Contribución al desarrollo de una formulación tópica a base de panela con posible actividad cicatrizante

dc.contributor.advisorBaena Aristizábal, Yolimaspa
dc.contributor.authorMartínez Contreras, Laura Alejandraspa
dc.contributor.researchgroupGrupo de Investigación en Tecnología de Productos Naturales Tecpronaspa
dc.date.accessioned2023-07-27T02:21:23Z
dc.date.available2023-07-27T02:21:23Z
dc.date.issued2023-01-30
dc.descriptionilustracionesspa
dc.description.abstractLa cicatrización de heridas es un proceso fisiológico altamente regulado para la recuperación de la funcionalidad de la piel después de un daño o lesión en su estructura por trauma o enfermedad. En la medicina tradicional, la panela se ha utilizado empíricamente para el tratamiento tópico de heridas con resultados satisfactorios, por esta razón, el presente trabajo consistió en desarrollar una formulación tópica a base de panela con el objetivo de evaluar su posible actividad cicatrizante. Para ello, la composición cualicuantitativa y las condiciones operacionales definitivas de la crema se obtuvieron mediante la aplicación de diseños estadísticos experimentales de tipo exploratorio y de optimización. La actividad cicatrizante de la formulación final desarrollada fue evaluada mediante la determinación del cambio progresivo de heridas por escisión realizadas en piel de rata durante 12 días de tratamiento. El porcentaje de aceite, el porcentaje de emulsificante y la velocidad de homogenización fueron los factores estadísticamente significativos para el tamaño de gota D4,3 y el span. La formulación final es estable físicamente, presenta el menor tamaño de gota D4,3 y la distribución más estrecha de todas las emulsiones preparadas; esta comprende 7,5% de aceite mineral, 2% de cada alcohol graso, 5% del emulsificante estearato de sorbitano con PEG100 estearato y se prepara a una velocidad de homogenización de 5000 rpm durante 20 minutos. La aplicación de la crema de panela en las lesiones genera un aumento estadísticamente significativo en el porcentaje de contracción respecto a las heridas no tratadas, lo cual evidencia su potencial aplicación para el tratamiento tópico de heridas.spa
dc.description.abstractWound healing is a highly regulated physiological process for the recovery of skin functionality after damage or injury to its structure due to trauma or disease. In traditional medicine, non-centrifugal cane sugar has been used empirically for the topical treatment of wounds with satisfactory results. The present study consisted in developing a topical formulation based on non-centrifugal cane sugar, with the aim of evaluating its possible healing activity. For this purpose, the qualitative-quantitative composition and the definitive operational conditions of the cream were obtained through the application of exploratory and optimization experimental statistical designs. The healing activity of the final formulation developed was evaluated by determining the progressive change of excision wounds performed on rat skin during 12 days of treatment. The percentage of oil, the percentage of emulsifier and the speed of homogenization were the statistically significant factors for the droplet size D4,3 and the span. The final formulation developed is physically stable, presents the smallest droplet size and the narrowest distribution of all the emulsions prepared, it comprises 7,5% mineral oil, 2% of each fatty alcohol, 5% of the emulsifier sorbitan stearate with PEG100 stearate and is prepare at a homogenization speed of 5000 rpm for 20 minutes. The application of the non-centrifugal cane sugar cream generates a statistically significant increase in the contraction percentage compared to untreated wounds, which shows its potential application for topical treatment of wounds.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaDiseño y desarrollo de productos fitofarmacéuticosspa
dc.format.extentxxii, 151 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84298
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.references1. Kiya K, Kubo T. Neurovascular interactions in skin wound healing. Neurochem Int [Internet]. 2019;125: 144-50. Disponible en: https://doi.org/10.1016/j.neuint.2019.02.014spa
dc.relation.references2. Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d’Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Vol. 233, Carbohydrate Polymers. Elsevier Ltd; 2020.spa
dc.relation.references3. Ziolkowski N, Kitto SC, Jeong D, Zuccaro J, Adams-Webber T, Miroshnychenko A, et al. Psychosocial and quality of life impact of scars in the surgical, traumatic and burn populations: A scoping review protocol. BMJ Open. 2019 jun 1;9(6).spa
dc.relation.references4. Junginger HE. Pharmaceutical emulsions and creams. 1992.spa
dc.relation.references5. Tarasenko VO, Shmatenko V v., Кuchmistov VO, Koziko NO, Shmatenko OP, Drozdova AO, et al. Pharmaceutical development of complex wound-healing ointment for the needs of military medicine. Regul Mech Biosyst. 2017 nov 24;8(4):662-72.spa
dc.relation.references6. Bhowmik D, Gopinath H, Pragati Kumar B, Duraivel S, Sampath Kumar KP. THE PHARMA INNOVATION Recent Advances In Novel Topical Drug Delivery System. Thepharmajournal [Internet]. 2012;1(9). Disponible en: www.thepharmajournal.comspa
dc.relation.references7. Antonio J, Prieto-gonzález S, Garrido-garrido G, Antonio J, Jorge G lavaut. Actualidad de la Medicina Tradicional Herbolaria. Revista CENIC: Ciencias Biológicas. 2004;35(1):19-36.spa
dc.relation.references8. Mengarelli RH, Bilevich E, Belatti A, Gorosito S. Agentes tópicos tradicionales utilizados para la cura de heridas. ¿Mito o verdad? Terapia Dermatológica [Internet]. 2013; I:98-103. Disponible en: http://www.aiach.org.ar/ckfinder/userfiles/files/Agentes_Topicos_en_Heridas_ATD_2013.pdfspa
dc.relation.references9. Velásquez F, Espitia J, Mendieta O, Escobar S, Rodríguez J. Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. J Food Eng. 2019 ago 1; 255:32-40.spa
dc.relation.references10. Centro Provincial de Información de Ciencias Médicas (Cuba) R, González Tuero JH. Métodos alternativos para el tratamiento de pacientes con heridas infectadas. Medisan [Internet]. 2011;15(4):503-14.spa
dc.relation.references11. Topham J. Sugar for wounds. J Tissue Viability. 2000;10(3):86-9.spa
dc.relation.references12. Biswas A, Bharara M, Hurst C, Gruessner R, Armstrong D, Rilo H. Use of Sugar on the Healing of Diabetic Ulcers: A Review Epidemiology of Diabetic Foot Ulcers. J Diabetes Sci Technol [Internet]. 2010;4(5):1139-45. Disponible en: www.journalofdst.orgspa
dc.relation.references13. El espectador. La panela, un producto mágico. 2014; Disponible en: http://www.elespectador.com/noticias/publirreportaje/panela¬un¬producto¬magico¬articulo-530396spa
dc.relation.references14. Dirección de Cadenas agrícolas y Forestales. Cadena Agroindustrial de la panela. 2019.spa
dc.relation.references15. Alarcón AL. Estudio del comportamiento de propiedades fisicoquímicas, reológicas y térmicas de jugos y mieles de caña panelera. [Bogotá]: Universidad Nacional de Colombia; 2017.spa
dc.relation.references16. Yousef H, Sharma S. Anatomy, Skin (Integument), Epidermis [Internet]. 2017. Disponible en: https://www.researchgate.net/publication/322063118spa
dc.relation.references17. La Roche-Posey. How much do you know about our skin? 2009.spa
dc.relation.references18. Zuluaga MJ. Evaluación de la actividad cicatrizante de Critoniella acuminata en pequeños roedores. [Bogotá]: Universidad Nacional de Colombia; 2013.spa
dc.relation.references19. Kaye BB, Ennis WM. Classification of wounds and their treatment. The American Journal of Surgery. 1943;59(1):94-8.spa
dc.relation.references20. Jeschke MG, Shahrokhi S, Finnerty CC, Branski LK, Dibildox M. Wound Coverage Technologies in Burn Care: Established Techniques. Journal of Burn Care and Research. 2018;39(3):313-8.spa
dc.relation.references21. Gil LR. Evaluación del desempeño preclínico de soportes de Colágeno tipo I asociados con extractos vegetales de Aloe vera en un modelo animal de Cavia porcellus. Universidad Nacional de Colombia. 2016.spa
dc.relation.references22. Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. Journal of the Chinese Medical Association [Internet]. 2018;81(2):94-101. Disponible en: https://doi.org/10.1016/j.jcma.2017.11.002spa
dc.relation.references23. Cuarín C, Quiroga P, Landínez N. Proceso de Cicatrización de heridas de piel. Rev Fac Med [Internet]. 2013;61(4):441-8. Disponible en: http://www.scielo.org.co/pdf/rfmun/v61n4/v61n4a14.pdfspa
dc.relation.references24. Jaffé WR. Nutritional and functional components of non-centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis. 2015; 43:194-202.spa
dc.relation.references25. Jaffé WR. Health Effects of Non-Centrifugal Sugar (NCS): A Review. Sugar Tech. 2012;14(2):87-94.spa
dc.relation.references26. Martínez I. La eficacia de la sacarosa y la miel en heridas crónicas: Revisión bibliográfica de la literatura [Internet]. 2017. Disponible en: http://tauja.ujaen.es/bitstream/10953.1/6579/1/MartnezLpezAnaIsabel_TFG.pdfspa
dc.relation.references27. Chirife J, Herszage L, Joseph A, Kohn ES. In vitro study of bacterial growth inhibition in concentrated sugar solutions: microbiological basis for the use of sugar in treating infected wounds. Antimicrob Agents Chemother. 1983;23(5):766-73.spa
dc.relation.references28. Zidan D, Azlan A. Non-Centrifugal Sugar (NCS) and Health: A Review on Functional Components and Health Benefits. Applied Sciences (Switzerland). 2022 ene 1;12(1).spa
dc.relation.references29. Zhao Y, Chen M, Zhao Z, Yu S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem [Internet]. 2015; 185:112-8. Disponible en: http://dx.doi.org/10.1016/j.foodchem.2015.03.120spa
dc.relation.references30. Sivamani RK, Ma BR, Wehrli LN, Maverakis E. Phytochemicals and Naturally Derived Substances for Wound Healing. Adv Wound Care (New Rochelle). 2012;1(5):213-7.spa
dc.relation.references31. Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics. 2022 may 1;14(5).spa
dc.relation.references32. Singh A, Lal UR, Mukhtar HM, Singh PS, Shah G, Dhawan RK. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn Rev. 2015;9(17):45-54.spa
dc.relation.references33. (DANE). Particularidades del cultivo de la caña panelera (Saccharum officinarum L) en Colombia. 2017.spa
dc.relation.references34. Velásquez F, Espitia J, Mendieta O, Escobar S, Rodríguez J. Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. J Food Eng. 2019;255(March):32-40.spa
dc.relation.references35. S.I.P.A. Departamentos paneleros producción de panela - Colombia 2021.spa
dc.relation.references36. Gibson M. Pharmaceutical Preformulation and Formulation. Vol. 199, Pharmaceutical Preformulation and Formulation. 2016.spa
dc.relation.references37. Simões A, Veiga F, Vitorino C, Figueiras A. A Tutorial for Developing a Topical Cream Formulation Based on the Quality by Design Approach. J Pharm Sci. 2018;107(10):2653-62.spa
dc.relation.references38. Kulkarni VS, Shaw C. Formulating Creams, Gels, Lotions, and Suspensions. En: Essential Chemistry for Formulators of Semisolid and Liquid Dosages. Elsevier; 2016. p. 29-41.spa
dc.relation.references39. WHO. Topical-semi-solid-dosage-forms. 2020.spa
dc.relation.references40. Freire M. Desarrollo de emulsiones dobles y emulsiones dobles gelificadas como análogos de grasa y su aplicación en productos cárnicos funcionales. [Madrid]: Universidad complutense de Madrid; 2018.spa
dc.relation.references41. O’Farrell C, Hall TJ, Grover LM, Cox SC. Formulation of an antibacterial topical cream containing bioengineered honey that generates reactive oxygen species. Biomaterials Advances. 2022 feb 1;133.spa
dc.relation.references42. Gordon H. Sugar and wound healing. The Lancet. 1985;663-4.spa
dc.relation.references43. Nakao H, Yamazaki M, Tsuboi R, Ogawa H. Mixture of sugar and povidone - Iodine stimulates wound healing by activating keratinocytes and fibroblast functions. Arch Dermatol Res. 2006 sep;298(4):175-82.spa
dc.relation.references44. Mesa L. Diseño de un producto cosmético exfoliante tipo gel a escala laboratorio basado en panela. [Bogotá]: Universidad Nacional de Colombia; 2019.spa
dc.relation.references45. León H. Diseño de un producto cosmético tipo mascarilla facial emulsionado a escala de laboratorio basado en arcillas y panela. [Bogotá]: Universidad Nacional de Colombia; 2018.spa
dc.relation.references46. Suárez MC. Desarrollo de un producto cosmético tipo polvo exfoliante con panela como ingrediente activo. [Bogotá]: Universidad Nacional de Colombia; 2019.spa
dc.relation.references47. Tharwat F. Tadros T. Emulsions: Formation, stability,industrial applications. En: Emulsion. 2016.spa
dc.relation.references48. Yamashita Y, Miyahara R, Sakamoto K. Emulsion and emulsification technology [Internet]. Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier Inc.; 2017. 489-506 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-802005-0.00028-8spa
dc.relation.references49. Effendy I, Maibach HI. Surfactants and experimental irritant contact dermatitis. Contact Dermatitis. 1995;33(4):217-25.spa
dc.relation.references50. Paye Marc. Handbook of Cosmetic Science and Technology. Second. Paye, Marc. Barel, André. Maibach H, editor. Vol. 53. London: Taylor Francis; 2006. 1689-1699 p.spa
dc.relation.references51. Seweryn A. Interactions between surfactants and the skin – Theory and practice. Adv Colloid Interfase Sci. 2018 jun 1; 256:242-55.spa
dc.relation.references52. Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, et al. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf A Physicochem Eng Asp. 2015; 469:166-79.spa
dc.relation.references53. Rancan F, Jurisch J, Günday C, Türeli E, Blume-Peytavi U, Vogt A, et al. Screening of surfactants for improved delivery of antimicrobials and poly-lactic-co-glycolic acid particles in wound tissue. Pharmaceutics. 2021 jul 1;13(7).spa
dc.relation.references54. Ghafourian T, Nokhodchi A, Kaialy W. Surfactants as penetration enhancers for dermal and transdermal drug delivery. En: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum. Springer Berlin Heidelberg; 2015. p. 207-30.spa
dc.relation.references55. Srirod S, Tewtrakul S. Anti-inflammatory and wound healing effects of cream containing Curcuma mangga extract. J Ethnopharmacol. 2019;238(March).spa
dc.relation.references56. Jagtap NS, Khadabadi SS, Farooqui IA, Nalamwar VP, Sawarkar HA. Development and evaluation of herbal wound healing formulations. Int J Pharmtech Res. 2009;1(4):1104-8.spa
dc.relation.references57. Shamsu J. Formulation and evaluation of herbal skin for wound healing. 2017.spa
dc.relation.references58. Steinbrenner I, Houdek P, Pollok S, Brandner JM, Daniels R. Influence of the oil phase and topical formulation on the wound healing ability of a birch bark dry extract. PLoS One. 2016;11(5):1-17.spa
dc.relation.references59. Namjoyan F, Kiashi F, Moosavi ZB, Saffari F, Makhmalzadeh BS. Efficacy of Dragon’s blood cream on wound healing: A randomized, double-blind, placebo-controlled clinical trial. J Tradit Complement Med. 2016 ene 1;6(1):37-40.spa
dc.relation.references60. Baie SH, Sheikh KA. The wound healing properties of Channa striatus-cetrimide cream-tensile strength measurement. J Ethnopharmacol [Internet]. 2000; 71:93-100. Disponible en: www.elsevier.com/locate/jethpharmspa
dc.relation.references61. Kuhlmann N, Heinbockel L, Correa W, Gutsmann T, Goldmann T, Englisch U, et al. Peptide drug stability: The anti-inflammatory drugs Pep19-2.5 and Pep19-4LF in cream formulation. European Journal of Pharmaceutical Sciences. 2018 mar 30; 115:240-7.spa
dc.relation.references62. Sadaf F, Saleem R, Ahmed M, Ahmad SI, Navaid-ul-Zafar. Healing potential of cream containing extract of Sphaeranthus indicus on dermal wounds in Guinea pigs. J Ethnopharmacol. 2006 sep 19;107(2):161-3.spa
dc.relation.references63. Beaulieu A. Wound healing formulation containing human plasma fibronectin. 1998.spa
dc.relation.references64. Akman EE. Herbal supplement cream used in cancer patients. 2021.spa
dc.relation.references65. Gupta N. An improved topical pharmaceutical composition comprising nanonized silver sulfadiazine. 2012.spa
dc.relation.references66. Farber E. Allantoin-containing skin cream. 2005. p. 1-17.spa
dc.relation.references67. Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The role of moisturizers in addressing various kinds of dermatitis: A review. Clin Med Res. 2017;15(3-4):75-87.spa
dc.relation.references68. Draelos ZD. New treatments for restoring impaired epidermal barrier permeability: Skin barrier repair creams. Clin Dermatol. 2012;30(3):345-8.spa
dc.relation.references69. Panzuti P, Vidémont E, Fantini O, Fardouet L, Noël G, Cappelle J, et al. A moisturizer formulated with glycerol and propylene glycol accelerates the recovery of skin barrier function after experimental disruption in dogs. Vet Dermatol. 2020 oct 1;31(5):344-e89.spa
dc.relation.references70. Klotz T, Munn Z, Aromataris E, Greenwood J. The effect of moisturizers or creams on scars: A systematic review protocol. JBI Database System Rev Implement Rep. 2017;15(1):15-9.spa
dc.relation.references71. Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Animal Models of Wound Healing. Journal of Investigative Dermatology. 2018;138(10):2095-2105.e1.spa
dc.relation.references72. Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. Wound Medicine [Internet]. 2019;24(1):8-17. Disponible en: https://doi.org/10.1016/j.wndm.2018.12.001spa
dc.relation.references73. Gurtner GC, Wong VW, Sorkin M, Glotzbach JP, Longaker MT. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011;2011.spa
dc.relation.references74. Glicerio I, El-Amin I, Mendenhall V. Animal Models for Wound Healing [Internet]. Skin Tissue Engineering and Regenerative Medicine. Elsevier Inc.; 2016. 387-400 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-801654-1.00019-Xspa
dc.relation.references75. Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. Wound Medicine. 2019 mar 1;24(1):8-17.spa
dc.relation.references76. Porras DO. Contribución al desarrollo de una formulación líquida de administración oral para un extracto de hojas de Passiflora quadrangularis L aplicando los conceptos del enfoque de calidad basada en el diseño (QbD). [Bogotá]: Universidad Nacional de Colombia; 2019.spa
dc.relation.references77. Henao M. Contribución al estudio de formulación de un producto cosmético de uso capilar basado en aceite de aguacate. 2016.spa
dc.relation.references78. Goméz M, Velázquez S, Villafuerte L. Distribución del tamaño de micropartículas lipídicas sólidas de ácido esteárico obtenidas por fusión-emulsificación. Revista Mexicana de Ciencias Farmacéuticas [Internet]. 2008;39(4). Disponible en: http://www.redalyc.org/articulo.oa?id=57911113006spa
dc.relation.references79. ICONTEC. NORMA TÉCNICA NTC COLOMBIANA 1311. 2009.spa
dc.relation.references80. Alarcón AL, Palacios LM, Osorio C, César Narváez P, Heredia FJ, Orjuela A, et al. Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chem. 2021 mar 15;340.spa
dc.relation.references81. Guerra MJ, Mujica V. Physical and chemical properties of granulated cane sugar «panelas». Food Sci Technol. 2010;30(1).spa
dc.relation.references82. Jaffé WR. Nutritional and functional components of non-centrifugal cane sugar: A compilation of the data from the analytical literature. Vol. 43, Journal of Food Composition and Analysis. Academic Press Inc.; 2015. p. 194-202.spa
dc.relation.references83. Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018 sep 18;23(9).spa
dc.relation.references84. Bessa LJ, Fazii P, di Giulio M, Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int Wound J. 2015 feb 1;12(1):47-52.spa
dc.relation.references85. Sisay M, Worku T, Edessa D. Microbial epidemiology and antimicrobial resistance patterns of wound infection in Ethiopia: A meta-analysis of laboratory-based cross-sectional studies. BMC Pharmacol Toxicol. 2019 may 30;20(1).spa
dc.relation.references86. Lara N, Clavijo A, Barrera V. Modelación de la Solubilidad de Panela Granulada y Otros Edulcorantes en Agua. Revista Tecnológica ESPOL-RTE. 2010; 23:25-31.spa
dc.relation.references87. Chirife,’ Le6n Herszage J, Joseph A, Kohn3 ES. In Vitro Study of Bacterial Growth Inhibition in Concentrated Sugar Solutions: Microbiological Basis for the Use of Sugar in Treating Infected Wounds. Antimicrob Agents Chemother [Internet]. 1983;23(5):766-73. Disponible en: http://aac.asm.org/spa
dc.relation.references88. Rowe R, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients. 2009.spa
dc.relation.references89. Barnes H. An Introduction to Rheology. 1989.spa
dc.relation.references90. Schramm LL. Emulsions, Foams, and Suspensions. Emulsions, Foams, and Suspensions. Wiley-VCH Verlag GmbH & Co. KGaA; 2006.spa
dc.relation.references91. Sherman BP. The Influence of Emulsifying Agent Concentration on Emulsion Viscosity. Kolloid-Zeitschrift. 1959;165(2).spa
dc.relation.references92. Derkach SR. Rheology of emulsions. Adv Colloid Interfase Sci. 2009 oct 30;151(1-2):1-23.spa
dc.relation.references93. Sherman P. Studies in water in oil emulsions. IV. The influence of the emulsifying agent on the viscosity of water in oil emulsions of high-water content. J Colloid Sci. 1955;10(1).spa
dc.relation.references94. Percival SL, McCarty S, Hunt JA, Woods EJ. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound repair and regeneration. 2014;22(2):174-86.spa
dc.relation.references95. Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch Dermatol Res. 2007 feb;298(9):413-20.spa
dc.relation.references96. Sharma S, Shukla P, Misra A, Mishra PR. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. Pharmaceutical and biological perspective. En: Colloid and Interfase Science in Pharmaceutical Research and Development. Elsevier Inc.; 2014. p. 149-72.spa
dc.relation.references97. Lu GW, Gao P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. En: Handbook of Non-Invasive Drug Delivery Systems. Elsevier; 2010. p. 59-94.spa
dc.relation.references98. Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interfase Sci. 2004 may 20;108-109:227-58.spa
dc.relation.references99. Rosen MJ. Surfactants and Interfacial Phenomena [Internet]. 2004. Disponible en: www.copyright.com.spa
dc.relation.references100. Wilde PJ. Improving Emulsion Stability Through Selection of Emulsifiers and Stabilizers. Reference Module in Food Science. 2019.spa
dc.relation.references101. Lawson J. Design and Analysis of Experiments with R. 2015.spa
dc.relation.references102. Fang XL, Han LR, Cao XQ, Zhu MX, Zhang X, Wang YH. Statistical optimization of process variables for antibiotic activity of Xenorhabdus bovienii. PLoS One. 2012 jun 6;7(6).spa
dc.relation.references103. Ahmadi D, Mahmoudi N, Heenan RK, Barlow DJ, Lawrence MJ. The influence of co-surfactants on lamellar liquid crystal structures formed in creams. Pharmaceutics. 2020 sep 1;12(9):1-22.spa
dc.relation.references104. Suzuki T. Effect of molecular assembly for emulsion and gel formulations. En: Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier Inc.; 2017. p. 519-37.spa
dc.relation.references105. Libre Texts. Organic Chemistry [Internet]. 2022. Disponible en: https://LibreTexts.orgspa
dc.relation.references106. Tcholakova S, Denkov ND, Banner T. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir. 2004 ago 31;20(18):7444-58.spa
dc.relation.references107. Pandolfe WD. Effect of premix condition, surfactant concentration, and oil level on the formation of oil-in-water emulsions by homogenization. J Dispers Sci Technol. 1995 nov 1;16(7):633-50.spa
dc.relation.references108. Hasani F, Pezeshki A, Hamishehkar H. Effect of Surfactant and Oil Type on Size Droplets of Betacarotene-Bearing Nanoemulsions. IntJCurrMicrobiolAppSci [Internet]. 2015;4(9):146-55. Disponible en: http://www.ijcmas.comspa
dc.relation.references109. Abismaı¨labismaı¨l B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C. Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem. 1999; 6:75-83.spa
dc.relation.references110. Mulia K, Safiera A, Pane IF, Krisanti EA. Effect of high-speed homogenizer speed on particle size of polylactic acid. J Phys Conf Ser. 2019 may 10;1198(6).spa
dc.relation.references111. Maa YF, Hsu C. Liquid-liquid emulsification by rotor/stator homogenization. Journal of Controlled Release. 1996; 38:219-28.spa
dc.relation.references112. Salager J, Andérez J, Briceño M, Peréz M, Ramirez M. Emulsification yield related to formulation and composition variables as well as stirring energy. Revista Técnia de la Facultad de Ingeniería. 2002;25(3).spa
dc.relation.references113. Ramisetty KA, Pandit AB, Gogate PR. Ultrasound assisted preparation of emulsion of coconut oil in water: Understanding the effect of operating parameters and comparison of reactor designs. Chemical Engineering and Processing: Process Intensification. 2015 feb 1; 88:70-7.spa
dc.relation.references114. Sun C, Gunasekaran S. Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocoll. 2009 ene;23(1):165-74.spa
dc.relation.references115. Dapčević Hadnadev T, Dokić P, Krstonošić V, Hadnadev M. Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. European Journal of Lipid Science and Technology. 2013 mar;115(3):313-21.spa
dc.relation.references116. Luo X, Zhou Y, Bai L, Liu F, Zhang R, Zhang Z, et al. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International. 2017 jun 1; 96:103-12.spa
dc.relation.references117. Rodrigues MI, Lemma AF. Experimental Design Process Optimization. 2015.spa
dc.relation.references118. Yulianingsih R, Gohtani S. The influence of stirring speed and type of oil on the performance of pregelatinized waxy rice starch emulsifier in stabilizing oil-in-water emulsions. J Food Eng. 2020 sep 1;280.spa
dc.relation.references119. Barnes HA. Rheology of emulsions- A review. Colloids Surf A Physicochem Eng Asp. 1994; 91:89-95.spa
dc.relation.references120. Pal R. Effect of Droplet Size on the Rheology of Emulsions. AIChE Journal. 1996;42(11):3181-90.spa
dc.relation.references121. Dłuuewska E, Stobiecka A, Maszewska M. Effect of oil phase concentration on rheological properties and stability of beverage emulsions. ACTA Acta Sci Pol, Technol Aliment. 2006;5(2):147-56.spa
dc.relation.references122. Alibaba. PEG-100 estearato. 2022.spa
dc.relation.references123. Naeeni SK, Pakzad L. Droplet size distribution and mixing hydrodynamics in a liquid–liquid stirred tank by CFD modeling. International Journal of Multiphase Flow. 2019 nov 1;120.spa
dc.relation.references124. Pérez-Bueno T, Rodríguez-Perdomo Y, Morales-Lacarrere I, María Soler-Roger D, de La N, Martín-Viaña P. Comportamiento reológico y extensibilidad de una formulación semisólida a partir del extracto acuoso de Rhizophora mangle L. Tecnol Ciencia Ed (IMIQ). 2011;26(2):75-9.spa
dc.relation.references125. Rodriguez A, Paños I. Estudio reológico de emulsiones semisólidas de aplicación cutánea. An R Acad Nac Farm [Internet]. 2004; 70:307-24. Disponible en: www.robopdf.comspa
dc.relation.references126. Pérez D, de La Paz N, Fernández M, Mantilla N, Peña M, Menéndez A. Optimization, physical-chemical evaluation and healing activity of chitosan ointment. J Pharm Pharmacogn Res [Internet]. 2019;7(4):297-309. Disponible en: http://jppres.com/jppreshttp://jppres.com/spa
dc.relation.references127. Li Z, Bui HS. Factors Affecting Cosmetics Adhesion to Facial Skin. En: Surface Science and Adhesion in Cosmetics. 2021.spa
dc.relation.references128. Eudier F, Savary G, Grisel M, Picard C. Skin surface physico-chemistry: Characteristics, methods of measurement, influencing factors and future developments. Adv Colloid Interfase Sci. 2019 feb 1; 264:11-27.spa
dc.relation.references129. Miner P. Emulsion rheology: creams and lotions. En: Rheological Properties of Cosmetics and Toiletries. 1995.spa
dc.relation.references130. Masmoudi H, Piccerelle P, le Dréau Y, Kister J, le Dré au Y. A Rheological Method to Evaluate the Physical Stability of Highly Viscous Pharmaceutical Oil-in-Water Emulsions. Pharm Res [Internet]. 2006;23(8). Disponible en: https://hal.archives-ouvertes.fr/hal-03542960spa
dc.relation.references131. Tadros TF. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces Physicochemical and Engineering Aspects. 1994; 91:39-55.spa
dc.relation.references132. Brummer R. Rheology of Cosmetic Emulsions. En 2013.spa
dc.relation.references133. Bummer R. Rheology Essentials of Cosmetic and Food Emulsions. 2005.spa
dc.relation.references134. European Medicines Agency. ICH Topic Q 1 A (R2) Stability Testing of new Drug Substances and Products Step 5 NOTE FOR GUIDANCE ON STABILITY TESTING: STABILITY TESTING OF NEW DRUG SUBSTANCES AND PRODUCTS [Internet]. 2003. Disponible en: http://www.emea.eu.intspa
dc.relation.references135. Urrutia PI. Predicting water-in-oil emulsion coalescence from surface pressure isotherms [Internet]. [Calgary]: University of Calgary; 2007. Disponible en: http://hdl.handle.net/1880/101949spa
dc.relation.references136. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol. 2020 feb 1;101(1-2):21-37.spa
dc.relation.references137. Vizcaino M, Alarcón I, Sebazco C, Maceira M. Importancia de la sacarosa para la cicatrización de heridas infectadas. Revista Cubana de Medicina Militar [Internet]. 2013;42(1):49-55. Disponible en: http://scielo.sld.cuspa
dc.relation.references138. Parente LML, Lino Júnior RDS, Tresvenzol LMF, Vinaud MC, de Paula JR, Paulo NM. Wound healing and anti-inflammatory effect in animal models of calendula officinalis L. growing in Brazil. Evidence-based Complementary and Alternative Medicine. 2012;2012.spa
dc.relation.references139. Preethi KC, Kuttan R. WOUND HEALING ACTIVITY OF FLOWER EXTRACT OF CALENDULA OFFICINALIS. India; 2009.spa
dc.relation.references140. Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol. 2017 ene 20; 196:94-103.spa
dc.relation.references141. Bhargava S, Kumar U, Kroumpouzos G. Subcorneal pustular dermatosis: Comprehensive review and report of a case presenting during pregnancy. Int J Womens Dermatol. 2020 jun 1;6(3):131-6.spa
dc.relation.references142. Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO, Gordon S, et al. Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. Cell Rep. 2015 dic 1;13(9):1937-48.spa
dc.relation.references143. Kumar P, Kumar S, Udupa EP, Kumar U, Rao P, Honnegowda T. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015;2(5):243.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsCicatrización de Heridasspa
dc.subject.decsWound Healingeng
dc.subject.decsMedicina Tradicionalspa
dc.subject.decsMedicine, Traditionaleng
dc.subject.decsHeridas y Lesionesspa
dc.subject.decsWounds and Injurieseng
dc.subject.proposalPanelaspa
dc.subject.proposalAzúcar de caña no centrífugaspa
dc.subject.proposalCremaspa
dc.subject.proposalEmulsiónspa
dc.subject.proposalCicatrización de heridasspa
dc.subject.proposalNon-centrifugal cane sugareng
dc.subject.proposalCreameng
dc.subject.proposalEmulsioneng
dc.subject.proposalWound healingeng
dc.titleContribución al desarrollo de una formulación tópica a base de panela con posible actividad cicatrizantespa
dc.title.translatedContribution to the development of a non-centrifugal cane sugar-based topical formulation with possible healing activityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032467073.2023.pdf
Tamaño:
4.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: