En 7 día(s), 2 hora(s) y 32 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Síntesis verde y uso de c-tetra(aril)calix[4]resorcinarenos en la fisisorción de un monolito con base en estireno y evaluación en la microextracción por sorción en disco rotatorio (rdse) de norepinefrina

dc.contributor.advisorMaldonado Villamil, Mauriciospa
dc.contributor.advisorCastillo Aguirre, Alver Alexspa
dc.contributor.authorMatiz Rodríguez, Carlos Andrésspa
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)spa
dc.date.accessioned2023-08-10T02:00:41Z
dc.date.available2023-08-10T02:00:41Z
dc.date.issued2023-08-07
dc.descriptionilustracionesspa
dc.description.abstractEn este trabajo de investigación se implementó la síntesis verde de C-tetra(p hidroxifenil)calix[4]resorcinareno, C-tetra(p-bromofenil)calix[4]resorcinareno y C-tetra(p metoxifenil)calix[4]resorcinareno obteniendo cambios interesantes e inesperados en las proporciones conformacionales de cada uno de ellos. Contrastando y evaluando estos resultados con la metodología convencional. Así mismo se efectuaron análisis de interacción Host-Guest con norepinefrina (NE) y los mencionados calix[4]resorcinarenos por medio de RMN 1H, destacando así el C-tetra(p-metoxifenil)calix[4]resorcinareno como el compuesto con la mejor interacción con el analito de interés. Por otro lado, se efectuó la síntesis de poli(estireno-co-divinilbenceno) mediante polimerización mediada por radicales libres. Posteriormente esta matriz polimérica se empleó en el proceso de fisisorción, con cada uno de los calix[4]resorcinarenos mencionados. Finalmente, la fase sorbente obtenida se implementó en el diseño, cribado y optimización del método de microextracción por sorción en disco rotatorio de NE, obteniendo porcentajes de recuperación próximos a 50%, lo cual deja entrever que dicho método proporciona recuperaciones promisorias. (Texto tomado de la fuente).spa
dc.description.abstractIn this research work we implemented the green synthesis of C-tetra(phydroxyphenyl)calix[4]resorcinarene, C-tetra(p-bromophenyl)calix[4]resorcinarene and Ctetra(p-methoxyphenyl)calix[4]resorcinarene obtaining interesting and unexpected changes in the conformational ratios of each of them. Contrasting and evaluating these results with the conventional methodology. Host-Guest interaction analysis with norepinephrine (NE) and the mentioned calix[4]resorcinarenes was also carried out by means of 1H NMR, highlighting C-tetra(p-methoxyphenyl)calix[4]resorcinarene as the compound with the best interaction with the analyte of interest. On the other hand, the synthesis of poly(styrene-co-divinylbenzene) was carried out by free radical-mediated polymerization. Subsequently, this polymeric matrix was used in the physisorption process, with each of the mentioned calix[4]resorcinarenes. Finally, the sorbent phase obtained was implemented in the design, screening and optimization of the NE rotating disk sorption microextraction method, obtaining recovery percentages close to 50%, which suggests that this method provides promising recoveries.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaSíntesis en química orgánicaspa
dc.format.extentxviii, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84519
dc.language.isospaspa
dc.publisherUnviersidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] G. A. Ordway, M. A. Schwartz, and A. Frazer, Brain norepinephrine: Neurobiology and therapeutics, vol. 4, no. 1. 2007. doi: 10.1017/CBO9780511544156spa
dc.relation.references[2] K. J. Broadley, “The vascular effects of trace amines and amphetamines,” Pharmacol Ther, vol. 125, no. 3, pp. 363–375, 2010, doi: 10.1016/j.pharmthera.2009.11.005.spa
dc.relation.references[3] S. Maity, R. Abbaspour, D. Nahabedian, and S. A. Connor, “Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory,” International Journal of Molecular Sciences, vol. 23, no. 17. MDPI, Sep. 01, 2022. doi: 10.3390/ijms23179916.spa
dc.relation.references[4] M. Luostarinen et al., “Synthesis of Fréchet-type tetramethylated resorcarene dendrimers,” J Incl Phenom Macrocycl Chem, vol. 58, no. 1–2, pp. 71–80, 2007, doi: 10.1007/s10847-006-9124-z.spa
dc.relation.references[5] Y. Ge and C. Yan, “Rapid synthesis of calix[4]resorcinarene-based dendrimers containing salicylideneimine terminal groups,” J Chem Res, no. 4, pp. 279–281, 2004, doi: 10.3184/0308234041209176.spa
dc.relation.references[6] L. D. Pedro-Hernández, E. Martínez-Klimova, S. Cortez-Maya, S. Mendoza Cardozo, T. Ramírez-Ápan, and M. Martínez-García, “Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen,” Nanomaterials, vol. 7, no. 7, 2017, doi: 10.3390/nano7070163.spa
dc.relation.references[7] Q. Zhang, L. Catti, and K. Tiefenbacher, “Catalysis inside the Hexameric Resorcinarene Capsule,” Acc Chem Res, vol. 51, no. 9, pp. 2107–2114, 2018, doi: 10.1021/acs.accounts.8b00320.spa
dc.relation.references[8] A. Castillo-Aguirre and M. Maldonado, “Preparation of Methacrylate-Based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction,” 2019, doi: 10.3390/polym11091428.spa
dc.relation.references[9] B. A. Velásquez-Silva, A. Castillo-Aguirre, Z. J. Rivera-Monroy, and M. Maldonado, “Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface,” Polymers (Basel), vol. 11, no. 7, 2019, doi: 10.3390/polym11071147.spa
dc.relation.references[10] A. D. Jenkins, “Glossary of basic terms in polymer science (IUPAC Recommendations 1996).spa
dc.relation.references[11] C. J. Pedersen and H. K. Frensdorff, “Macrocyclic Polyethers and Their Complexes_pedersen1972,” Angew. Chem. internat, vol. 11, pp. 16–25, 1072.spa
dc.relation.references[12] D. J. Cram et al., “Host-Guest Complexation. 35. Spherands, the First Completely Preorganized Ligand Systems (Supplementary Material).”spa
dc.relation.references[13] François Diederich, Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis. Wiley-VCH, 2008.spa
dc.relation.references[14] P. A. Gale, J. W. Genge, V. Kr, M. Anthony McKervey, J. L. Sessler, and A. Walker, “First Synthesis of an Expanded Calixpyrrole,” 1997.spa
dc.relation.references[15] Y. Chun, N. Jiten Singh, I. C. Hwang, J. Woo Lee, S. U. Yu, and K. S. Kim, “Calix[n]imidazolium as a new class of positively charged homo-calix compounds,” Nat Commun, vol. 4, 2013, doi: 10.1038/ncomms2758.spa
dc.relation.references[16] P. Yang et al., “Calix[3]carbazole: One-Step Synthesis and Host-Guest Binding,” Journal of Organic Chemistry, vol. 81, no. 7, pp. 2974–2980, Apr. 2016, doi: 10.1021/acs.joc.6b00252.spa
dc.relation.references[17] R. Chen, K. Somphol, M. Bhadbhade, N. Kumar, and D. S. C. Black, “Synthesis of semi-calix[4]indoles containing combinations of direct links and methylene linkages,” Synlett, vol. 24, no. 12, pp. 1497–1500, 2013, doi: 10.1055/s-0033- 1338868.spa
dc.relation.references[18] P. Kumar and P. Venkatakrishnan, “Coumarin[4]arene: A Fluorescent Macrocycle,” Org Lett, vol. 20, no. 5, pp. 1295–1299, Mar. 2018, doi: 10.1021/acs.orglett.7b04045.spa
dc.relation.references[19] T. Boinski, A. Cieszkowski, B. Rosa, B. Leśniewska, and A. Szumna, “Calixarenes with naphthalene units: Calix[4]naphthalenes and hybrid[4]arenes,” New Journal of Chemistry, vol. 40, no. 10, pp. 8892–8896, 2016, doi: 10.1039/c6nj01736c.spa
dc.relation.references[20] Collet André, “Cyclotriveratrilenes and cryptophanes,” Tetrahedron , vol. 43, no. 24, pp. 5725–5759, 1987, doi: 10.1016/S0040-4020(01)87780-2.spa
dc.relation.references[21] M. Xue, Y. Yang, X. Chi, Z. Zhang, and F. Huang, “Pillararenes, a new class of macrocycles for supramolecular chemistry,” Acc Chem Res, vol. 45, no. 8, pp. 1294–1308, Aug. 2012, doi: 10.1021/ar2003418.spa
dc.relation.references[22] P. della Sala et al., “Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis,” J Am Chem Soc, vol. 142, no. 4, pp. 1752–1756, Jan. 2020, doi: 10.1021/jacs.9b12216.spa
dc.relation.references[23] H. Chen et al., “Biphen[n]arenes,” Chem Sci, vol. 6, no. 1, pp. 197–202, Jan. 2015, doi: 10.1039/c4sc02422b.spa
dc.relation.references[24] J. Li, H. Y. Zhou, Y. Han, and C. F. Chen, “Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property,” Angewandte Chemie - International Edition, vol. 60, no. 40, pp. 21927–21933, Sep. 2021, doi: 10.1002/anie.202108209.spa
dc.relation.references[25] C. F. Chen and Y. Han, “Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes,” Acc Chem Res, vol. 51, no. 9, pp. 2093–2106, Sep. 2018, doi: 10.1021/acs.accounts.8b00268.spa
dc.relation.references[26] J. Q. Wang, Y. Han, and C. F. Chen, “3,6-Fluoren[5]arenes: synthesis, structure and complexation with fullerenes C60and C70,” Chemical Communications, vol. 57, no. 33, pp. 3987–3990, Apr. 2021, doi: 10.1039/d1cc00916h.spa
dc.relation.references[27] J. Pfeuffer-Rooschüz, L. Schmid, A. Prescimone, and K. Tiefenbacher, “ Xanthene[ n ]arenes: Exceptionally Large, Bowl-Shaped Macrocyclic Building Blocks Suitable for Self-Assembly ,” JACS Au, vol. 1, no. 11, pp. 1885–1891, Nov. 2021, doi: 10.1021/jacsau.1c00343.spa
dc.relation.references[28] A. F. Danil De Namor, W. Aparicio-Aragon, N. Nwogu, A. El Gamouz, O. E. Piro, and E. E. Castellano, “Calixarene and resorcarene based receptors: From structural and thermodynamic studies to the synthesis of a new mercury(II) selective material,” Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6922–6934, 2011, doi: 10.1021/jp110195f.spa
dc.relation.references[29] J. Luis Casas-Hinestroza and M. Maldonado, “Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene,” Molecules, vol. 23, no. 5, 2018, doi: 10.3390/molecules23051225.spa
dc.relation.references[30] P. Timmerman, W. Verboom, and D. N. Reinhoudt, “Resorcinarenes,” Tetrahedron, vol. 52, no. 8, pp. 2663–2704, 1996, doi: 10.1016/0040-4020(95)00984-1.spa
dc.relation.references[31] J. R. Wu and Y. W. Yang, “New opportunities in synthetic macrocyclic arenes,” Chemical Communications, vol. 55, no. 11, pp. 1533–1543, 2019, doi: 10.1039/c8cc09374a.spa
dc.relation.references[32] I. Touarssi et al., Oriented Membrane Processes for the Treatment and Recovery of Vanadium Ions from Industrial Acidic Solutions. Springer International Publishing, 2021. doi: 10.1007/978-3-030-51210-1_130.spa
dc.relation.references[33] J. Niederl and H. Vogel, “Aldeyde-Resorcinol Condensations,” J. Am. Chem. Soc., vol. 62, p. 2512, 1940.spa
dc.relation.references[34] Holger. Erdtman and Sverker. Högberg, “Cyclooligomeric phenol-aldehyde condensation product,” Tetrahedron Lett, no. 14, pp. 1679–1682, 1968, doi: 10.1016/S0040-4039(01)99028-8.spa
dc.relation.references[35] F. Weinelt and H. J. Schneider, “Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes,” Journal of Organic Chemistry, vol. 56, no. 19, pp. 5527–5535, 1991, doi: 10.1021/jo00019a011.spa
dc.relation.references[36] M. Chwastek and A. Szumna, “Higher analogues of resorcinarenes and pyrogallolarenes: Bricks for supramolecular chemistry,” Org Lett, vol. 22, no. 17, pp. 6838–6841, 2020, doi: 10.1021/acs.orglett.0c02357.spa
dc.relation.references[37] B. Botta, M. Cassani, I. D’acquarica, D. Misiti, D. Subissati, and G. Delle Monache, “Resorcarenes: Emerging Class of Macrocyclic Receptors,” 2005.spa
dc.relation.references[38] C. A. Schalley, Analytical methods in supramolecular chemistry. Wiley-VCH, 2007.spa
dc.relation.references[39] L. Abis, E. Dalcanale, A. Du Vosel, and S. Spera, “Nuclear magnetic resonance elucidation of ring-inversion processes in macrocyclic octaols,” Journal of the Chemical Society, Perkin, no. 12, pp. 2075–2080, 1990, doi: 10.1039/p29900002075.spa
dc.relation.references[40] L. M. Tunstad et al., “Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1305–1312, 1989, doi: 10.1021/jo00267a015.spa
dc.relation.references[41] L. S. Franco, Y. P. Salamanca, and M. Maldonado, “Solubility of Calix[4]resorcinarene in Water from (278.15 to 308.15) K,” J. Chem. Eng. Data, vol. 55, no. 1, pp. 1042–1044, 2010, doi: 10.1021/je9005097.spa
dc.relation.references[42] R. D. N. Van Velzen, U Thoden, Engbersen Johan F.J, “Synthesis of self-Assembling Resorcin[4]arene Tetrasulfide Adsorbates,” Synthesis (Stuttg), pp. 989–997, 1995.spa
dc.relation.references[43] J.-M. Bourgeois and H. Stoeckli-Evans, “Synthesis of New Resorcinarenes Under Alkaline Conditions, 2005.spa
dc.relation.references[44] M. J. McIldowie, M. Mocerino, B. W. Skelton, and A. H. White, “Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes,” Org Lett, vol. 2, no. 24, pp. 3869–3871, Nov. 2000, doi: 10.1021/ol006608u.spa
dc.relation.references[45] B. A. Roberts, G. W. V. Cave, C. L. Raston, and J. L. Scott, “Solvent-free synthesis of calix[4]resorcinarenes,” Green Chemistry, vol. 3, no. 6, pp. 280–284, 2001, doi: 10.1039/b104430n.spa
dc.relation.references[46] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” 2000.spa
dc.relation.references[47] S. Onitsuka, Y. Z. Jin, A. C. Shaikh, H. Furuno, and J. Inanaga, “Silica gel-mediated organic reactions under organic solvent-free conditions,” Molecules, vol. 17, no. 10, pp. 11469–11483, 2012, doi: 10.3390/molecules171011469.spa
dc.relation.references[48] V. K. Jain and P. H. Kanaiya, “Chemistry of calix[4]resorcinarenes,” Russian Chemical Reviews, vol. 80, no. 1, pp. 75–102, 2011, doi: 10.1070/rc2011v080n01abeh004127.spa
dc.relation.references[49] T.-R. Tero and M. Nissinen, Resorcinarene Crowns ☆. Elsevier Inc., 2017. doi: 10.1016/b978-0-12-409547-2.11348-4.spa
dc.relation.references[50] B. C. Gibb, R. G. Chapman, and J. C. Sherman, “Synthesis of Hydroxyl-Footed Cavitands,” 1996.spa
dc.relation.references[51] F. Farina, C. Talotta, C. Gaeta, and P. Neri, “Regioselective O-substitution of C-undecylresorcin[4]arene,” Org Lett, vol. 13, no. 18, pp. 4842–4845, Sep. 2011, doi: 10.1021/ol201919p.spa
dc.relation.references[52] W. H. Brown, Organic chemistry, 7th ed, pp 927-935. 2014.spa
dc.relation.references[53] M. Grajda, M. Wierzbicki, P. Cmoch, and A. Szumna, “Inherently chiral iminoresorcinarenes through regioselective unidirectional tautomerization,” Journal of Organic Chemistry, vol. 78, no. 22, pp. 11597–11601, 2013, doi: 10.1021/jo4019182.spa
dc.relation.references[54] R. R. Kashapov, L. Y. Zakharova, M. N. Saifutdinova, Y. S. Kochergin, E. L. Gavrilova, and O. G. Sinyashin, “Construction of a water-soluble form of amino acid C-methylcalix[4]resorcinarene,” J Mol Liq, vol. 208, pp. 58–62, 2015, doi: 10.1016/j.molliq.2015.04.025.spa
dc.relation.references[55] M. Kanaura, K. Ito, M. P. Schramm, D. Ajami, and T. Iwasawa, “Cavitands with inwardly and outwardly directed functional groups,” Tetrahedron Lett, vol. 56, no. 33, pp. 4824–4828, 2015, doi: 10.1016/j.tetlet.2015.06.072.spa
dc.relation.references[56] G. Crini, S. Fourmentin, É. Fenyvesi, G. Torri, M. Fourmentin, and N. Morin-Crini, “Cyclodextrins, from molecules to applications,” Environmental Chemistry Letters, vol. 16, no. 4. Springer Verlag, pp. 1361–1375, Dec. 15, 2018. doi: 10.1007/s10311-018-0763-2.spa
dc.relation.references[57] Z. Liu, S. K. M. Nalluri, and J. Fraser Stoddart, “Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes,” Chemical Society Reviews, vol. 46, no. 9. Royal Society of Chemistry, pp. 2459–2478, May 07, 2017. doi: 10.1039/c7cs00185a.spa
dc.relation.references[58] D. J. Cram et al., “Host-Guest Complexation. Part 46. Cavitands as Open Molecular Vessels Form Solvates.,” J. Am. Chem. Soc., vol. 110, pp. 2229–2237, 1988, doi: 10.1002/chin.198829113.spa
dc.relation.references[59] Y. K. Agrawal and R. N. Patadia, “Studies on Resorcinarenes and their Analytical Applications.,” Rev. Anal. Chem. , vol. 25, pp. 155–239, 2006.spa
dc.relation.references[60] M. J. Paik, J. S. Kang, B. S. Huang, J. R. Carey, and W. Lee, “Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy,” Journal of Chromatography A, vol. 1274. pp. 1–5, Jan. 25, 2013. doi: 10.1016/j.chroma.2012.11.086.spa
dc.relation.references[61] Z. Liu, S. K. M. Nalluri, and J. Fraser Stoddart, “Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes,” Chemical Society Reviews, vol. 46, no. 9. Royal Society of Chemistry, pp. 2459–2478, May 07, 2017. doi: 10.1039/c7cs00185a.spa
dc.relation.references[62] N. Li, R. G. Harrison, and J. D. Lamb, “Application of resorcinarene derivatives in chemical separations,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 78, no. 1–4. pp. 39–60, Apr. 2014. doi: 10.1007/s10847-013-0336-8.spa
dc.relation.references[63] T. Jira and T. Sokoließ, “Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarenebonded high-performance liquid chromatography stationary phases,” J Chromatogr A, pp. 309–319, 2002.spa
dc.relation.references[64] J. Lipkowski et al., “Host-guest interactions of calix[4]resorcinarenes withbenzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination ofstability constants,” 1998.spa
dc.relation.references[65] A. Ruderisch, W. Iwanek, J. Pfeiffer, G. Fischer, K. Albert, and V. Schurig, “Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high-performance liquid chromatography,” J Chromatogr A, vol. 1095, no. 1–2, pp. 40–49, 2005, doi: 10.1016/j.chroma.2005.07.109.spa
dc.relation.references[66] O. Pietraszkiewicz and M. Pietraszkiewicz, “Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]resorcinarene,” 1999.spa
dc.relation.references[67] Colin F. Poole, “Handbooks in Separation Science.”spa
dc.relation.references[68] L. C. Sander, “Solid phase extraction,” Journal of Research of the National Institute of Standards and Technology Solid, vol. 122, no. 19, 2017, doi: 10.4324/9780203449479_chapter_2.spa
dc.relation.references[69] C. F. Poole, “New trends in solid-phase extraction,” TrAC - Trends in Analytical Chemistry, vol. 22, no. 6, pp. 362–373, 2003, doi: 10.1016/S0165-9936(03)00605-8.spa
dc.relation.references[70] J. R. Dean, Extraction techniques for environmental analysis, Wiley. 2022spa
dc.relation.references[71] E. Rozet et al., “Performances of a multidimensional on-line SPE-LC-ECD method for the determination of three major catecholamines in native human urine: Validation, risk and uncertainty assessments,” J Chromatogr B Analyt Technol Biomed Life Sci, vol. 844, no. 2, pp. 251–260, Dec. 2006, doi: 10.1016/j.jchromb.2006.07.060.spa
dc.relation.references[72] A. A. Castillo-Aguirre, Z. J. Rivera Monroy, and M. Maldonado, “Analysis by RP-HPLC and Purification by RP-SPE of the C -Tetra(p -hydroxyphenyl)resorcinolarene Crown and Chair Stereoisomers,” J Anal Methods Chem, vol. 2019, 2019, doi: 10.1155/2019/2051282.spa
dc.relation.references[73] P. Richter, D. Arismendi, and M. Becerra-Herrera, “The fundamentals, chemistries and applications of rotating-disk sorptive extraction,” TrAC - Trends in Analytical Chemistry, vol. 137. Elsevier B.V., Apr. 01, 2021. doi: 10.1016/j.trac.2021.116209.spa
dc.relation.references[74] J. Nikolic, E. Expósito, J. Iniesta, J. González-García, and V. Montiel, “Theoretical Concepts and Applications of a Rotating Disk Electrode,” J Chem Educ, vol. 77, no. 9, pp. 1191–1194, 2000, doi: 10.1021/ed077p1191.spa
dc.relation.references[75] P. Richter, C. Leiva, C. Choque, A. Giordano, and B. Sepúlveda, “Rotating-disk sorptive extraction of nonylphenol from water samples,” J Chromatogr A, vol. 1216, no. 49, pp. 8598–8602, 2009, doi: 10.1016/j.chroma.2009.10.044.spa
dc.relation.references[76] L. Jachero, I. Ahumada, and P. Richter, “Rotating-disk sorptive extraction: Effect of the rotation mode of the extraction device on mass transfer efficiency,” Anal Bioanal Chem, vol. 406, no. 12, pp. 2987–2992, 2014, doi: 10.1007/s00216-014-7693-z.spa
dc.relation.references[77] A. Ahmad et al., “New generation Amberlite XAD resin for the removal of metal ions: A review,” Journal of Environmental Sciences (China), vol. 31. Chinese Academy of Sciences, pp. 104–123, May 01, 2015. doi: 10.1016/j.jes.2014.12.008.spa
dc.relation.references[78] I. Zawierucha, J. Kozlowska, C. Kozlowski, and A. Trochimczuk, “Sorption of Pb(II), Cd(II) and Zn(II) performed with the use of carboxyphenylresorcinarene-impregnated Amberlite XAD-4 resin,” Desalination Water Treat, vol. 52, no. 1–3, pp. 314–323, 2014, doi: 10.1080/19443994.2013.785370.spa
dc.relation.references[79] M. S. Hosseini and F. Abedi, “Stepwise extraction of Th(IV) and U(VI) ions with mixed-ligands impregnated resin containing 1,4-diaminoanthraquinone and 1,4-dihydroxyanthraquinone,” J Radioanal Nucl Chem, vol. 303, no. 1, pp. 209–216, Jan. 2015, doi: 10.1007/s10967-014-3366-9.spa
dc.relation.references[80] V. Manzo et al., “Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE),” Anal Chim Acta, vol. 1087, pp. 1–10, Dec. 2019, doi: 10.1016/j.aca.2019.08.069.spa
dc.relation.references[81] A. Fashi et al., “Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples,” Talanta, vol. 217, Sep. 2020, doi: 10.1016/j.talanta.2020.121001.spa
dc.relation.references[82] A. Shishov, N. Volodina, S. Gagarionova, V. Shilovskikh, and A. Bulatov, “A rotating disk sorptive extraction based on hydrophilic deep eutectic solvent formation,” Anal Chim Acta, vol. 1141, pp. 163–172, Jan. 2021, doi: 10.1016/j.aca.2020.10.020.spa
dc.relation.references[83] E. Blahová and E. Brandšteterová, “Approaches in Sample Handling before HPLC Analysis of Complex Matrices,” 2004.spa
dc.relation.references[84] V. Manzo, L. Honda, O. Navarro, L. Ascar, and P. Richter, “Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction,” Talanta, vol. 128, pp. 486–492, Oct. 2014, doi: 10.1016/j.talanta.2014.06.003.spa
dc.relation.references[85] N. Abbas et al., “Template-assisted polymeric spherules for the solid phase extraction of chlorfenapyr from contaminated water,” Separation Science and Technology (Philadelphia), vol. 56, no. 3, 2021, doi: 10.1080/01496395.2020.1718707.spa
dc.relation.references[86] A. Castillo-Aguirre, A. Cañas, L. Honda, and P. Richter, “Determination of veterinary antibiotics in cow milk using rotating-disk sorptive extraction and liquid chromatography,” Microchemical Journal, vol. 162, Mar. 2021, doi: 10.1016/j.microc.2020.105851.spa
dc.relation.references[87] C. Vakh, M. Alaboud, S. Lebedinets, and A. Bulatov, “A rotating cotton‐based disk packed with a cation-exchange resin: Separation of ofloxacin from biological fluids followed by chemiluminescence determination,” Talanta, vol. 196, pp. 117–123, May 2019, doi: 10.1016/j.talanta.2018.12.024.spa
dc.relation.references[88] A. Castillo-Aguirre and M. Maldonado, “Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction,” Polymers (Basel), vol. 11, no. 9, pp. 1–21, 2019, doi: 10.3390/polym11091428.spa
dc.relation.references[89] F. Biedermann and H. J. Schneider, “Experimental Binding Energies in Supramolecular Complexes,” Chemical Reviews, vol. 116, no. 9. American Chemical Society, pp. 5216–5300, May 11, 2016. doi: 10.1021/acs.chemrev.5b00583.spa
dc.relation.references[90] A. S. Mahadevi and G. N. Sastry, “Cooperativity in Noncovalent Interactions,” Chemical Reviews, vol. 116, no. 5. American Chemical Society, pp. 2775–2825, Mar. 09, 2016. doi: 10.1021/cr500344e.spa
dc.relation.references[91] “Israelachvili J.N. - Intermolecular and surface forces-AP (2003)”.spa
dc.relation.references[92] J. L. Casas-Hinestroza, M. Bueno, E. Ibáñez, and A. Cifuentes, “Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review,” Anal Chim Acta, vol. 1081, pp. 32–50, Nov. 2019, doi: 10.1016/j.aca.2019.06.029.spa
dc.relation.references[93] J. L. Atwood and A. Szumna, “Cation-pi interactions in neutral calix[4]resorcinarenes,” Journal of Supramolecular Chemistry, vol. 2, no. 4–5, pp. 479–482, Aug. 2002, doi: 10.1016/S1472-7862(03)00068-6.spa
dc.relation.references[94] M.-C. Hennion´laboratoire, “Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography,” 1999.spa
dc.relation.references[95] T. Hiroi, S. Imaoka, and Y. Funae, “Dopamine Formation from Tyramine by CYP2D6,” 1998.spa
dc.relation.references[96] N. S. Dhalla, P. K. Ganguly, S. K. Bhullar, and P. S. Tappia, “Role of catecholamines in the pathogenesis of diabetic cardiomyopathy (2019).”spa
dc.relation.references[97] A. C. Guyton and Ph. D. John E. Hall, “Text book of Medical Physiology,” 2006.spa
dc.relation.references[98] J. E. Lisman and A. A. Grace, “The hippocampal-VTA loop: Controlling the entry of information into long-term memory,” Neuron, vol. 46, no. 5. pp. 703–713, Jun. 02, 2005. doi: 10.1016/j.neuron.2005.05.002.spa
dc.relation.references[99] D. Jenson et al., “Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity,” Neuropharmacology, vol. 90, pp. 23–32, 2015, doi: 10.1016/j.neuropharm.2014.10.029.spa
dc.relation.references[100] F. Smedes, C. Kraak, and H. Foffe, “Simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine,” 1982.spa
dc.relation.references[101] M. Tsunoda, C. Aoyama, S. Ota, T. Tamura, and T. Funatsu, “Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography- electrochemical detection,” Analytical Methods, vol. 3, no. 3, pp. 582–585, Mar. 2011, doi: 10.1039/c0ay00686f.spa
dc.relation.references[102] L. Q. Chen et al., “High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber,” J Chromatogr A, vol. 1561, pp. 48–55, Aug. 2018, doi: 10.1016/j.chroma.2018.05.041.spa
dc.relation.references[103] P. G. Wang and W. He, “Hydrophilic Interaction Liquid Chromatography (HILIC) And Advanced Applications,” 2011.spa
dc.relation.references[104] P. Hemström and K. Irgum, “Hydrophilic interaction chromatography,” Journal of Separation Science, vol. 29, no. 12. pp. 1784–1821, Aug. 2006. doi: 10.1002/jssc.200600199.spa
dc.relation.references[105] C. Viklund, F. Svec, J. M. J. Fréchet, and K. Irgum, “Monolithic, ‘molded’, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: Control of porous properties during polymerization,” Chemistry of Materials, vol. 8, no. 3, pp. 744–750, 1996, doi: 10.1021/cm950437j.spa
dc.relation.references[106] C. Viklund, A. Nordström, K. Irgum, F. Svec, and J. M. J. Fréchet, “Preparation of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by grafting,” Macromolecules, vol. 34, no. 13, pp. 4361–4369, 2001, doi: 10.1021/ma001435+.spa
dc.relation.references[107] E. C. Peters, F. Svec, J. M. J. Fréchet, C. Viklund, and K. Irgum, “Control of porous properties and surface chemistry in ‘molded’ porous polymer monoliths prepared by polymerization in the presence of TEMPO,” Macromolecules, vol. 32, no. 19, pp. 6377–6379, 1999, doi: 10.1021/ma990538t.spa
dc.relation.references[108] C. Viklund, F. Svec, J. M. J. Fréchet, and K. Irgum, “Monolithic, ‘molded’, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: Control of porous properties during polymerization,” Chemistry of Materials, vol. 8, no. 3, pp. 744–750, 1996, doi: 10.1021/cm950437j.spa
dc.relation.references[109] V. K. Ahluwalia, Green Chemistry Environmentally Benign Reactions, 3rd editio., vol. 12, no. 3. 2021.spa
dc.relation.references[110] V. K. Ahluwalia and M. Kidwai, New Trends in Green Chemistry. Springer Netherlands, 2004. doi: 10.1007/978-1-4020-3175-5.spa
dc.relation.references[111] Mukesh Doble and Anil Kumar Kruthiventi, “Green Chemistry and Processes,” 2007.spa
dc.relation.references[112] H. Loghmani-Khouzani, M. M. Sadeghi, and J. Safari, “molecules Silica gel Catalyzed Synthesis of Quinophthalone Pigments Under Solvent-Free Conditions Using Microwave Irradiation,” 2002.spa
dc.relation.references[113] M. Mäkinen, J. P. Jalkanen, and P. Vainiotalo, “Conformational properties and intramolecular hydrogen bonding of tetraethyl resorcarene: An ab initio study,” Tetrahedron, vol. 58, no. 42, pp. 8591–8596, 2002, doi: 10.1016/S0040-4020(02)00863-3.spa
dc.relation.references[114] L. Lei and Y. Zhou, “Reacciones químicas en estado sólido sin disolventes o con menos disolventes,” Progress in Chemistry, vol. 32, no. 8, pp. 1158–1171, 2020.spa
dc.relation.references[115] H. Zhang, I. bin Samsudin, S. Jaenicke, and G. K. Chuah, “Zeolites in catalysis: sustainable synthesis and its impact on properties and applications,” Catal Sci Technol, vol. 12, no. 19, pp. 6024–6039, Aug. 2022, doi: 10.1039/d2cy01325h.spa
dc.relation.references[116] A. W. Chester and E. G. Derouane, “Zeolite Characterization and Catalysis: A Tutorial. (2009)”spa
dc.relation.references[117] V. Baliah and T. Chellathurai, “Dipole moments of some substituted benzaldehydes. Conformational preference of substituents ortho to the aldehyde group,” Proceedings of the Indian Academy of Sciences - Chemical Sciences, vol. 101, no. 4, pp. 311–317, 1989, doi: 10.1007/BF02840663.spa
dc.relation.references[118] J. N. F Pearce and L. Berhenke, “The electric moments of some organic compounds” J. Phys. Chem, vol. 39, no. 7, pp. 1005–1010, 1935.spa
dc.relation.references[119] S. B. Utomo, A. N. C. Saputro, and Y. Rinanto, “Functionalization of C-4-methoxyphenylcalix[4]resorcinarene with several ammonium compounds,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2016. doi: 10.1088/1757-899X/107/1/012042.spa
dc.relation.references[120] F. Darvish and S. Khazraee, “Molecular iodine: An efficient and environment-friendly catalyst for the synthesis of calix[4]resorcinarenes,” Comptes Rendus Chimie, vol. 17, no. 9, pp. 890–893, 2014, doi: 10.1016/j.crci.2013.10.017.spa
dc.relation.references[121] A. Hasbullah, Hamza. M.Abosadiya, J. Jumina, M. I. M.Tahir, and B. M. Yamin, “Synthesis, Structural and Antioxidant Properties of C-p methoxyphenylcalix[4]resorcinarene,” Int J Adv Sci Eng Inf Technol, vol. 3, no. 2, p. 134, 2013, doi: 10.18517/ijaseit.3.2.297.spa
dc.relation.references[122] A. Gharehkhani, R. Ghorbani-Vaghei, and S. Alavinia, “Synthesis of calixresorcarenes using magnetic poly triazine-benzene sulfonamide-SO3H,” RSC Adv, vol. 11, no. 59, pp. 37514–37527, 2021, doi: 10.1039/d1ra07393aspa
dc.relation.references[123] Y. Yamakawa, M. Ueda, R. Nagahata, K. Takeuchi, and M. Asai, “Rapid synthesis of dendrimers based on calix[4]resorcinarenes,” 1998.spa
dc.relation.references[124] M. M. Al-Mahadeen, A. G. Jiries, S. A. Al-Trawneh, S. F. Alshahateet, A. S. Eldouhaibi, and S. Sagadevan, “Kinetics and equilibrium studies for the removal of heavy metal ions from aqueous solution using the synthesized C-4-bromophenylcalix[4]resorcinarene adsorbent,” Chem Phys Lett, vol. 783, Nov. 2021, doi: 10.1016/j.cplett.2021.139053.spa
dc.relation.references[125] G. Jaramillo-Soto and E. Vivaldo-Lima, “RAFT copolymerization of styrene/divinylbenzene in supercritical carbon dioxide,” Aust J Chem, vol. 65, no. 8, pp. 1177–1185, 2012, doi: 10.1071/CH12291.spa
dc.relation.references[126] R. Sanetra, B. N. Kolarz, and A. Wlochowicz, “Determination of the glass transition temperature of poly(styrene-co-divinylbenzene) by inverse gas chromatography,” Polymer (Guildf), vol. 26, no. 8, pp. 1181–1186, 1985, doi: 10.1016/0032-3861(85)90249-6.spa
dc.relation.references[127] D. Braun, H. Cherdron, M. Rehahn, H. Ritter, and B. Voit, Polymer synthesis: Theory and practice: Fundamentals, methods, experiments, fifth edition. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-28980-4.spa
dc.relation.references[128] G. G. Condorelli et al., “Grafting cavitands on the Si(100) surface,” Langmuir, vol. 22, no. 26, pp. 11126–11133, 2006, doi: 10.1021/la060682p.spa
dc.relation.references[129] E. Menozzi, R. Pinalli, E. A. Speets, B. J. Ravoo, E. Dalcanale, and D. N. Reinhoudt, “Surface-Confined Single Molecules: Assembly and Disassembly of Nanosize Coordination Cages on Gold (111),” Chemistry - A European Journal, vol. 10, no. 9, pp. 2199–2206, 2004, doi: 10.1002/chem.200305570.spa
dc.relation.references[130] M. Yang, W. Wang, K. Su, and D. Yuan, “Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation,” Chem Res Chin Univ, vol. 38, no. 2, pp. 428–432, Apr. 2022, doi: 10.1007/s40242-022-1454-x.spa
dc.relation.references[131] Y. E. Morozova, Y. V. Shalaeva, N. A. Makarova, V. V. Syakaev, E. K. Kazakova, and A. I. Konovalov, “Binding of polar organic substrates by amphiphilic calixresorcin[4]arenes in the solution bulk and on the surface of anion-exchange resin,” Colloid Journal, vol. 71, no. 3, pp. 380–390, Jun. 2009, doi: 10.1134/S1061933X09030144.spa
dc.relation.references[132] N. Demirel, M. Merdivan, N. Pirinccioglu, and C. Hamamci, “Thorium(IV) and uranium(VI) sorption studies on octacarboxymethyl-C-methylcalix[4]resorcinarene impregnated on a polymeric support,” Anal Chim Acta, vol. 485, no. 2, pp. 213–219, Jun. 2003, doi: 10.1016/S0003-2670(03)00415-X.spa
dc.relation.references[133] C. C. Beh, R. Mammucari, and N. R. Foster, “Neoteric Media as Tools for Process Intensification,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2017. doi: 10.1088/1757-899X/206/1/012006.spa
dc.relation.references[134] A. A. Castillo-Aguirre, A. Pérez-Redondo, and M. Maldonado, “Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes,” J Mol Struct, vol. 1202, p. 127402, 2020, doi: 10.1016/j.molstruc.2019.127402.spa
dc.relation.references[135] D. Jenson et al., “Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity,” Neuropharmacology, vol. 90, pp. 23–32, 2015, doi: 10.1016/j.neuropharm.2014.10.029.spa
dc.relation.references[136] L. Honda, D. Arismendi, and P. Richter, “Integration of rotating disk sorptive extraction and dispersive-solid phase extraction for the determination of estrogens and their metabolites in urine by liquid chromatography/mass spectrometry,” Microchemical Journal, vol. 185, Feb. 2023, doi: 10.1016/j.microc.2022.108273.spa
dc.relation.references[137] A. Castillo-Aguirre, A. Cañas, L. Honda, and P. Richter, “Determination of veterinary antibiotics in cow milk using rotating-disk sorptive extraction and liquid chromatography,” Microchemical Journal, vol. 162, Mar. 2021, doi: 10.1016/j.microc.2020.105851.spa
dc.relation.references[138] L. Konieczna, A. Roszkowska, A. Synakiewicz, T. Stachowicz-Stencel, E. Adamkiewicz-Drozyńska, and T. Baczek, “Analytical approach to determining human biogenic amines and their metabolites using eVol microextraction in packed syringe coupled to liquid chromatography mass spectrometry method with hydrophilic interaction chromatography column,” Talanta, vol. 150, pp. 331–339, Apr. 2016, doi: 10.1016/j.talanta.2015.12.056.spa
dc.relation.references[139] L. Q. Chen, X. H. Zhu, J. Shen, and W. Q. Zhang, “Selective solid-phase extraction of catecholamines from plasma using nanofibers doped with crown ether and their quantitation by HPLC with electrochemical detection,” Anal Bioanal Chem, vol. 408, no. 18, pp. 4987–4994, Jul. 2016, doi: 10.1007/s00216-016-9596-7.spa
dc.relation.references[140] T. Khezeli and A. Daneshfar Tel, “Supplementary Materials Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe3O4 @MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol,” 2015.spa
dc.relation.references[141] P. Luliński, M. Bamburowicz-Klimkowska, M. Dana, M. Szutowski, and D. Maciejewska, “Efficient strategy for the selective determination of dopamine in human urine by molecularly imprinted solid-phase extraction,” J Sep Sci, vol. 39, no. 5, pp. 895–903, Mar. 2016, doi: 10.1002/jssc.201501159.spa
dc.relation.references[142] “George E. Box, J. Stuart Hunter, William G. Hunter - Estadística para investigadores_ diseño, innovación y descubrimiento-Reverté (2008)”.spa
dc.relation.references[143] X. Zhang, R. Wang, X. Yang, and J. Yu, “Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol,” Chemometrics and Intelligent Laboratory Systems, vol. 89, no. 1, pp. 45–50, Oct. 2007, doi: 10.1016/j.chemolab.2007.05.006.spa
dc.relation.references[144] X. Xiong and Y. Zhang, “Simple, rapid, and cost-effective microextraction by the packed sorbent method for quantifying of urinary free catecholamines and metanephrines using liquid chromatography-tandem mass spectrometry and its application in clinical analysis,” Anal Bioanal Chem, vol. 412, no. 12, pp. 2763–2775, May 2020, doi: 10.1007/s00216-020-02436-8.spa
dc.relation.references[145] A. Castillo-Aguirre, Z. Rivera-Monroy, and M. Maldonado, “Selective o-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether,” Molecules, vol. 22, no. 10, 2017, doi: 10.3390/molecules22101660.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalSíntesis solvent free de calix[4]resorcinarenosspa
dc.subject.proposalCopolímeros de estireno-divinilbencenospa
dc.subject.proposalFisisorciónspa
dc.subject.proposalExtracción por sorción disco rotatorio (RDSE)spa
dc.subject.proposalSistemas huésped-hospederospa
dc.subject.proposalSolvent free synthesis of calix[4]resorcinareneseng
dc.subject.proposalStyrene-divinylbenzene copolymerseng
dc.subject.proposalPhysisorptioneng
dc.subject.proposalRotary disk sorption extraction (RDSE)eng
dc.subject.proposalHost-Gest systemseng
dc.subject.unescoQuímica experimentalspa
dc.subject.unescoExperimental chemistryeng
dc.subject.unescoAnálisis químicospa
dc.subject.unescoChemical analysiseng
dc.subject.unescoInvestigación químicaspa
dc.subject.unescoChemical researcheng
dc.titleSíntesis verde y uso de c-tetra(aril)calix[4]resorcinarenos en la fisisorción de un monolito con base en estireno y evaluación en la microextracción por sorción en disco rotatorio (rdse) de norepinefrinaspa
dc.title.translatedGreen synthesis and use of c-tetra(aryl)calix[4]resorcinarenes in the physisorption of a styrene-based monolith and evaluation in rotating disk sorption microextraction (RDSE) of norepinephrineeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010203243.2023.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: