc.relation.references | Schwab, Tiana Carina et al. Targeted next-generation sequencing to diagnose drug-resistant tuberculosis: a systematic review and meta-analysis. The Lancet Infectious Diseases, Volume 24, Issue 10, 1162 – 1176 | |
dc.relation.references | Sushanta Deb, Jhinuk Basu, Megha Choudhary, An overview of next generation sequencing strategies and genomics tools used for tuberculosis research, Journal of Applied Microbiology, Volume 135, Issue 7, July 2024, lxae174, https://doi.org/10.1093/jambio/lxae174 | |
dc.relation.references | Chen, Y., Fan, L., Ren, Z. et al. Diagnóstico sensible de la tuberculosis paucibacilar mediante secuenciación dirigida de nueva generación: un estudio de diagnóstico molecular. BMC Med 23 , 178 (2025). https://doi.org/10.1186/s12916-025-03996-1 | |
dc.relation.references | Ni Y, Liu X, Simeneh ZM, Yang M, Li R. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput Struct Biotechnol J. 2023 Mar 24;21:2352-2364. doi: 10.1016/j.csbj.2023.03.038. PMID: 37025654; PMCID: PMC10070092. | |
dc.relation.references | Zhao K, Tu C, Chen W, Liang H, Zhang W, Wang Y, Jin Y, Hu J, Sun Y, Xu J, Yu Y. Rapid Identification of Drug-Resistant Tuberculosis Genes Using Direct PCR Amplification and Oxford Nanopore Technology Sequencing. Can J Infect Dis Med Microbiol. 2022 Mar 28;2022:7588033. doi: 10.1155/2022/7588033. PMID: 35386470; PMCID: PMC8979720. | |
dc.relation.references | Chan, W.S., Au, C.H., Chung, Y. et al. Rapid and economical drug resistance profiling with Nanopore MinION for clinical specimens with low bacillary burden of Mycobacterium tuberculosis. BMC Res Notes 13, 444 (2020). https://doi.org/10.1186/s13104-020-05287-9 | |
dc.relation.references | Wu SH, Xiao YX, Hsiao HC, Jou R. Development and Assessment of a Novel Whole-Gene-Based Targeted Next-Generation Sequencing Assay for Detecting the Susceptibility of Mycobacterium tuberculosis to 14 Drugs. Microbiol Spectr. 2022 Dec 21;10(6): e0260522. doi: 10.1128/spectrum.02605-22. Epub 2022 Oct 18. PMID: 36255328; PMCID: PMC9769975. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Tuberculosis Resistente a Múltiples Medicamentos | spa |
dc.subject.decs | Tuberculosis, Multidrug-Resistant | eng |
dc.subject.decs | Secuenciación Completa del Genoma | spa |
dc.subject.decs | Whole Genome Sequencing | eng |
dc.subject.decs | Estudios Transversales | spa |
dc.subject.decs | Cross-Sectional Studies | eng |
dc.subject.proposal | Mycobacterium tuberculosis | spa |
dc.subject.proposal | Resistencia a fármacos | spa |
dc.subject.proposal | Drug resistance | eng |
dc.subject.proposal | Secuenciación de nuevageneración | spa |
dc.subject.proposal | High-throughput nucleotide sequencing | eng |
dc.title | Secuenciación dirigida de nueva generación como estrategia para el diagnóstico de tuberculosis resistente a medicamentos en Colombia | spa |
dc.title.translated | Targeted next-generation sequencing as a strategy for the diagnosis of drug-resistant tuberculosis in Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | Instituto Nacional de Salud |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- SECUENCIACIÓN DIRIGIDA DE NUEVA GENERACIÓN COMO ESTRATEGIA PARA EL DIAGNÓSTICO DE TUBERCULOSIS RESISTENTE A MEDICAMENTOS EN COLOMBIA.pdf
- Tamaño:
- 2.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: