Síntesis verde y uso de c-tetra(aril)calix[4]resorcinarenos en la fisisorción de un monolito con base en estireno y evaluación en la microextracción por sorción en disco rotatorio (rdse) de norepinefrina
| dc.contributor.advisor | Maldonado Villamil, Mauricio | spa |
| dc.contributor.advisor | Castillo Aguirre, Alver Alex | spa |
| dc.contributor.author | Matiz Rodríguez, Carlos Andrés | spa |
| dc.contributor.researchgroup | Aplicaciones Analíticas de Compuestos Orgánicos (Aaco) | spa |
| dc.date.accessioned | 2023-08-10T02:00:41Z | |
| dc.date.available | 2023-08-10T02:00:41Z | |
| dc.date.issued | 2023-08-07 | |
| dc.description | ilustraciones | spa |
| dc.description.abstract | En este trabajo de investigación se implementó la síntesis verde de C-tetra(p hidroxifenil)calix[4]resorcinareno, C-tetra(p-bromofenil)calix[4]resorcinareno y C-tetra(p metoxifenil)calix[4]resorcinareno obteniendo cambios interesantes e inesperados en las proporciones conformacionales de cada uno de ellos. Contrastando y evaluando estos resultados con la metodología convencional. Así mismo se efectuaron análisis de interacción Host-Guest con norepinefrina (NE) y los mencionados calix[4]resorcinarenos por medio de RMN 1H, destacando así el C-tetra(p-metoxifenil)calix[4]resorcinareno como el compuesto con la mejor interacción con el analito de interés. Por otro lado, se efectuó la síntesis de poli(estireno-co-divinilbenceno) mediante polimerización mediada por radicales libres. Posteriormente esta matriz polimérica se empleó en el proceso de fisisorción, con cada uno de los calix[4]resorcinarenos mencionados. Finalmente, la fase sorbente obtenida se implementó en el diseño, cribado y optimización del método de microextracción por sorción en disco rotatorio de NE, obteniendo porcentajes de recuperación próximos a 50%, lo cual deja entrever que dicho método proporciona recuperaciones promisorias. (Texto tomado de la fuente). | spa |
| dc.description.abstract | In this research work we implemented the green synthesis of C-tetra(phydroxyphenyl)calix[4]resorcinarene, C-tetra(p-bromophenyl)calix[4]resorcinarene and Ctetra(p-methoxyphenyl)calix[4]resorcinarene obtaining interesting and unexpected changes in the conformational ratios of each of them. Contrasting and evaluating these results with the conventional methodology. Host-Guest interaction analysis with norepinephrine (NE) and the mentioned calix[4]resorcinarenes was also carried out by means of 1H NMR, highlighting C-tetra(p-methoxyphenyl)calix[4]resorcinarene as the compound with the best interaction with the analyte of interest. On the other hand, the synthesis of poly(styrene-co-divinylbenzene) was carried out by free radical-mediated polymerization. Subsequently, this polymeric matrix was used in the physisorption process, with each of the mentioned calix[4]resorcinarenes. Finally, the sorbent phase obtained was implemented in the design, screening and optimization of the NE rotating disk sorption microextraction method, obtaining recovery percentages close to 50%, which suggests that this method provides promising recoveries. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Química | spa |
| dc.description.researcharea | Síntesis en química orgánica | spa |
| dc.format.extent | xviii, 132 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84519 | |
| dc.language.iso | spa | spa |
| dc.publisher | Unviersidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
| dc.relation.references | [1] G. A. Ordway, M. A. Schwartz, and A. Frazer, Brain norepinephrine: Neurobiology and therapeutics, vol. 4, no. 1. 2007. doi: 10.1017/CBO9780511544156 | spa |
| dc.relation.references | [2] K. J. Broadley, “The vascular effects of trace amines and amphetamines,” Pharmacol Ther, vol. 125, no. 3, pp. 363–375, 2010, doi: 10.1016/j.pharmthera.2009.11.005. | spa |
| dc.relation.references | [3] S. Maity, R. Abbaspour, D. Nahabedian, and S. A. Connor, “Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory,” International Journal of Molecular Sciences, vol. 23, no. 17. MDPI, Sep. 01, 2022. doi: 10.3390/ijms23179916. | spa |
| dc.relation.references | [4] M. Luostarinen et al., “Synthesis of Fréchet-type tetramethylated resorcarene dendrimers,” J Incl Phenom Macrocycl Chem, vol. 58, no. 1–2, pp. 71–80, 2007, doi: 10.1007/s10847-006-9124-z. | spa |
| dc.relation.references | [5] Y. Ge and C. Yan, “Rapid synthesis of calix[4]resorcinarene-based dendrimers containing salicylideneimine terminal groups,” J Chem Res, no. 4, pp. 279–281, 2004, doi: 10.3184/0308234041209176. | spa |
| dc.relation.references | [6] L. D. Pedro-Hernández, E. Martínez-Klimova, S. Cortez-Maya, S. Mendoza Cardozo, T. Ramírez-Ápan, and M. Martínez-García, “Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen,” Nanomaterials, vol. 7, no. 7, 2017, doi: 10.3390/nano7070163. | spa |
| dc.relation.references | [7] Q. Zhang, L. Catti, and K. Tiefenbacher, “Catalysis inside the Hexameric Resorcinarene Capsule,” Acc Chem Res, vol. 51, no. 9, pp. 2107–2114, 2018, doi: 10.1021/acs.accounts.8b00320. | spa |
| dc.relation.references | [8] A. Castillo-Aguirre and M. Maldonado, “Preparation of Methacrylate-Based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction,” 2019, doi: 10.3390/polym11091428. | spa |
| dc.relation.references | [9] B. A. Velásquez-Silva, A. Castillo-Aguirre, Z. J. Rivera-Monroy, and M. Maldonado, “Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface,” Polymers (Basel), vol. 11, no. 7, 2019, doi: 10.3390/polym11071147. | spa |
| dc.relation.references | [10] A. D. Jenkins, “Glossary of basic terms in polymer science (IUPAC Recommendations 1996). | spa |
| dc.relation.references | [11] C. J. Pedersen and H. K. Frensdorff, “Macrocyclic Polyethers and Their Complexes_pedersen1972,” Angew. Chem. internat, vol. 11, pp. 16–25, 1072. | spa |
| dc.relation.references | [12] D. J. Cram et al., “Host-Guest Complexation. 35. Spherands, the First Completely Preorganized Ligand Systems (Supplementary Material).” | spa |
| dc.relation.references | [13] François Diederich, Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis. Wiley-VCH, 2008. | spa |
| dc.relation.references | [14] P. A. Gale, J. W. Genge, V. Kr, M. Anthony McKervey, J. L. Sessler, and A. Walker, “First Synthesis of an Expanded Calixpyrrole,” 1997. | spa |
| dc.relation.references | [15] Y. Chun, N. Jiten Singh, I. C. Hwang, J. Woo Lee, S. U. Yu, and K. S. Kim, “Calix[n]imidazolium as a new class of positively charged homo-calix compounds,” Nat Commun, vol. 4, 2013, doi: 10.1038/ncomms2758. | spa |
| dc.relation.references | [16] P. Yang et al., “Calix[3]carbazole: One-Step Synthesis and Host-Guest Binding,” Journal of Organic Chemistry, vol. 81, no. 7, pp. 2974–2980, Apr. 2016, doi: 10.1021/acs.joc.6b00252. | spa |
| dc.relation.references | [17] R. Chen, K. Somphol, M. Bhadbhade, N. Kumar, and D. S. C. Black, “Synthesis of semi-calix[4]indoles containing combinations of direct links and methylene linkages,” Synlett, vol. 24, no. 12, pp. 1497–1500, 2013, doi: 10.1055/s-0033- 1338868. | spa |
| dc.relation.references | [18] P. Kumar and P. Venkatakrishnan, “Coumarin[4]arene: A Fluorescent Macrocycle,” Org Lett, vol. 20, no. 5, pp. 1295–1299, Mar. 2018, doi: 10.1021/acs.orglett.7b04045. | spa |
| dc.relation.references | [19] T. Boinski, A. Cieszkowski, B. Rosa, B. Leśniewska, and A. Szumna, “Calixarenes with naphthalene units: Calix[4]naphthalenes and hybrid[4]arenes,” New Journal of Chemistry, vol. 40, no. 10, pp. 8892–8896, 2016, doi: 10.1039/c6nj01736c. | spa |
| dc.relation.references | [20] Collet André, “Cyclotriveratrilenes and cryptophanes,” Tetrahedron , vol. 43, no. 24, pp. 5725–5759, 1987, doi: 10.1016/S0040-4020(01)87780-2. | spa |
| dc.relation.references | [21] M. Xue, Y. Yang, X. Chi, Z. Zhang, and F. Huang, “Pillararenes, a new class of macrocycles for supramolecular chemistry,” Acc Chem Res, vol. 45, no. 8, pp. 1294–1308, Aug. 2012, doi: 10.1021/ar2003418. | spa |
| dc.relation.references | [22] P. della Sala et al., “Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis,” J Am Chem Soc, vol. 142, no. 4, pp. 1752–1756, Jan. 2020, doi: 10.1021/jacs.9b12216. | spa |
| dc.relation.references | [23] H. Chen et al., “Biphen[n]arenes,” Chem Sci, vol. 6, no. 1, pp. 197–202, Jan. 2015, doi: 10.1039/c4sc02422b. | spa |
| dc.relation.references | [24] J. Li, H. Y. Zhou, Y. Han, and C. F. Chen, “Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property,” Angewandte Chemie - International Edition, vol. 60, no. 40, pp. 21927–21933, Sep. 2021, doi: 10.1002/anie.202108209. | spa |
| dc.relation.references | [25] C. F. Chen and Y. Han, “Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes,” Acc Chem Res, vol. 51, no. 9, pp. 2093–2106, Sep. 2018, doi: 10.1021/acs.accounts.8b00268. | spa |
| dc.relation.references | [26] J. Q. Wang, Y. Han, and C. F. Chen, “3,6-Fluoren[5]arenes: synthesis, structure and complexation with fullerenes C60and C70,” Chemical Communications, vol. 57, no. 33, pp. 3987–3990, Apr. 2021, doi: 10.1039/d1cc00916h. | spa |
| dc.relation.references | [27] J. Pfeuffer-Rooschüz, L. Schmid, A. Prescimone, and K. Tiefenbacher, “ Xanthene[ n ]arenes: Exceptionally Large, Bowl-Shaped Macrocyclic Building Blocks Suitable for Self-Assembly ,” JACS Au, vol. 1, no. 11, pp. 1885–1891, Nov. 2021, doi: 10.1021/jacsau.1c00343. | spa |
| dc.relation.references | [28] A. F. Danil De Namor, W. Aparicio-Aragon, N. Nwogu, A. El Gamouz, O. E. Piro, and E. E. Castellano, “Calixarene and resorcarene based receptors: From structural and thermodynamic studies to the synthesis of a new mercury(II) selective material,” Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6922–6934, 2011, doi: 10.1021/jp110195f. | spa |
| dc.relation.references | [29] J. Luis Casas-Hinestroza and M. Maldonado, “Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene,” Molecules, vol. 23, no. 5, 2018, doi: 10.3390/molecules23051225. | spa |
| dc.relation.references | [30] P. Timmerman, W. Verboom, and D. N. Reinhoudt, “Resorcinarenes,” Tetrahedron, vol. 52, no. 8, pp. 2663–2704, 1996, doi: 10.1016/0040-4020(95)00984-1. | spa |
| dc.relation.references | [31] J. R. Wu and Y. W. Yang, “New opportunities in synthetic macrocyclic arenes,” Chemical Communications, vol. 55, no. 11, pp. 1533–1543, 2019, doi: 10.1039/c8cc09374a. | spa |
| dc.relation.references | [32] I. Touarssi et al., Oriented Membrane Processes for the Treatment and Recovery of Vanadium Ions from Industrial Acidic Solutions. Springer International Publishing, 2021. doi: 10.1007/978-3-030-51210-1_130. | spa |
| dc.relation.references | [33] J. Niederl and H. Vogel, “Aldeyde-Resorcinol Condensations,” J. Am. Chem. Soc., vol. 62, p. 2512, 1940. | spa |
| dc.relation.references | [34] Holger. Erdtman and Sverker. Högberg, “Cyclooligomeric phenol-aldehyde condensation product,” Tetrahedron Lett, no. 14, pp. 1679–1682, 1968, doi: 10.1016/S0040-4039(01)99028-8. | spa |
| dc.relation.references | [35] F. Weinelt and H. J. Schneider, “Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes,” Journal of Organic Chemistry, vol. 56, no. 19, pp. 5527–5535, 1991, doi: 10.1021/jo00019a011. | spa |
| dc.relation.references | [36] M. Chwastek and A. Szumna, “Higher analogues of resorcinarenes and pyrogallolarenes: Bricks for supramolecular chemistry,” Org Lett, vol. 22, no. 17, pp. 6838–6841, 2020, doi: 10.1021/acs.orglett.0c02357. | spa |
| dc.relation.references | [37] B. Botta, M. Cassani, I. D’acquarica, D. Misiti, D. Subissati, and G. Delle Monache, “Resorcarenes: Emerging Class of Macrocyclic Receptors,” 2005. | spa |
| dc.relation.references | [38] C. A. Schalley, Analytical methods in supramolecular chemistry. Wiley-VCH, 2007. | spa |
| dc.relation.references | [39] L. Abis, E. Dalcanale, A. Du Vosel, and S. Spera, “Nuclear magnetic resonance elucidation of ring-inversion processes in macrocyclic octaols,” Journal of the Chemical Society, Perkin, no. 12, pp. 2075–2080, 1990, doi: 10.1039/p29900002075. | spa |
| dc.relation.references | [40] L. M. Tunstad et al., “Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1305–1312, 1989, doi: 10.1021/jo00267a015. | spa |
| dc.relation.references | [41] L. S. Franco, Y. P. Salamanca, and M. Maldonado, “Solubility of Calix[4]resorcinarene in Water from (278.15 to 308.15) K,” J. Chem. Eng. Data, vol. 55, no. 1, pp. 1042–1044, 2010, doi: 10.1021/je9005097. | spa |
| dc.relation.references | [42] R. D. N. Van Velzen, U Thoden, Engbersen Johan F.J, “Synthesis of self-Assembling Resorcin[4]arene Tetrasulfide Adsorbates,” Synthesis (Stuttg), pp. 989–997, 1995. | spa |
| dc.relation.references | [43] J.-M. Bourgeois and H. Stoeckli-Evans, “Synthesis of New Resorcinarenes Under Alkaline Conditions, 2005. | spa |
| dc.relation.references | [44] M. J. McIldowie, M. Mocerino, B. W. Skelton, and A. H. White, “Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes,” Org Lett, vol. 2, no. 24, pp. 3869–3871, Nov. 2000, doi: 10.1021/ol006608u. | spa |
| dc.relation.references | [45] B. A. Roberts, G. W. V. Cave, C. L. Raston, and J. L. Scott, “Solvent-free synthesis of calix[4]resorcinarenes,” Green Chemistry, vol. 3, no. 6, pp. 280–284, 2001, doi: 10.1039/b104430n. | spa |
| dc.relation.references | [46] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” 2000. | spa |
| dc.relation.references | [47] S. Onitsuka, Y. Z. Jin, A. C. Shaikh, H. Furuno, and J. Inanaga, “Silica gel-mediated organic reactions under organic solvent-free conditions,” Molecules, vol. 17, no. 10, pp. 11469–11483, 2012, doi: 10.3390/molecules171011469. | spa |
| dc.relation.references | [48] V. K. Jain and P. H. Kanaiya, “Chemistry of calix[4]resorcinarenes,” Russian Chemical Reviews, vol. 80, no. 1, pp. 75–102, 2011, doi: 10.1070/rc2011v080n01abeh004127. | spa |
| dc.relation.references | [49] T.-R. Tero and M. Nissinen, Resorcinarene Crowns ☆. Elsevier Inc., 2017. doi: 10.1016/b978-0-12-409547-2.11348-4. | spa |
| dc.relation.references | [50] B. C. Gibb, R. G. Chapman, and J. C. Sherman, “Synthesis of Hydroxyl-Footed Cavitands,” 1996. | spa |
| dc.relation.references | [51] F. Farina, C. Talotta, C. Gaeta, and P. Neri, “Regioselective O-substitution of C-undecylresorcin[4]arene,” Org Lett, vol. 13, no. 18, pp. 4842–4845, Sep. 2011, doi: 10.1021/ol201919p. | spa |
| dc.relation.references | [52] W. H. Brown, Organic chemistry, 7th ed, pp 927-935. 2014. | spa |
| dc.relation.references | [53] M. Grajda, M. Wierzbicki, P. Cmoch, and A. Szumna, “Inherently chiral iminoresorcinarenes through regioselective unidirectional tautomerization,” Journal of Organic Chemistry, vol. 78, no. 22, pp. 11597–11601, 2013, doi: 10.1021/jo4019182. | spa |
| dc.relation.references | [54] R. R. Kashapov, L. Y. Zakharova, M. N. Saifutdinova, Y. S. Kochergin, E. L. Gavrilova, and O. G. Sinyashin, “Construction of a water-soluble form of amino acid C-methylcalix[4]resorcinarene,” J Mol Liq, vol. 208, pp. 58–62, 2015, doi: 10.1016/j.molliq.2015.04.025. | spa |
| dc.relation.references | [55] M. Kanaura, K. Ito, M. P. Schramm, D. Ajami, and T. Iwasawa, “Cavitands with inwardly and outwardly directed functional groups,” Tetrahedron Lett, vol. 56, no. 33, pp. 4824–4828, 2015, doi: 10.1016/j.tetlet.2015.06.072. | spa |
| dc.relation.references | [56] G. Crini, S. Fourmentin, É. Fenyvesi, G. Torri, M. Fourmentin, and N. Morin-Crini, “Cyclodextrins, from molecules to applications,” Environmental Chemistry Letters, vol. 16, no. 4. Springer Verlag, pp. 1361–1375, Dec. 15, 2018. doi: 10.1007/s10311-018-0763-2. | spa |
| dc.relation.references | [57] Z. Liu, S. K. M. Nalluri, and J. Fraser Stoddart, “Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes,” Chemical Society Reviews, vol. 46, no. 9. Royal Society of Chemistry, pp. 2459–2478, May 07, 2017. doi: 10.1039/c7cs00185a. | spa |
| dc.relation.references | [58] D. J. Cram et al., “Host-Guest Complexation. Part 46. Cavitands as Open Molecular Vessels Form Solvates.,” J. Am. Chem. Soc., vol. 110, pp. 2229–2237, 1988, doi: 10.1002/chin.198829113. | spa |
| dc.relation.references | [59] Y. K. Agrawal and R. N. Patadia, “Studies on Resorcinarenes and their Analytical Applications.,” Rev. Anal. Chem. , vol. 25, pp. 155–239, 2006. | spa |
| dc.relation.references | [60] M. J. Paik, J. S. Kang, B. S. Huang, J. R. Carey, and W. Lee, “Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy,” Journal of Chromatography A, vol. 1274. pp. 1–5, Jan. 25, 2013. doi: 10.1016/j.chroma.2012.11.086. | spa |
| dc.relation.references | [61] Z. Liu, S. K. M. Nalluri, and J. Fraser Stoddart, “Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes,” Chemical Society Reviews, vol. 46, no. 9. Royal Society of Chemistry, pp. 2459–2478, May 07, 2017. doi: 10.1039/c7cs00185a. | spa |
| dc.relation.references | [62] N. Li, R. G. Harrison, and J. D. Lamb, “Application of resorcinarene derivatives in chemical separations,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 78, no. 1–4. pp. 39–60, Apr. 2014. doi: 10.1007/s10847-013-0336-8. | spa |
| dc.relation.references | [63] T. Jira and T. Sokoließ, “Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarenebonded high-performance liquid chromatography stationary phases,” J Chromatogr A, pp. 309–319, 2002. | spa |
| dc.relation.references | [64] J. Lipkowski et al., “Host-guest interactions of calix[4]resorcinarenes withbenzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination ofstability constants,” 1998. | spa |
| dc.relation.references | [65] A. Ruderisch, W. Iwanek, J. Pfeiffer, G. Fischer, K. Albert, and V. Schurig, “Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high-performance liquid chromatography,” J Chromatogr A, vol. 1095, no. 1–2, pp. 40–49, 2005, doi: 10.1016/j.chroma.2005.07.109. | spa |
| dc.relation.references | [66] O. Pietraszkiewicz and M. Pietraszkiewicz, “Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]resorcinarene,” 1999. | spa |
| dc.relation.references | [67] Colin F. Poole, “Handbooks in Separation Science.” | spa |
| dc.relation.references | [68] L. C. Sander, “Solid phase extraction,” Journal of Research of the National Institute of Standards and Technology Solid, vol. 122, no. 19, 2017, doi: 10.4324/9780203449479_chapter_2. | spa |
| dc.relation.references | [69] C. F. Poole, “New trends in solid-phase extraction,” TrAC - Trends in Analytical Chemistry, vol. 22, no. 6, pp. 362–373, 2003, doi: 10.1016/S0165-9936(03)00605-8. | spa |
| dc.relation.references | [70] J. R. Dean, Extraction techniques for environmental analysis, Wiley. 2022 | spa |
| dc.relation.references | [71] E. Rozet et al., “Performances of a multidimensional on-line SPE-LC-ECD method for the determination of three major catecholamines in native human urine: Validation, risk and uncertainty assessments,” J Chromatogr B Analyt Technol Biomed Life Sci, vol. 844, no. 2, pp. 251–260, Dec. 2006, doi: 10.1016/j.jchromb.2006.07.060. | spa |
| dc.relation.references | [72] A. A. Castillo-Aguirre, Z. J. Rivera Monroy, and M. Maldonado, “Analysis by RP-HPLC and Purification by RP-SPE of the C -Tetra(p -hydroxyphenyl)resorcinolarene Crown and Chair Stereoisomers,” J Anal Methods Chem, vol. 2019, 2019, doi: 10.1155/2019/2051282. | spa |
| dc.relation.references | [73] P. Richter, D. Arismendi, and M. Becerra-Herrera, “The fundamentals, chemistries and applications of rotating-disk sorptive extraction,” TrAC - Trends in Analytical Chemistry, vol. 137. Elsevier B.V., Apr. 01, 2021. doi: 10.1016/j.trac.2021.116209. | spa |
| dc.relation.references | [74] J. Nikolic, E. Expósito, J. Iniesta, J. González-García, and V. Montiel, “Theoretical Concepts and Applications of a Rotating Disk Electrode,” J Chem Educ, vol. 77, no. 9, pp. 1191–1194, 2000, doi: 10.1021/ed077p1191. | spa |
| dc.relation.references | [75] P. Richter, C. Leiva, C. Choque, A. Giordano, and B. Sepúlveda, “Rotating-disk sorptive extraction of nonylphenol from water samples,” J Chromatogr A, vol. 1216, no. 49, pp. 8598–8602, 2009, doi: 10.1016/j.chroma.2009.10.044. | spa |
| dc.relation.references | [76] L. Jachero, I. Ahumada, and P. Richter, “Rotating-disk sorptive extraction: Effect of the rotation mode of the extraction device on mass transfer efficiency,” Anal Bioanal Chem, vol. 406, no. 12, pp. 2987–2992, 2014, doi: 10.1007/s00216-014-7693-z. | spa |
| dc.relation.references | [77] A. Ahmad et al., “New generation Amberlite XAD resin for the removal of metal ions: A review,” Journal of Environmental Sciences (China), vol. 31. Chinese Academy of Sciences, pp. 104–123, May 01, 2015. doi: 10.1016/j.jes.2014.12.008. | spa |
| dc.relation.references | [78] I. Zawierucha, J. Kozlowska, C. Kozlowski, and A. Trochimczuk, “Sorption of Pb(II), Cd(II) and Zn(II) performed with the use of carboxyphenylresorcinarene-impregnated Amberlite XAD-4 resin,” Desalination Water Treat, vol. 52, no. 1–3, pp. 314–323, 2014, doi: 10.1080/19443994.2013.785370. | spa |
| dc.relation.references | [79] M. S. Hosseini and F. Abedi, “Stepwise extraction of Th(IV) and U(VI) ions with mixed-ligands impregnated resin containing 1,4-diaminoanthraquinone and 1,4-dihydroxyanthraquinone,” J Radioanal Nucl Chem, vol. 303, no. 1, pp. 209–216, Jan. 2015, doi: 10.1007/s10967-014-3366-9. | spa |
| dc.relation.references | [80] V. Manzo et al., “Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE),” Anal Chim Acta, vol. 1087, pp. 1–10, Dec. 2019, doi: 10.1016/j.aca.2019.08.069. | spa |
| dc.relation.references | [81] A. Fashi et al., “Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples,” Talanta, vol. 217, Sep. 2020, doi: 10.1016/j.talanta.2020.121001. | spa |
| dc.relation.references | [82] A. Shishov, N. Volodina, S. Gagarionova, V. Shilovskikh, and A. Bulatov, “A rotating disk sorptive extraction based on hydrophilic deep eutectic solvent formation,” Anal Chim Acta, vol. 1141, pp. 163–172, Jan. 2021, doi: 10.1016/j.aca.2020.10.020. | spa |
| dc.relation.references | [83] E. Blahová and E. Brandšteterová, “Approaches in Sample Handling before HPLC Analysis of Complex Matrices,” 2004. | spa |
| dc.relation.references | [84] V. Manzo, L. Honda, O. Navarro, L. Ascar, and P. Richter, “Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction,” Talanta, vol. 128, pp. 486–492, Oct. 2014, doi: 10.1016/j.talanta.2014.06.003. | spa |
| dc.relation.references | [85] N. Abbas et al., “Template-assisted polymeric spherules for the solid phase extraction of chlorfenapyr from contaminated water,” Separation Science and Technology (Philadelphia), vol. 56, no. 3, 2021, doi: 10.1080/01496395.2020.1718707. | spa |
| dc.relation.references | [86] A. Castillo-Aguirre, A. Cañas, L. Honda, and P. Richter, “Determination of veterinary antibiotics in cow milk using rotating-disk sorptive extraction and liquid chromatography,” Microchemical Journal, vol. 162, Mar. 2021, doi: 10.1016/j.microc.2020.105851. | spa |
| dc.relation.references | [87] C. Vakh, M. Alaboud, S. Lebedinets, and A. Bulatov, “A rotating cotton‐based disk packed with a cation-exchange resin: Separation of ofloxacin from biological fluids followed by chemiluminescence determination,” Talanta, vol. 196, pp. 117–123, May 2019, doi: 10.1016/j.talanta.2018.12.024. | spa |
| dc.relation.references | [88] A. Castillo-Aguirre and M. Maldonado, “Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction,” Polymers (Basel), vol. 11, no. 9, pp. 1–21, 2019, doi: 10.3390/polym11091428. | spa |
| dc.relation.references | [89] F. Biedermann and H. J. Schneider, “Experimental Binding Energies in Supramolecular Complexes,” Chemical Reviews, vol. 116, no. 9. American Chemical Society, pp. 5216–5300, May 11, 2016. doi: 10.1021/acs.chemrev.5b00583. | spa |
| dc.relation.references | [90] A. S. Mahadevi and G. N. Sastry, “Cooperativity in Noncovalent Interactions,” Chemical Reviews, vol. 116, no. 5. American Chemical Society, pp. 2775–2825, Mar. 09, 2016. doi: 10.1021/cr500344e. | spa |
| dc.relation.references | [91] “Israelachvili J.N. - Intermolecular and surface forces-AP (2003)”. | spa |
| dc.relation.references | [92] J. L. Casas-Hinestroza, M. Bueno, E. Ibáñez, and A. Cifuentes, “Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review,” Anal Chim Acta, vol. 1081, pp. 32–50, Nov. 2019, doi: 10.1016/j.aca.2019.06.029. | spa |
| dc.relation.references | [93] J. L. Atwood and A. Szumna, “Cation-pi interactions in neutral calix[4]resorcinarenes,” Journal of Supramolecular Chemistry, vol. 2, no. 4–5, pp. 479–482, Aug. 2002, doi: 10.1016/S1472-7862(03)00068-6. | spa |
| dc.relation.references | [94] M.-C. Hennion´laboratoire, “Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography,” 1999. | spa |
| dc.relation.references | [95] T. Hiroi, S. Imaoka, and Y. Funae, “Dopamine Formation from Tyramine by CYP2D6,” 1998. | spa |
| dc.relation.references | [96] N. S. Dhalla, P. K. Ganguly, S. K. Bhullar, and P. S. Tappia, “Role of catecholamines in the pathogenesis of diabetic cardiomyopathy (2019).” | spa |
| dc.relation.references | [97] A. C. Guyton and Ph. D. John E. Hall, “Text book of Medical Physiology,” 2006. | spa |
| dc.relation.references | [98] J. E. Lisman and A. A. Grace, “The hippocampal-VTA loop: Controlling the entry of information into long-term memory,” Neuron, vol. 46, no. 5. pp. 703–713, Jun. 02, 2005. doi: 10.1016/j.neuron.2005.05.002. | spa |
| dc.relation.references | [99] D. Jenson et al., “Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity,” Neuropharmacology, vol. 90, pp. 23–32, 2015, doi: 10.1016/j.neuropharm.2014.10.029. | spa |
| dc.relation.references | [100] F. Smedes, C. Kraak, and H. Foffe, “Simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine,” 1982. | spa |
| dc.relation.references | [101] M. Tsunoda, C. Aoyama, S. Ota, T. Tamura, and T. Funatsu, “Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography- electrochemical detection,” Analytical Methods, vol. 3, no. 3, pp. 582–585, Mar. 2011, doi: 10.1039/c0ay00686f. | spa |
| dc.relation.references | [102] L. Q. Chen et al., “High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber,” J Chromatogr A, vol. 1561, pp. 48–55, Aug. 2018, doi: 10.1016/j.chroma.2018.05.041. | spa |
| dc.relation.references | [103] P. G. Wang and W. He, “Hydrophilic Interaction Liquid Chromatography (HILIC) And Advanced Applications,” 2011. | spa |
| dc.relation.references | [104] P. Hemström and K. Irgum, “Hydrophilic interaction chromatography,” Journal of Separation Science, vol. 29, no. 12. pp. 1784–1821, Aug. 2006. doi: 10.1002/jssc.200600199. | spa |
| dc.relation.references | [105] C. Viklund, F. Svec, J. M. J. Fréchet, and K. Irgum, “Monolithic, ‘molded’, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: Control of porous properties during polymerization,” Chemistry of Materials, vol. 8, no. 3, pp. 744–750, 1996, doi: 10.1021/cm950437j. | spa |
| dc.relation.references | [106] C. Viklund, A. Nordström, K. Irgum, F. Svec, and J. M. J. Fréchet, “Preparation of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by grafting,” Macromolecules, vol. 34, no. 13, pp. 4361–4369, 2001, doi: 10.1021/ma001435+. | spa |
| dc.relation.references | [107] E. C. Peters, F. Svec, J. M. J. Fréchet, C. Viklund, and K. Irgum, “Control of porous properties and surface chemistry in ‘molded’ porous polymer monoliths prepared by polymerization in the presence of TEMPO,” Macromolecules, vol. 32, no. 19, pp. 6377–6379, 1999, doi: 10.1021/ma990538t. | spa |
| dc.relation.references | [108] C. Viklund, F. Svec, J. M. J. Fréchet, and K. Irgum, “Monolithic, ‘molded’, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: Control of porous properties during polymerization,” Chemistry of Materials, vol. 8, no. 3, pp. 744–750, 1996, doi: 10.1021/cm950437j. | spa |
| dc.relation.references | [109] V. K. Ahluwalia, Green Chemistry Environmentally Benign Reactions, 3rd editio., vol. 12, no. 3. 2021. | spa |
| dc.relation.references | [110] V. K. Ahluwalia and M. Kidwai, New Trends in Green Chemistry. Springer Netherlands, 2004. doi: 10.1007/978-1-4020-3175-5. | spa |
| dc.relation.references | [111] Mukesh Doble and Anil Kumar Kruthiventi, “Green Chemistry and Processes,” 2007. | spa |
| dc.relation.references | [112] H. Loghmani-Khouzani, M. M. Sadeghi, and J. Safari, “molecules Silica gel Catalyzed Synthesis of Quinophthalone Pigments Under Solvent-Free Conditions Using Microwave Irradiation,” 2002. | spa |
| dc.relation.references | [113] M. Mäkinen, J. P. Jalkanen, and P. Vainiotalo, “Conformational properties and intramolecular hydrogen bonding of tetraethyl resorcarene: An ab initio study,” Tetrahedron, vol. 58, no. 42, pp. 8591–8596, 2002, doi: 10.1016/S0040-4020(02)00863-3. | spa |
| dc.relation.references | [114] L. Lei and Y. Zhou, “Reacciones químicas en estado sólido sin disolventes o con menos disolventes,” Progress in Chemistry, vol. 32, no. 8, pp. 1158–1171, 2020. | spa |
| dc.relation.references | [115] H. Zhang, I. bin Samsudin, S. Jaenicke, and G. K. Chuah, “Zeolites in catalysis: sustainable synthesis and its impact on properties and applications,” Catal Sci Technol, vol. 12, no. 19, pp. 6024–6039, Aug. 2022, doi: 10.1039/d2cy01325h. | spa |
| dc.relation.references | [116] A. W. Chester and E. G. Derouane, “Zeolite Characterization and Catalysis: A Tutorial. (2009)” | spa |
| dc.relation.references | [117] V. Baliah and T. Chellathurai, “Dipole moments of some substituted benzaldehydes. Conformational preference of substituents ortho to the aldehyde group,” Proceedings of the Indian Academy of Sciences - Chemical Sciences, vol. 101, no. 4, pp. 311–317, 1989, doi: 10.1007/BF02840663. | spa |
| dc.relation.references | [118] J. N. F Pearce and L. Berhenke, “The electric moments of some organic compounds” J. Phys. Chem, vol. 39, no. 7, pp. 1005–1010, 1935. | spa |
| dc.relation.references | [119] S. B. Utomo, A. N. C. Saputro, and Y. Rinanto, “Functionalization of C-4-methoxyphenylcalix[4]resorcinarene with several ammonium compounds,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2016. doi: 10.1088/1757-899X/107/1/012042. | spa |
| dc.relation.references | [120] F. Darvish and S. Khazraee, “Molecular iodine: An efficient and environment-friendly catalyst for the synthesis of calix[4]resorcinarenes,” Comptes Rendus Chimie, vol. 17, no. 9, pp. 890–893, 2014, doi: 10.1016/j.crci.2013.10.017. | spa |
| dc.relation.references | [121] A. Hasbullah, Hamza. M.Abosadiya, J. Jumina, M. I. M.Tahir, and B. M. Yamin, “Synthesis, Structural and Antioxidant Properties of C-p methoxyphenylcalix[4]resorcinarene,” Int J Adv Sci Eng Inf Technol, vol. 3, no. 2, p. 134, 2013, doi: 10.18517/ijaseit.3.2.297. | spa |
| dc.relation.references | [122] A. Gharehkhani, R. Ghorbani-Vaghei, and S. Alavinia, “Synthesis of calixresorcarenes using magnetic poly triazine-benzene sulfonamide-SO3H,” RSC Adv, vol. 11, no. 59, pp. 37514–37527, 2021, doi: 10.1039/d1ra07393a | spa |
| dc.relation.references | [123] Y. Yamakawa, M. Ueda, R. Nagahata, K. Takeuchi, and M. Asai, “Rapid synthesis of dendrimers based on calix[4]resorcinarenes,” 1998. | spa |
| dc.relation.references | [124] M. M. Al-Mahadeen, A. G. Jiries, S. A. Al-Trawneh, S. F. Alshahateet, A. S. Eldouhaibi, and S. Sagadevan, “Kinetics and equilibrium studies for the removal of heavy metal ions from aqueous solution using the synthesized C-4-bromophenylcalix[4]resorcinarene adsorbent,” Chem Phys Lett, vol. 783, Nov. 2021, doi: 10.1016/j.cplett.2021.139053. | spa |
| dc.relation.references | [125] G. Jaramillo-Soto and E. Vivaldo-Lima, “RAFT copolymerization of styrene/divinylbenzene in supercritical carbon dioxide,” Aust J Chem, vol. 65, no. 8, pp. 1177–1185, 2012, doi: 10.1071/CH12291. | spa |
| dc.relation.references | [126] R. Sanetra, B. N. Kolarz, and A. Wlochowicz, “Determination of the glass transition temperature of poly(styrene-co-divinylbenzene) by inverse gas chromatography,” Polymer (Guildf), vol. 26, no. 8, pp. 1181–1186, 1985, doi: 10.1016/0032-3861(85)90249-6. | spa |
| dc.relation.references | [127] D. Braun, H. Cherdron, M. Rehahn, H. Ritter, and B. Voit, Polymer synthesis: Theory and practice: Fundamentals, methods, experiments, fifth edition. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-28980-4. | spa |
| dc.relation.references | [128] G. G. Condorelli et al., “Grafting cavitands on the Si(100) surface,” Langmuir, vol. 22, no. 26, pp. 11126–11133, 2006, doi: 10.1021/la060682p. | spa |
| dc.relation.references | [129] E. Menozzi, R. Pinalli, E. A. Speets, B. J. Ravoo, E. Dalcanale, and D. N. Reinhoudt, “Surface-Confined Single Molecules: Assembly and Disassembly of Nanosize Coordination Cages on Gold (111),” Chemistry - A European Journal, vol. 10, no. 9, pp. 2199–2206, 2004, doi: 10.1002/chem.200305570. | spa |
| dc.relation.references | [130] M. Yang, W. Wang, K. Su, and D. Yuan, “Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation,” Chem Res Chin Univ, vol. 38, no. 2, pp. 428–432, Apr. 2022, doi: 10.1007/s40242-022-1454-x. | spa |
| dc.relation.references | [131] Y. E. Morozova, Y. V. Shalaeva, N. A. Makarova, V. V. Syakaev, E. K. Kazakova, and A. I. Konovalov, “Binding of polar organic substrates by amphiphilic calixresorcin[4]arenes in the solution bulk and on the surface of anion-exchange resin,” Colloid Journal, vol. 71, no. 3, pp. 380–390, Jun. 2009, doi: 10.1134/S1061933X09030144. | spa |
| dc.relation.references | [132] N. Demirel, M. Merdivan, N. Pirinccioglu, and C. Hamamci, “Thorium(IV) and uranium(VI) sorption studies on octacarboxymethyl-C-methylcalix[4]resorcinarene impregnated on a polymeric support,” Anal Chim Acta, vol. 485, no. 2, pp. 213–219, Jun. 2003, doi: 10.1016/S0003-2670(03)00415-X. | spa |
| dc.relation.references | [133] C. C. Beh, R. Mammucari, and N. R. Foster, “Neoteric Media as Tools for Process Intensification,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2017. doi: 10.1088/1757-899X/206/1/012006. | spa |
| dc.relation.references | [134] A. A. Castillo-Aguirre, A. Pérez-Redondo, and M. Maldonado, “Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes,” J Mol Struct, vol. 1202, p. 127402, 2020, doi: 10.1016/j.molstruc.2019.127402. | spa |
| dc.relation.references | [135] D. Jenson et al., “Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity,” Neuropharmacology, vol. 90, pp. 23–32, 2015, doi: 10.1016/j.neuropharm.2014.10.029. | spa |
| dc.relation.references | [136] L. Honda, D. Arismendi, and P. Richter, “Integration of rotating disk sorptive extraction and dispersive-solid phase extraction for the determination of estrogens and their metabolites in urine by liquid chromatography/mass spectrometry,” Microchemical Journal, vol. 185, Feb. 2023, doi: 10.1016/j.microc.2022.108273. | spa |
| dc.relation.references | [137] A. Castillo-Aguirre, A. Cañas, L. Honda, and P. Richter, “Determination of veterinary antibiotics in cow milk using rotating-disk sorptive extraction and liquid chromatography,” Microchemical Journal, vol. 162, Mar. 2021, doi: 10.1016/j.microc.2020.105851. | spa |
| dc.relation.references | [138] L. Konieczna, A. Roszkowska, A. Synakiewicz, T. Stachowicz-Stencel, E. Adamkiewicz-Drozyńska, and T. Baczek, “Analytical approach to determining human biogenic amines and their metabolites using eVol microextraction in packed syringe coupled to liquid chromatography mass spectrometry method with hydrophilic interaction chromatography column,” Talanta, vol. 150, pp. 331–339, Apr. 2016, doi: 10.1016/j.talanta.2015.12.056. | spa |
| dc.relation.references | [139] L. Q. Chen, X. H. Zhu, J. Shen, and W. Q. Zhang, “Selective solid-phase extraction of catecholamines from plasma using nanofibers doped with crown ether and their quantitation by HPLC with electrochemical detection,” Anal Bioanal Chem, vol. 408, no. 18, pp. 4987–4994, Jul. 2016, doi: 10.1007/s00216-016-9596-7. | spa |
| dc.relation.references | [140] T. Khezeli and A. Daneshfar Tel, “Supplementary Materials Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe3O4 @MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol,” 2015. | spa |
| dc.relation.references | [141] P. Luliński, M. Bamburowicz-Klimkowska, M. Dana, M. Szutowski, and D. Maciejewska, “Efficient strategy for the selective determination of dopamine in human urine by molecularly imprinted solid-phase extraction,” J Sep Sci, vol. 39, no. 5, pp. 895–903, Mar. 2016, doi: 10.1002/jssc.201501159. | spa |
| dc.relation.references | [142] “George E. Box, J. Stuart Hunter, William G. Hunter - Estadística para investigadores_ diseño, innovación y descubrimiento-Reverté (2008)”. | spa |
| dc.relation.references | [143] X. Zhang, R. Wang, X. Yang, and J. Yu, “Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol,” Chemometrics and Intelligent Laboratory Systems, vol. 89, no. 1, pp. 45–50, Oct. 2007, doi: 10.1016/j.chemolab.2007.05.006. | spa |
| dc.relation.references | [144] X. Xiong and Y. Zhang, “Simple, rapid, and cost-effective microextraction by the packed sorbent method for quantifying of urinary free catecholamines and metanephrines using liquid chromatography-tandem mass spectrometry and its application in clinical analysis,” Anal Bioanal Chem, vol. 412, no. 12, pp. 2763–2775, May 2020, doi: 10.1007/s00216-020-02436-8. | spa |
| dc.relation.references | [145] A. Castillo-Aguirre, Z. Rivera-Monroy, and M. Maldonado, “Selective o-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether,” Molecules, vol. 22, no. 10, 2017, doi: 10.3390/molecules22101660. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
| dc.subject.proposal | Síntesis solvent free de calix[4]resorcinarenos | spa |
| dc.subject.proposal | Copolímeros de estireno-divinilbenceno | spa |
| dc.subject.proposal | Fisisorción | spa |
| dc.subject.proposal | Extracción por sorción disco rotatorio (RDSE) | spa |
| dc.subject.proposal | Sistemas huésped-hospedero | spa |
| dc.subject.proposal | Solvent free synthesis of calix[4]resorcinarenes | eng |
| dc.subject.proposal | Styrene-divinylbenzene copolymers | eng |
| dc.subject.proposal | Physisorption | eng |
| dc.subject.proposal | Rotary disk sorption extraction (RDSE) | eng |
| dc.subject.proposal | Host-Gest systems | eng |
| dc.subject.unesco | Química experimental | spa |
| dc.subject.unesco | Experimental chemistry | eng |
| dc.subject.unesco | Análisis químico | spa |
| dc.subject.unesco | Chemical analysis | eng |
| dc.subject.unesco | Investigación química | spa |
| dc.subject.unesco | Chemical research | eng |
| dc.title | Síntesis verde y uso de c-tetra(aril)calix[4]resorcinarenos en la fisisorción de un monolito con base en estireno y evaluación en la microextracción por sorción en disco rotatorio (rdse) de norepinefrina | spa |
| dc.title.translated | Green synthesis and use of c-tetra(aryl)calix[4]resorcinarenes in the physisorption of a styrene-based monolith and evaluation in rotating disk sorption microextraction (RDSE) of norepinephrine | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010203243.2023.pdf
- Tamaño:
- 2.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

