Impacto del tiempo de almacenamiento sobre el metabolismo de espermatozoides bovinos criopreservados

dc.contributor.advisorRestrepo Betancur, Giovanni
dc.contributor.authorRueda Amador, Luis Andres
dc.contributor.cvlacRueda Amador, Luisspa
dc.contributor.googlescholarRueda Amador, Luisspa
dc.contributor.orcidRueda Amador, Luisspa
dc.contributor.researchgateRueda Amador, Luisspa
dc.contributor.researchgroupGrupo de investigación en biotecnología animal GIBAspa
dc.contributor.scopusRueda Amador, Luisspa
dc.date.accessioned2023-08-24T19:53:13Z
dc.date.available2023-08-24T19:53:13Z
dc.date.issued2023-02-15
dc.descriptionilustraciones, diagramasspa
dc.description.abstractSe ha observado que el almacenamiento del semen en condiciones de criopreservación afecta la viabilidad de los espermatozoides. Sin embargo, no está claro como el tiempo de almacenamiento afecta la calidad seminal. Algunas investigaciones han mostrado cambios en la cinética espermática a mayor tiempo de almacenamiento, mientras otros estudios no han mostrado efecto por periodos largos de almacenamiento. Sin embargo, las investigaciones diseñadas para identificar una disminución en el rendimiento del semen crioconservado en función del tiempo de almacenamiento son escasas. Por lo tanto, el objetivo de la investigación fue evaluar aspectos relacionados con el metabolismo y la integridad de espermatozoides bovinos criopreservados con diferentes tiempos de almacenamiento en nitrógeno líquido. Se evaluó la movilidad y cinética espermática con un sistema CASA-IVOS, la funcionalidad de la membrana mediante la prueba Host, la morfología con la tinción con eosina-nigrosina, la estabilidad de membrana con Merocianina 540, la actividad mitocondrial con DiOC6, el contenido de calcio intracelular con el indicador fluorescente Fura-2AM y la producción de especies reactivas de oxígeno (EROs) con DHR123 mediante citometría de flujo (FORTESSA LSR, BD Biosciences, EE. UU.). Para el análisis estadístico los datos se agruparon en tres periodos de almacenamiento (0-10, 11-20 y 21-30 años), se realizó el ajuste de modelos mixtos y se compararon las medias mediante la prueba de Tukey. Mediante un análisis de regresión se determinó la relación entre las variables dependientes y el tiempo de almacenamiento. No se encontraron diferencias en motilidad total y cinética espermática en relación con los grupos por tiempo de almacenamiento (p>0.05), mientras que, la motilidad progresiva fue mayor en el grupo de 11-20 años, en comparación con 0-10 años (p<0.05). Sin embargo, el análisis de regresión mostró la reducción de diferentes parámetros de movilidad y cinética, que fueron altamente dependientes del toro de proveniencia de las muestras seminales (p>0.05). Para HOST se observó que el grupo de 21-30 años tuvo la menor funcionalidad de la membrana (p<0.05). Se observó que la morfología de la cabeza fue diferente entre los grupos de 0-10 y 11-20 años (p<0.05), mientras que se observó mayor proporción de anormalidades totales y de la pieza media para el grupo de 21-30 años (p>0.05). Se encontró mayor proporción de espermatozoides M540-bajo en los grupos de 11-20 y 21-30 años de almacenamiento, siendo este último grupo, el que tuvo mayor proporción de células con alto flujo de calcio (Fura-Alto). La población de células con alto potencial de membrana mitocondrial (DiOC-Alto) fue mayor para el grupo de 11-20 años en relación con el grupo de 0-10 años (p>0.05). En conclusión, largos periodos de almacenamiento del semen bovino criopreservado pueden afectar negativamente la movilidad, cinética, integridad funcional de la membrana y morfología de los espermatozoides, sin embargo, lo anterior está condicionado por el efecto diferencial del individuo (toro). La estabilidad de la membrana plasmática, el flujo de calcio intracelular y la actividad mitocondrial de los espermatozoides sufren modificaciones atribuibles al efecto de largos periodos de almacenamiento en nitrógeno líquido. (Texto tomado de la fuente)spa
dc.description.abstractStorage of semen under cryopreservation conditions has been observed to affect sperm viability. However, it is not clear how storage time affects semen quality. Some research has shown changes in sperm kinetics with longer storage times, while other studies have shown no effect for long storage periods; however, research designed to identify a decrease in the performance of cryopreserved semen as a function of storage time are scarce. Therefore, the objective of the research was to evaluate aspects related to the metabolism and integrity of cryopreserved bovine spermatozoa with different storage times in liquid nitrogen. Sperm motility and kinetics were evaluated with a CASA-IVOS system, membrane functionality using the Host test, morphology with eosin-nigrosin staining, membrane stability with Merocyanine 540, content of intracellular calcium with the fluorescent indicator Fura-2AM, mitochondrial activity with DiOC6 and the production of reactive oxygen species (ROS) with DHR123, were assessed by flow cytometry. For the statistical analysis, the data were grouped into three storage periods (0-10, 11-20 and 21- 30 years), the adjustment of mixed models was carried out and the means were compared using the Tukey test. Using a regression analysis, the relationship between the dependent variables and storage time was determined. No differences were found in total motility and sperm kinetics in relation to the groups by storage time (p>0.05), while progressive motility was higher in the group of 11-20 years, compared to 0-10 years (p<0.05). However, the regression analysis showed the reduction of different motility and kinetic parameters, which were highly dependent on the bull from which the semen samples were obtained (p>0.05). For HOST, it was observed that the group of 21-30 years had the lowest membrane functionality (p<0.05). It was observed that head morphology was different between the groups of 0-10 and 11-20 years (p<0.05), and a higher proportion of total and midpiece abnormalities was observed for the 21-30 years group (p>0.05). A higher proportion of M540-low spermatozoa was found in the groups of 11-20 and 21-30 years of storage, being this last group, the one that had the highest proportion of cells with high calcium flow (Fura- High). The population of cells with high mitochondrial membrane potential (DiOC-High) was higher for the group of 11-20 years, compared to the group of 0-10 years (p>0.05). In conclusion, long periods of storage of cryopreserved bovine semen can negatively affect the motility, kinetics, functional integrity of the membrane and morphology of the sperm, however, this is conditioned by the differential effect of the individual (sire). The stability of the plasmatic membrane, the intracellular calcium flux and the mitochondrial activity of the sperm suffer modifications attributable to the effect of long periods of storage in liquid nitrogen.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.methodsLa movilidad y la velocidad de los espermatozoides se evaluaron mediante el programa de análisis de semen asistido por computadora (CASA IVOS, Hamilton-Thorne, EEUU). Se colocó una gota de semen congelado-descongelado (7 μL) en un portaobjetos de vidrio precalentado (37°C), y se cubrió con un cubreobjetos. Se analizaron un mínimo de 500 espermatozoides (Microscopio, Eclipse E200, Nikon Inc., EE. UU.) Se determinaron la motilidad total (MT, %), la motilidad progresiva (MP, %), la velocidad media (VAP, μm/s), la velocidad de l nea recta (VSL, μm/s), la velocidad curvil nea (VCL, μm/s), el desplazamiento lateral de la cabeza (ALH, μm) y la frecuencia de batido (BCF, Hz). La funcionalidad de la membrana plasmática o integridad celular se evaluó mediante la técnica del Host (Jeyendran et al., 1984), el semen se incubó durante 30 minutos en solución de fructosa hipoosmótica a 100 mOsm/L en baño maría termoestable a 36°C. Para el análisis se realizó un frotis colocando 10 μL de la muestra, se observaron 100 espermatozoides utilizando un microscopio óptico. Los espermatozoides con cola enrollada total o parcialmente se consideraron con membrana integra (reaccionados) y el resultado final se expresó porcentualmente. Para la tinción con Eosina-Nigrosina se utilizó el método de Cabrera V. & Pantoja A., 2012, el semen se descongelo y se colocó en tubos eppendorf los cuales ya estaban incubados a 36°C, para el frotis se aspiraron 5 μL de Eosina y Nigrosina y 5μL de semen, se coloco sobre la lámina portaobjeto en la parte media de uno de los extremos y con ayuda de un tip se mezclaron los dos elementos, con ayuda de otra lamina con una ligera inclinación se distribuyó a lo ancho de la lámina para luego extender la muestra. Para el secado se colocó la lámina portaobjetos en una platina térmica a 36°C durante 15 min con el fin de secar rápidamente el frotis. Posteriormente el análisis se realizó contabilizando 100 células espermáticas. El conteo se hizo en distintos campos escogidos al azar con un microscopio óptico con aceite de inmersión a 100 X de aumento, la evaluación morfológica se realizó según clasificación de (Galloway, 1992), quien describe que los espermatozoides anormales se clasifican de acuerdo con la morfología, incluidos defectos en la cabeza como microcefalia, macrocefalia, cabeza piriforme, cabeza desprendida y/o rugosa, anomalías en la parte media como presencia de gota citoplasmática proximal o distal y colas dobladas o enrolladas. La estabilidad de la membrana plasmática o la alteración de la arquitectura de la membrana lipídica (asociada con la capacitación de los espermatozoides) se evaluó utilizando el protocolo adaptado de (Thomas et al., 2006), utilizando sondas fluorescentes Merocianina 540 (Molecular Probes Inc, Oregon, EE. UU). Se añadi 10 μL de semen diluido en medio DMSO a una concentración de 1 x 106 / ml. Por último, se agregó la sonda en concentraciones finales de 0.34 μL de Merocianina 540. Las muestras se incubaron durante 15 minutos a temperatura ambiente en la oscuridad. Luego, las muestras se evaluaron usando un citómetro de flujo (FORTESSA LSR, BD Biosciences, EE. UU.) en un rango de emisión entre 580-620 nm para sonda Merocianina 540. La merocianina 540 es un tinte hidrofóbico que puede monitorear la integridad de la membrana, especialmente la codificación de fosfolípidos cuya fluorescencia observada por citometria de flujo depende del grado de transtorno lipídico (Rodriguez-Martinez et al., 2001). Para evaluar el incremento del contenido de calcio intracelular, la concentración de calcio libre se evaluó utilizando el indicador de calcio fluorescente Fura-2AM siguiendo el protocolo de (Grynkiewicz et al., 1985). Las muestras se incubaron en 1 μL de Fura-2AM (F0888; Sigma-Aldrich) a 37°C durante 10 min. Luego, las muestras se evaluaron usando un citómetro de flujo (FORTESSA LSR, BD Biosciences, EE. UU.) en un rango de emisión entre 340-500 nm para la sonda Fura-2AM (Grynkiewicz et al, 1985 ; Brewis et al, 2000). Los datos fueron analizados con el software FlowJo versión 7.6.2 (FlowJo, LLC, USA). El fura-2 es un indicador de Ca2+ que contiene restos aromáticos, los cuales le confieren sus propiedades fluorescentes. Se trata de una molécula polar, y por ende, incapaz de atravesar las membranas celulares, por lo que es incluido en las células en forma de su derivado acetoximetiléster (fura-2/AM), el cual, gracias a su carácter hidrófobo atraviesa las membranas celulares mediante transporte pasivo (Grynkiewicz et al., 1985). Para la evaluaci n de la actividad mitocondrial, 10 μL de semen descongelado se incubaron en una soluci n con 300 μL de PBS, 0.5 μL de DiOC6 (0.1 μM) y 1 μL de yoduro de propidio por 15 min. El potencial de membrana mitocondrial (Δ¥M) fue medido a través de citometría de flujo y analizado con el software FlowJo versión 7.6.2 (FlowJo, LLC, USA). Para teñir las mitocondrias, cualquier sonda tiene que entrar en la célula y llegar a los orgánulos. Su acumulación citoplasmática es un evento crucial, ya que se requiere una concentración intracelular crítica para obtener una señal de fluorescencia adecuada, obviamente, para moléculas catiónicas lipófilas, dicha acumulación depende principalmente del potencial de membrana plasmática (Salvioli et al., 1997). La evaluación de la producción de EROs se realizó mediante la metodología del potencial de dihidrorodamina 123 (DHR123) (Kiani et al., 2012). Cada muestra se incubo con 1 μL de DHR123 a 37 °C durante 10 min. Luego, las muestras se evaluaron usando un citómetro de flujo (FORTESSA LSR, BD Biosciences, EE. UU.) en un rango de emisión entre 340- 500 nm para la sonda DHR123. Los datos fueron analizados con el software FlowJo versión 7.6.2 (FlowJo, LLC, USA). El tinte no fluorescente DHR123 es un derivado de la rodamina 123 (R123). Esta sonda entra pasivamente en las células y es oxidada por ROS para formar R123. R123 es un tinte fluorescente verde catiónico que puede acumularse y localizarse en las mitocondrias, Por lo tanto, DHR123 puede evaluar simultáneamente la presencia de producción de ROS en células con actividad mitocondrial (O’Connell et al., 2002).spa
dc.description.researchareaReproducción animalspa
dc.format.extentxvii, 89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84599
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbdelhafez, F., Bedaiwy, M., El-Nashar, S. A., Sabanegh, E., & Desai, N. (2009). Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review. Human Reproduction Update, 15(2), 153–164. https://doi.org/10.1093/humupd/dmn061spa
dc.relation.referencesAdamkovicova, M., Toman, R., Martiniakova, M., Omelka, R., Babosova, R., Krajcovicova, V., Grosskopf, B., & Massanyi, P. (2016). Sperm motility and morphology changes in rats exposed to cadmium and diazinon. Reproductive Biology and Endocrinology, 14(1). https://doi.org/10.1186/s12958-016-0177-6spa
dc.relation.referencesAgarwal, A., Nallella, K. P., Allamaneni, S. S. R., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: An overview of the literature. In Reproductive BioMedicine Online (Vol. 8, Issue 6, pp. 616–627). Elsevier. https://doi.org/10.1016/S1472-6483(10)61641-0spa
dc.relation.referencesAgarwal, A., Makker, K., & Sharma, R. (2008). Clinical relevance of oxidative stress in male factor infertility: An update. In American Journal of Reproductive Immunology (Vol. 59, Issue 1, pp. 2–11). https://doi.org/10.1111/j.1600-0897.2007.00559.xspa
dc.relation.referencesAgca, Y., Gilmore, J., Byers, M., Woods, E. J., Liu, J., & Critser, J. K. (2002). Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biology of Reproduction, 67(5), 1493–1501. https://doi.org/10.1095/biolreprod.102.005579spa
dc.relation.referencesAhmed, H., Andrabi, S. M. H., Shah, S. A. H., & Jahan, S. (2019). Effect of Cryopreservation on Casa Characteristics, Mitochondrial Transmembrane Potential, Plasma and Acrosome Integrities, Morphology and in vivo Fertility of Buffalo Bull Spermatozoa. Cryo Letters, 40(3), 173–180.spa
dc.relation.referencesAitken, R., Baker, M., & Nixon, B. (2015). Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian Journal of Andrology, 17(4), 633. https://doi.org/10.4103/1008-682X.153850spa
dc.relation.referencesAitken, R. J., & Clarkson, J. S. (1987). Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reproduction, 81(2), 459–469. https://doi.org/10.1530/jrf.0.0810459spa
dc.relation.referencesAitken, R. John, Gibb, Z., Mitchell, L. A., Lambourne, S. R., Connaughton, H. S., & De Iuliis, G. N. (2012). Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of Reproduction, 87(5), 1–11. https://doi.org/10.1095/biolreprod.112.102020spa
dc.relation.referencesAkyol, N., Varisli, O., & Kızıl, S. (2018). Effects of long-term storage on some spermatological parameters in cryopreserved bull semen. Cryo-Letters, 39, 354–358.spa
dc.relation.referencesAlbrizio, M., Moramarco, A. M., Nicassio, M., Micera, E., Zarrilli, A., & Lacalandra, G. M. (2015). Localization and functional modification of L-type voltage-gated calcium channels in equine spermatozoa from fresh and frozen semen. Theriogenology, 83(3), 421–429. https://doi.org/10.1016/j.theriogenology.2014.10.005spa
dc.relation.referencesAmirat, L., Tainturier, D., Jeanneau, L., Thorin, C., Gérard, O., Courtens, J. L., & Anton, M. (2004). Bull semen in vitro fertility after cryopreservation using egg yolk LDL: A comparison with Optidyl®, a commercial egg yolk extender. Theriogenology, 61(5), 895–907. https://doi.org/10.1016/S0093-691X(03)00259-0spa
dc.relation.referencesAmaral, A., Castillo, J., Estanyol, J. M., Ballesca, J. L., Ramalho-Santos, J., & Oliva, R. (2013). Human sperm tail proteome suggests new endogenous metabolic pathways. Molecular and Cellular Proteomics, 12(2), 330–342. https://doi.org/10.1074/mcp.M112.020552spa
dc.relation.referencesAnzar, M., Kroetsch, T., & Boswall, L. (2011). Cryopreservation of bull semen shipped overnight and its effect on post-thaw sperm motility, plasma membrane integrity, mitochondrial membrane potential and normal acrosomes. Animal Reproduction Science, 126(1–2), 23–31. https://doi.org/10.1016/j.anireprosci.2011.04.018spa
dc.relation.referencesArav, A. (1999). Device and methods for multigradient directional cooling and warming of biological samples.spa
dc.relation.referencesArbaiza-Barnechea, M. D., & Cabrera-Villanueva, P. C. (2021). Efecto de la criopreservación espermática en la fragmentación del ADN, viabilidad, y parámetros cinéticos en toros Brown Swiss. Revista Colombiana de Ciencia Animal - RECIA, 13(1), e787. https://doi.org/10.24188/recia.v13.n1.2021.787spa
dc.relation.referencesArenas Ríos, E., Rodríguez Tobón, A., López Trinidad, B. P., Retana Sandoval, F. M., Rodríguez Tobón, E., Jimenez Salazar, J. E., & León-Galván, M. A. (2014). Participación de las especies reactivas de oxígeno en la fisiología espermática. Revista Iberoamericana de Ciencias, 1(7), 73–81.spa
dc.relation.referencesAshwood-Smith, M. J., & Friedmann, G. B. (1979). Lethal and chromosomal effects of freezing, thawing, storage time, and x-irradiation on mammalian cells preserved at - 196 ° in dimethyl sulfoxide. Cryobiology, 16(2), 132–140. https://doi.org/10.1016/0011-2240(79)90023-3spa
dc.relation.referencesBailey, J. L., Bilodeau, J. F., & Cormier, N. (2000). Minireview: Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. In Journal of Andrology (Vol. 21, Issue 1, pp. 1–7). https://doi.org/10.1002/j.1939- 4640.2000.tb03268.xspa
dc.relation.referencesBailey, J., Morrier, A., & Cormier, N. (2003). Semen cryopreservation: Successes and persistent problems in farm species. In Canadian Journal of Animal Science (Vol. 83, Issue 3, pp. 393–401). https://doi.org/10.4141/A03-024spa
dc.relation.referencesBaker, M. A., Nixon, B., Naumovski, N., & Aitken, R. J. (2012). Proteomic insights into the maturation and capacitation of mammalian spermatozoa. In Systems Biology in Reproductive Medicine (Vol. 58, Issue 4, pp. 211–217). Taylor & Francis. https://doi.org/10.3109/19396368.2011.639844spa
dc.relation.referencesBansal, A. K., & Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. In Veterinary Medicine International (Vol. 2011). https://doi.org/10.4061/2011/686137spa
dc.relation.referencesBarkawi, A. H., Elsayed, E. H., Ashour, G., & Shehata, E. (2006). Seasonal changes in semen characteristics, hormonal profiles and testicular activity in Zaraibi goats. Small Ruminant Research, 66(1–3), 209–213. https://doi.org/10.1016/j.smallrumres.2005.09.007spa
dc.relation.referencesBaumber, J., Ball, B. A., & Linfor, J. J. (2005). Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants. American Journal of Veterinary Research, 66(5), 772–779. https://doi.org/10.2460/ajvr.2005.66.772spa
dc.relation.referencesBean, B. H., Pickett, B. W., & Martig, R. C. (1963). Influence of Freezing Methods, Extenders, and Storage Temperatures on Motility and pH of Frozen Bovine Semen. Journal of Dairy Science, 46(2), 145–149. https://doi.org/10.3168/jds.S0022- 0302(63)88990-0spa
dc.relation.referencesBenchaib, M., Braun, V., Lornage, J., Hadj, S., Salle, B., Lejeune, H., & Guérin, J. F. (2003). Sperm DNA fragentation decreases the pregnancy rate in an assisted reproductive technique. Human Reproduction, 18(5), 1023–1028. https://doi.org/10.1093/humrep/deg228spa
dc.relation.referencesBergeron, A., & Manjunath, P. (2006). New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Molecular Reproduction and Development, 73(10), 1338–1344. https://doi.org/10.1002/mrd.20565spa
dc.relation.referencesBilodeau, J.-F., Chatterjee, S., Sirard, M.-A., & Gagnon, C. (2000). Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Molecular Reproduction and Development, 55(3), 282–288. https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7spa
dc.relation.referencesBollwein, H, Fuchs, I., & Koess, C. (2008). Interrelationship between plasma membrane integrity, mitochondrial membrane potential and DNA fragmentation in cryopreserved bovine spermatozoa. Reproduction in Domestic Animals, 43(2), 189–195. https://doi.org/10.1111/j.1439-0531.2007.00876.xspa
dc.relation.referencesBollwein, Heinrich, & Bittner, L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Animal Reproduction, 15(Irrs), 703–710. https://doi.org/10.21451/1984-3143-AR2018-0041spa
dc.relation.referencesBoveris, A., & Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal, 134(3), 707–716. https://doi.org/10.1042/bj1340707spa
dc.relation.referencesBratton, R. W., Foote, R. H., & Cruthers, J. C. (1955). Preliminary Fertility Results with Frozen Bovine Spermatozoa. Journal of Dairy Science, 38(1), 40–46. https://doi.org/10.3168/jds.S0022-0302(55)94935-3spa
dc.relation.referencesBraun, J., Schams, D., & Brem, G. (1990). Zur Fortpflanzungsfunktion bei experimentell erzeugten monozygoten Zwillingsbullen. Berliner Und Munchener Tierarztliche Wochenschrift, 103(6), 213–217. https://europepmc.org/article/med/2383230spa
dc.relation.referencesBreitbart, H. (2002). Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Molecular and Cellular Endocrinology, 187(1–2), 139–144. https://doi.org/10.1016/S0303-7207(01)00704-3spa
dc.relation.referencesBrinsko, S. P., Crockett, E. C., & Squires, E. I. (2000). Effect of centrifugation and partial removal of seminal plasma on equine spermatozoal motility after cooling and storage. Theriogenology, 54, 129–138.spa
dc.relation.referencesBrown, K. H. (2008). Fish mitochondrial genomics: Sequence, inheritance and functional variation. In Journal of Fish Biology (Vol. 72, Issue 2, pp. 355–374). John Wiley & Sons, Ltd. https://doi.org/10.1111/j.1095-8649.2007.01690.xspa
dc.relation.referencesBucak, M. N., Ateşşahin, A., & Yüce, A. (2008). Effect of anti-oxidants and oxidative stress parameters on ram semen after the freeze-thawing process. Small Ruminant Research, 75(2–3), 128–134. https://doi.org/10.1016/j.smallrumres.2007.09.002spa
dc.relation.referencesBuch, N. C., Smith, V. R., & Tyler, W. J. (1956). Bull and Line Differences in the Survival of Spermatozoa after Freezing and Thawing. Journal of Dairy Science, 39(12), 1712–1716. https://doi.org/10.3168/jds.S0022-0302(56)94913-Xspa
dc.relation.referencesCabrera V., P., & Pantoja A., C. (2012). Viabilidad Espermatica e Integridad del Aceosoma en Semen Congelado de Toros Nacionales. Revista de Investigaciones Veterinarias Del Perú, 23(2), 192–200. https://doi.org/10.15381/rivep.v23i2.899spa
dc.relation.referencesCarmody, R. J., & Cotter, T. G. (2001). Signalling apoptosis: A radical approach. In Redox Report (Vol. 6, Issue 2, pp. 77–90). https://doi.org/10.1179/135100001101536085spa
dc.relation.referencesCatena, M. Y. J. C. (1999). Evaluación de semen bovino congelado. Engormix.Com, 1(1), 1–9.spa
dc.relation.referencesChabory, E., Damon, C., Lenoir, A., Henry-Berger, J., Vernet, P., Cadet, R., Saez, F., & Drevet, J. R. (2010). Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. Journal of Animal Science, 88(4), 1321–1331. https://doi.org/10.2527/jas.2009-2583spa
dc.relation.referencesChabory, Eléonore, Damon, C., Lenoir, A., Kauselmann, G., Kern, H., Zevnik, B., Garrel, C., Saez, F., Cadet, R., Henry-Berger, J., Schoor, M., Gottwald, U., Habenicht, U., Drevet, J. R., & Vernet, P. (2009). Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. Journal of Clinical Investigation, 119(7), 2074–2085. https://doi.org/10.1172/jci38940spa
dc.relation.referencesChang, H.-Y., Huang, H.-C., Huang, T.-C., Yang, P.-C., Wang, Y.-C., & Juan, H.-F. (2013). Flow Cytometric Detection of Mitochondrial Membrane Potential. BIO- PROTOCOL, 3(8). https://doi.org/10.21769/BioProtoc.430spa
dc.relation.referencesChatterjee, S., & Gagnon, C. (2001). Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Molecular Reproduction and Development, 59(4), 451–458. https://doi.org/10.1002/mrd.1052spa
dc.relation.referencesChen, X., Zhu, H., Hu, C., Hao, H., Zhang, J., Li, K., Zhao, X., Qin, T., Zhao, K., Zhu, H., & Wang, D. (2014). Identification of differentially expressed proteins in fresh and frozen-thawed boar spermatozoa by iTRAQ-coupled 2D LC-MS/MS. Reproduction, 147(3), 321–330. https://doi.org/10.1530/REP-13-0313spa
dc.relation.referencesChrenek, P., Spaleková, E., Olexikova, L., Makarevich, A., & Kubovicova, E. (2017). Quality of Pinzgau bull spermatozoa following different periods of cryostorage. Zygote, 25(2), 215–221. https://doi.org/10.1017/S0967199417000077spa
dc.relation.referencesCohen, J. (1973). Cross-overs, sperm redundancy and their close association. Heredity, 31(3), 408–413. https://doi.org/10.1038/hdy.1973.96spa
dc.relation.referencesCollin, F. (2019). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. In International Journal of Molecular Sciences (Vol. 20, Issue 10, p. 2407). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms20102407spa
dc.relation.referencesCórdova, A., Strobel, P., Vallejo, A., Valenzuela, P., Ulloa, O., Burgos, R. A., Menarim, B., Rodríguez-Gil, J. E., Ratto, M., & Ramírez-Reveco, A. (2014). Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: Presence and sensitivity of 5’ AMP-activated protein kinase (AMPK). Cryobiology, 69(3), 473–481. https://doi.org/10.1016/j.cryobiol.2014.10.008spa
dc.relation.referencesCoulter, G. H., & Foote, R. H. (1973). Sperm changes during processing in straws. J. Anim. Sci., 37(306).spa
dc.relation.referencesCrespilho, A. M., Papa, F. O., Zahn, F. S., Guasti, P. N., & Dell’Aqua, J. A. (2009). Influence of Different Preservation Methods on Fertility of Bovine Semen. Biology of Reproduction, 81(1), 459–459. https://doi.org/10.1093/biolreprod/81.s1.459spa
dc.relation.referencesCritser, J. K., Arneson, B. W., Aaker, D. V., Huse-Benda, A. R., & Ball, G. D. (1987). Cryopreservation of human spermatozoa. II. Postthaw chronology of motility and of zona-free hamster ova penetration. Fertility and Sterility, 47(6), 980–984. https://doi.org/10.1016/S0015-0282(16)59233-4spa
dc.relation.referencesCurry, M. R. (2000). Cryopreservation of semen from domestic livestock. Reviews of Reproduction, 5, 46–52. https://doi.org/10.1007/978-1-4939-2193-5_10spa
dc.relation.referencesDarin-Bennett, A., & White, I. G. (1977). Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology, 14(4), 466-470. https://doi.org/10.1016/0011-2240(77)90008-6spa
dc.relation.referencesDarr, C. R., Varner, D. D., Teague, S., Cortopassi, G. A., Datta, S., & Meyers, S. A. (2016). Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biology of Reproduction, 95(2), 1–11. https://doi.org/10.1095/biolreprod.116.140707spa
dc.relation.referencesDavis, R. O., & Gravance, C. G. (1994). Consistency of Sperm Morphology Classification Methods. Journal of Andrology, 15(1), 83–91. https://doi.org/10.1002/j.1939- 4640.1994.tb01690.xspa
dc.relation.referencesde Lamirande, E., Jiang, H., Zini, A., Kodama, H., & Gagnon, C. (1997). Reactive oxygen species and sperm physiology. Reviews of Reproduction, 2(1), 48–54.spa
dc.relation.referencesde Lamirande, E., & Gagnon, C. (1995). Impact of reactive oxygen species on spermatozoa: A balancing act between beneficial and detrimental effects. Human Reproduction, 10(SUPPL. 1), 15–21. https://doi.org/10.1093/humrep/10.suppl_1.15spa
dc.relation.referencesDe Leeuw, F. E., De Leeuw, A. M., Den Daas, J. H. G., Colenbrander, B., & Verkleij, A. J. (1993). Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. Cryobiology, 30(1), 32–44. https://doi.org/10.1006/cryo.1993.1005spa
dc.relation.referencesDevenish, R. J., Prescott, M., & Rodgers, A. J. W. (2008). The Structure and Function of Mitochondrial F1F0-ATP Synthases. In International Review of Cell and Molecular Biology (Vol. 267, pp. 1–58). https://doi.org/10.1016/S1937-6448(08)00601-1spa
dc.relation.referencesDi Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. In Advances in Urology (pp. 1–12). https://doi.org/10.1155/2012/854837spa
dc.relation.referencesDíaz, R., Lee-Estevez, M., Quiñones, J., Dumorné, K., Short, S., Ulloa-Rodríguez, P., Valdebenito, I., Sepúlveda, N., & Farías, J. G. (2019). Changes in Atlantic salmon (Salmo salar) sperm morphology and membrane lipid composition related to cold storage and cryopreservation. Animal Reproduction Science, 204, 50–59. https://doi.org/10.1016/j.anireprosci.2019.03.004spa
dc.relation.referencesDode, M. A. N., & Rumpf, R. (2002). Produção in vitro de embriões naespécie bovina. Biotecnologia Ciência & Desenvolvimento, 26, 32–37.spa
dc.relation.referencesDu Plessis, S. S., Makker, K., Desai, N. R., & Agarwal, A. (2008). Impact of oxidative stress on IVF. In Expert Review of Obstetrics and Gynecology (Vol. 3, Issue 4, pp. 539–554). https://doi.org/10.1586/17474108.3.4.539spa
dc.relation.referencesDunn, H. O., & Hafs, H. D. (1953). Extenders and techniques for freezing bovine spermatozoa. Journal of Dairy Science, 36(6), 577–577.spa
dc.relation.referencesDuru, N. K., Morshedi, M. S., Schuffner, A., & Oehninger, S. (2001). Cryopreservation- thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. Journal of Andrology, 22(4), 646–651. https://doi.org/10.1002/j.1939-4640.2001.tb02225.xspa
dc.relation.referencesEnsslin, M., Vogel, T., Calvete, J. J., Thole, H. H., Schmidtke, J., Matsuda, T., & Töpfer-Petersen, E. (1998). Molecular cloning and characterization of P47, a novel boar sperm- associated zona pellucida-binding protein homologous to a family of mammalian secretory proteins. Biology of Reproduction, 58(4), 1057–1064. https://doi.org/10.1095/biolreprod58.4.1057spa
dc.relation.referencesEvans, J. P., Kopf, G. S., & Schultz, R. M. (1997). Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse eggs: Evidence for adhesive activity via an egg β1 integrin-mediated interaction. Developmental Biology, 187(1), 79–93. https://doi.org/10.1006/dbio.1997.8611spa
dc.relation.referencesEzzati, M., Shanehbandi, D., Hamdi, K., Rahbar, S., & Pashaiasl, M. (2020). Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell and Tissue Banking, 21(1), 1–15. https://doi.org/10.1007/s10561-019-09797-0spa
dc.relation.referencesFeldschuh, J., Brassel, J., Durso, N., & Levine, A. (2005). Successful sperm storage for 28 years. Fertility and Sterility, 84(4), 1017.e3-1017.e4. https://doi.org/10.1016/j.fertnstert.2005.05.015spa
dc.relation.referencesFerrusola, C. O., Fernández, L. G., Sandoval, C. S., García, B. M., Martínez, H. R., Tapia, J. A., & Peña, F. J. (2010). Inhibition of the mitochondrial permeability transition pore reduces “apoptosis like” changes during cryopreservation of stallion spermatozoa. Theriogenology, 74(3), 458–465. https://doi.org/10.1016/j.theriogenology.2010.02.029spa
dc.relation.referencesFigueroa, E., Valdebenito, I., Zepeda, A. B., Figueroa, C. A., Dumorné, K., Castillo, R. L., & Farias, J. G. (2017). Effects of cryopreservation on mitochondria of fish spermatozoa. In Reviews in Aquaculture (Vol. 9, Issue 1, pp. 76–87). John Wiley & Sons, Ltd. https://doi.org/10.1111/raq.12105spa
dc.relation.referencesFlores C, V. L. (2015). Metabolismo espermático Sperm Metabolism. Gaceta de Ciencias Veterinarias, 20(1), 23–32.spa
dc.relation.referencesFlorman, H. M., Arnoult, C., Kazam, I. G., Li, C., & O’Toole, C. M. B. (1998). A perspective on the control of mammalian fertilization by egg- activated ion channels in sperm: A tale of two channels. Biology of Reproduction, 59(1), 12–16. https://doi.org/10.1095/biolreprod59.1.12spa
dc.relation.referencesFord, W. C. L. (2004). Regulation of sperm function by reactive oxygen species. Human Reproduction Update, 10(5), 387–399. https://doi.org/10.1093/HUMUPD/DMH034spa
dc.relation.referencesForero-Gonzalez, R. A., Celeghini, E. C. C., Raphael, C. F., Andrade, A. F. C., Bressan, F. F., & Arruda, R. P. (2012). Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia, 44(SUPPL.1), 154–159. https://doi.org/10.1111/j.1439-0272.2010.01154.xspa
dc.relation.referencesFraser, L., Strzezek, J., & Kordan, W. (2014). Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen. Animal Reproduction Science, 147(3–4), 119–127. https://doi.org/10.1016/j.anireprosci.2014.04.010spa
dc.relation.referencesGadella, B. M., & Harrison, R. A. P. (2002). Capacitation induces cyclic adenosine 3′,5′- monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cell. Biology of Reproduction, 67(1), 340–350. https://doi.org/10.1095/biolreprod67.1.340spa
dc.relation.referencesGadella, Bart M., Tsai, P. S., Boerke, A., & Brewis, I. A. (2008). Sperm head membrane reorganisation during capacitation. International Journal of Developmental Biology, 52(5–6), 473–480. https://doi.org/10.1387/ijdb.082583bgspa
dc.relation.referencesGalloway, D. (1992). Abnormal Morphology of Bovine Spermatozoa,. Australian Veterinary Journal, 69(1), 22–22. https://doi.org/10.1111/j.1751-0813.1992.tb09864.xspa
dc.relation.referencesGarrett, L. J. A., Revell, S. G., & Leese, H. J. (2008). Adenosine triphosphate production by bovine spermatozoa and its relationship to semen fertilizing ability. Journal of Andrology, 29(4), 449–458. https://doi.org/10.2164/jandrol.107.003533spa
dc.relation.referencesGhareeb, S., Haron, W., Yusoff, R., Yimer, N., Baiee, F., Ahmedeltayeb, T., & Ebrahimi, M. (2017). Post-Thaw Evaluation of Cryopreserved Bull Semen Extended In FourDifferent Semen Extenders. Australian Journal of Basic and Applied Sciences, 11(5), 80–87. https://www.researchgate.net/publication/322741133_Post- Thaw_Evaluation_of_Cryopreserved_Bull_Semen_Extended_In_Four_Different_Se men_Extendersspa
dc.relation.referencesGibb, Z., & Aitken, R. J. (2016). The Impact of Sperm Metabolism during in Vitro Storage: The Stallion as a Model. BioMed Research International, 1–8. https://doi.org/10.1155/2016/9380609spa
dc.relation.referencesGille, L., & Nohl, H. (2001). The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Archives of Biochemistry and Biophysics, 388(1), 34–38. https://doi.org/10.1006/abbi.2000.2257spa
dc.relation.referencesGomez, E., Irvine, D. S., & Aitken, R. J. (1998). Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: Relationships with semen quality and sperm function. International Journal of Andrology, 21(2), 81–94. https://doi.org/10.1046/j.1365- 2605.1998.00106.xspa
dc.relation.referencesGonçalves, F. S., Barretto, L. S. S., Arruda, R. P., Perri, S. H. V., & Mingoti, G. Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reproduction in Domestic Animals, 45(1), 129–135. https://doi.org/10.1111/j.1439-0531.2008.01272.xspa
dc.relation.referencesGoodson, S. G., Qiu, Y., Sutton, K. A., Xie, G., Jia, W., & O’Brien, D. A. (2012). Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biology of Reproduction, 87(3). https://doi.org/10.1095/biolreprod.112.102673spa
dc.relation.referencesGoshme, S., Asfaw, T., Demiss, C., & Besufekad, S. (2021). Evaluation of motility and morphology of frozen bull semen under different thawing methods used for artificial insemination in North Shewa zone, Ethiopia. Heliyon, 7(10), e08183. https://doi.org/10.1016/j.heliyon.2021.e08183spa
dc.relation.referencesGraham, J. K. (2001). Assessment of sperm quality: A flow cytometric approach. Animal Reproduction Science, 68(3–4), 239–247. https://doi.org/10.1016/S0378- 4320(01)00160-9spa
dc.relation.referencesGraham, J. K., Kunze, E., & Hammerstedt, R. H. (1990). Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biology of Reproduction, 43(1), 55–64. https://doi.org/10.1095/biolreprod43.1.55spa
dc.relation.referencesGravance, C. G., Garner, D. L., Baumber, J., & Ball, B. A. (2000). Assessment of equine sperm mitochondrial function using JC-1. Theriogenology, 53(9), 1691–1703. https://doi.org/10.1016/S0093-691X(00)00308-3spa
dc.relation.referencesGrötter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E., & Ferré, L. B. (2019). Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post‐ thaw quality optimization. Reproduction in Domestic Animals, 54(4), 655–665. https://doi.org/10.1111/rda.13409spa
dc.relation.referencesGrynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985a). A new generation of Ca2+ indicators with greatly improved fluorescence properties. In Journal of Biological Chemistry (Vol. 260, Issue 6, pp. 3440–3450). https://doi.org/10.1016/s0021-9258(19)83641-4spa
dc.relation.referencesGrynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985b). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 260(6), 3440–3450. https://doi.org/10.1016/s0021-9258(19)83641-4spa
dc.relation.referencesGualtieri, R., Kalthur, G., Barbato, V., Di Nardo, M., Adiga, S. K., & Talevi, R. (2021). Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. In Antioxidants (Vol. 10, Issue 3, pp. 1–23). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antiox10030337spa
dc.relation.referencesGürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., & Bollwein, H. (2015). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562–571. https://doi.org/10.1016/j.theriogenology.2016.02.007spa
dc.relation.referencesGuthrie, H. D., & Welch, G. R. (2012). Effects of reactive oxygen species on sperm function. In Theriogenology (Vol. 78, Issue 8, pp. 1700–1708). Elsevier. https://doi.org/10.1016/j.theriogenology.2012.05.002spa
dc.relation.referencesHafez, E. S., & Hafez, B. (2000). Reproducción e inseminación artificial en animales.spa
dc.relation.referencesHalliwell, B., Edition), J. G.-L. (British, & 1984, U. (n.d.). Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Pascal-Francis.Inist.Fr. Retrieved December 22, 2022, from https://pascal- francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8895792spa
dc.relation.referencesHammerstedt, R. H., Graham, J. K., & Nolan, J. P. (1990). Cryopreservation of Mammalian Sperm: What We Ask Them to Survive. Journal of Andrology, 11(1), 73– 88. https://doi.org/10.1002/j.1939-4640.1990.tb01583.xspa
dc.relation.referencesHaugan, T., Gröhn, Y. T., Kommisrud, E., Ropstad, E., & Reksen, O. (2007). Effects of sperm concentration at semen collection and storage period of frozen semen on dairy cow conception. Animal Reproduction Science, 97, 1–11. https://doi.org/10.1016/j.anireprosci.2005.12.010spa
dc.relation.referencesHayashi, Y., & Isobe, N. (2005). Characteristics of Cryopreserved Spermatozoa from a Holstein-Friesian Bull Thawed at Different Temperature. Journal of International Development and Cooperation, 12(1), 107–110. https://www.researchgate.net/publication/44843962_Characteristics_of_Cryopreserv ed_Spermatozoa_from_a_Holstein-spa
dc.relation.referencesHenry, M. A., Noiles, E. E., Gao, D., Mazur, P., & Critser, J. K. (1993). Cryopreservation of human spermatozoa. IV. The effects of cooling rate and warming rate on the maintenance of motility, plasma membrane integrity, and mitochondrial function. Fertility and Sterility, 60(5), 911–918. https://doi.org/10.1016/s0015-0282(16)56296-7spa
dc.relation.referencesHernández Corredor, L., Camargo Rodríguez, O., Silva Torres, A., Montoya Páez, J. D., & Quintero Moreno, A. (2018). Efectos de la criopreservación sobre las subpoblaciones espermáticas en caprinos. Revista de Investigaciones Veterinarias Del Perú, 29(3), 882–893. https://doi.org/10.15381/rivep.v29i3.14169spa
dc.relation.referencesHernandez, D., & Carrillo, D. (2015). Aplicación del test hipoosmótico (HOST) en la evaluaci ́n de calidad seminal en ovinos criollos de pelo colombiano. Actas Iberoamericanas de Conservación Animal, 6, 165–171.spa
dc.relation.referencesHernandez, L., Quintero-Moreno, A., Rubio Parada, A., & Silva Torres, A. (2017). Evaluación de la calidad espermática mediante citometría de flujo en semen caprino criopreservado con dos diluyentes. Revista Científica Universidad Del Zulia, 27(1), 35–43.spa
dc.relation.referencesHezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive BioMedicine Online, 37(3), 327–339. https://doi.org/https://doi.org/10.1016/j.rbmo.2018.05.012spa
dc.relation.referencesHo, H. C., & Suarez, S. S. (2001). Hyperactivation of mammalian spermatozoa: Function and regulation. In Reproduction (Vol. 122, Issue 4, pp. 519–526). Society for Reproduction and Fertility. https://doi.org/10.1530/rep.0.1220519spa
dc.relation.referencesHolt, W. V. (2000). Basic aspects of frozen storage of semen. Animal Reproduction Science, 62(1–3), 3–22. https://doi.org/10.1016/S0378-4320(00)00152-4spa
dc.relation.referencesHolt, W. V., & North, R. D. (1991). Cryopreservation, actin localization and thermotropic phase transitions in ram spermatozoa. Journal of Reproduction and Fertility, 91(2), 451–461. https://doi.org/10.1530/jrf.0.0910451spa
dc.relation.referencesHolt, W. V., & North, R. D. (1994). Effects of temperature and restoration of osmotic equilibrium during thawing on the induction of plasma membrane damage in cryopreserved ram spermatozoa. Biology of Reproduction, 51(3), 414–424. https://doi.org/10.1095/biolreprod51.3.414spa
dc.relation.referencesHolt, W. V., Penfold, L, M., Chenoweth, P., & Lorton, S. (2014). Fundamental and practical aspects of semen cryopreservation. Theories and Applications. https://books.google.hn/books?hl=en&lr=&id=hv6dAwAAQBAJ&oi=fnd&pg=PA76&ot s=DC3JC7vqep&sig=fv5qM7bLU9aMWzgfLqZQjiIdw84&redir_esc=y#v=onepage&q &f=falsespa
dc.relation.referencesHossain, M. S., Johannisson, A., Wallgren, M., Nagy, S., Siqueira, A. P., & Rodriguez- Martinez, H. (2011). Flow cytometry for the assessment of animal sperm integrity and functionality: State of the art. In Asian Journal of Andrology (Vol. 13, Issue 3, pp. 406–419). https://doi.org/10.1038/aja.2011.15spa
dc.relation.referencesIsachenko, E., Isachenko, V., Katkov, I. I., Dessole, S., & Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success. Reproductive BioMedicine Online, 6(2), 191–200. https://doi.org/10.1016/S1472-6483(10)61710-5spa
dc.relation.referencesJames, A. N., Green, H., Hoffman, S., Landry, A. M., Paccamonti, D., & Godke, R. A. (2002). Preservation of equine sperm stored in the epididymis at 4°C for 24, 48, 72 and 96 hours. Theriogenology, 58(2–4), 401–404. https://doi.org/10.1016/S0093- 691X(02)00883-Xspa
dc.relation.referencesJanuskauskas, A., Johannisson, A., & Rodriguez-Martinez, H. (2003). Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology, 60(4), 743–758. https://doi.org/10.1016/S0093-691X(03)00050-5spa
dc.relation.referencesJeyendran, R. S., Ven, H. H. Van der, Perez-Pelaez, M., Crabo, B. G., & Zaneveld, L. J. D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Journal of Reproduction and Fertility, 70(1), 219–228. https://doi.org/10.1530/jrf.0.0700219spa
dc.relation.referencesJones, R., Mann, T., & Sherins, R. (1979). Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertility and Sterility, 31(5), 531–537. https://doi.org/10.1016/S0015-0282(16)43999-3spa
dc.relation.referencesKamp, G., Büsselmann, G., & Lauterwein, J. (1996). Spermatozoa: Models for studying regulatory aspects of energy metabolism. In Experientia (Vol. 52, Issue 5, pp. 487– 494). Springer. https://doi.org/10.1007/BF01919321spa
dc.relation.referencesKaru, T. I. (2010). Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. In IUBMB Life (Vol. 62, Issue 8, pp. 607–610). John Wiley & Sons, Ltd. https://doi.org/10.1002/iub.359spa
dc.relation.referencesKarunakaran, M., & Devanathan, T. G. (2017). Evaluation of bull semen for fertility- associated protein, in vitro characters and fertility. Journal of Applied Animal Research, 45(1), 136–144. https://doi.org/10.1080/09712119.2015.1129343spa
dc.relation.referencesKhalil, W. A., El-Harairy, M. A., Zeidan, A. E. B., Hassan, M. A. E., & Mohey-Elsaeed, O. (2018). Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. International Journal of Veterinary Science and Medicine, 6(1), 49–56. https://doi.org/10.1016/j.ijvsm.2017.11.001spa
dc.relation.referencesKhan, I. M., Cao, Z., Liu, H., Khan, A., Rahman, S. U., Khan, M. Z., Sathanawongs, A., & Zhang, Y. (2021). Impact of Cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. In Frontiers in Veterinary Science (Vol. 8, p. 139). Frontiers Media S.A.spa
dc.relation.referencesKiani Esfahani, A., Tavalaee, M., Deemeh, M. R., Hamiditabar, M., & Nasr Esfahani, M. H. (2012). DHR123: An alternative probe for assessment of ROS in human spermatozoa. Systems Biology in Reproductive Medicine, 58(3), 168–174. https://doi.org/10.3109/19396368.2012.681420spa
dc.relation.referencesKim, S.-H., Yu, D.-H., & Kim, Y.-J. (2010). Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm. Theriogenology, 73(3), 282–292. https://doi.org/10.1016/j.theriogenology.2009.09.011spa
dc.relation.referencesKoppers, A. J., De Iuliis, G. N., Finnie, J. M., McLaughlin, E. A., & Aitken, R. J. (2008). Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. Journal of Clinical Endocrinology and Metabolism, 93(8), 3199–3207. https://doi.org/10.1210/jc.2007-2616spa
dc.relation.referencesKumar, A., Prasad, J. K., Srivastava, N., & Ghosh, S. K. (2019). Strategies to Minimize Various Stress-Related Freeze-Thaw Damages during Conventional Cryopreservation of Mammalian Spermatozoa. In Biopreservation and Biobanking (Vol. 17, Issue 6, pp. 603–612). https://doi.org/10.1089/bio.2019.0037spa
dc.relation.referencesLarsen, L., Scheike, T., Jensen, T. K., Bonde, J. P., Ernst, E., Hjollund, N. H. I., Zhou, Y., Skakkebæk, N. E., Giwercman, A., Bonde, J. P. E., Henriksen, T. B., Kolstad, H. A., Anderson, A. M., Giwercman, A., & Olsen, J. (2000). Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Human Reproduction, 15(7), 1562–1567. https://doi.org/10.1093/humrep/15.7.1562spa
dc.relation.referencesLee, A. J., Salisbury, G. W., Boyd, L. J., & Ingalls, W. (1977). In Vitro Aging of Frozen Bull Semen. Journal of Dairy Science, 60(1), 89–95. https://doi.org/10.3168/jds.S0022- 0302(77)83833-2spa
dc.relation.referencesLeite, T. G., do Vale Filho, V. R., de Arruda, R. P., de Andrade, A. F. C., Emerick, L. L., Zaffalon, F. G., Martins, J. A. M., & Andrade, V. J. de. (2010). Effects of extender and equilibration time on post-thaw motility and membrane integrity of cryopreserved Gyr bull semen evaluated by CASA and flow cytometry. Animal Reproduction Science, 120, 31–38. https://doi.org/10.1016/j.anireprosci.2010.04.005spa
dc.relation.referencesLemma, A. (2011). Effect of Cryopreservation on Sperm Quality and Fertility. In Artificial Insemination in Farm Animals. https://doi.org/10.5772/16563spa
dc.relation.referencesLenzi, A., Picardo, M., Gandini, L., & Dondero, F. (1996). Lipids of the sperm plasma membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. In Human Reproduction Update (Vol. 2, Issue 3, pp. 246–256). Oxford Academic. https://doi.org/10.1093/humupd/2.3.246spa
dc.relation.referencesLessard, C., Parent, S., Leclerc, P., Baileys, J. A. N. I. C. E. L., & Sullivan, R. (2000). Cryopreservation alters the levels of the bull sperm surface protein P25b. Journal of Andrology, 21(5), 700–707. https://doi.org/10.1002/j.1939-4640.2000.tb02138.xspa
dc.relation.referencesLi, C. jin, Wang, D., & Zhou, X. (2016). Sperm proteome and reproductive technologies in mammals. In Animal Reproduction Science (Vol. 173, pp. 1–7). Elsevier. https://doi.org/10.1016/j.anireprosci.2016.08.008spa
dc.relation.referencesLin, Y., & Kan, F. W. K. (1996). Regionalization and redistribution of membrane phospholipids and cholesterol in mouse spermatozoa during in vitro capacitation. Biology of Reproduction, 55(5), 1133–1146. https://doi.org/10.1095/biolreprod55.5.1133spa
dc.relation.referencesLone, S. A., Shah, N., Yadav, H. P., Wagay, M. A., Singh, A., & Sinha, R. (2017). Sperm DNA damage causes, assessment and relationship with fertility: A review. Theriogenology Insight - An International Journal of Reproduction in All Animals, 7(1), 13. https://doi.org/10.5958/2277-3371.2017.00010.9spa
dc.relation.referencesLópez-Fernández, C., Pérez-Llano, B., García-Casado, P., Sala, R., Gosálbez, A., Arroyo, F., Fernández, J. L., & Gosálvez, J. (2008). Sperm DNA fragmentation in a random sample of the Spanish boar livestock. Animal Reproduction Science, 103(1– 2), 87–98. https://doi.org/10.1016/j.anireprosci.2006.11.015spa
dc.relation.referencesLosano, J., Angrimani, D., Dalmazzo, A., Rui, B., Brito, M., Mendes, C., Kawai, G., Vannucchi, C., Assumpção, M., Barnabe, V., & Nichi, M. (2017). Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality. Reproduction in Domestic Animals, 52(2), 289–297. https://doi.org/10.1111/rda.12901spa
dc.relation.referencesMacpherson, J. W. (1960). Semen Storage in Liquid Nitrogen. The Canadian Veterinary Journal, 1(7), 292–294. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc1585590/spa
dc.relation.referencesMalik, A., Laily, M., & Zakir, M. I. (2015). Effects of long term storage of semen in liquid nitrogen on the viability, motility and abnormality of frozen thawed Frisian Holstein bull spermatozoa. Asian Pacific Journal of Reproduction, 4(1), 22–25. https://doi.org/10.1016/S2305-0500(14)60052-Xspa
dc.relation.referencesManjunath, P., Bergeron, A., Lefebvre, J., & Fan, J. (2007). Seminal plasma proteins: functions and interaction with protective agents during semen preservation. In Society of Reproduction and Fertility supplement (Vol. 65, pp. 217–228).spa
dc.relation.referencesMansour, N., Lahnsteiner, F., McNiven, M. A., Richardson, G. F., & Pelletier, C. S. (2011). Relationship between fertility and fatty acid profile of sperm and eggs in Arctic char, Salvelinus alpinus. Aquaculture, 318(3–4), 371–378. https://doi.org/10.1016/j.aquaculture.2011.05.023spa
dc.relation.referencesMartín Cano, F. E., Gaitskell Phillips, G., Ortiz Rodríguez, J. M., Silva Rodríguez, A., Román, Á., Rojo-Domínguez, P., Alonso-Rodríguez, E., Tapia, J. A., Gil, M. C., Ortega-Ferrusola, C., & Peña, F. J. (2020). Proteomic profiling of stallion spermatozoa suggests changes in sperm metabolism and compromised redox regulation after cryopreservation. Journal of Proteomics, 221, 1–14. https://doi.org/10.1016/j.jprot.2020.103765spa
dc.relation.referencesMartin, G., Cagnon, N., Sabido, O., Sion, B., Grizard, G., Durand, P., & Levy, R. (2007). Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Human Reproduction, 22(2), 380–388. https://doi.org/10.1093/humrep/del399spa
dc.relation.referencesMazur, P, & Cole, K. (1989). Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology, 26(1), 1–29.spa
dc.relation.referencesMazur, Peter, Katkov, I. I., Katkova, N., & Critser, J. K. (2000). The enhancement of the ability of mouse sperm to survive freezing and thawing by the use of high concentrations of glycerol and the presence of an Escherichia coli membrane preparation (Oxyrase) to lower the oxygen concentration. Cryobiology, 40(3), 187– 209. https://doi.org/10.1006/cryo.2000.2238spa
dc.relation.referencesMedeiros, C. M. O., Forell, F., Oliveira, A. T. D., & Rodrigues, J. L. (2002). Current status of sperm cryopreservation: Why isn’t it better? Theriogenology, 57(1), 327–344. https://doi.org/10.1016/S0093-691X(01)00674-4spa
dc.relation.referencesMeryman, H. T. (1971). Osmotic stress as a mechanism of freezing injury. Cryobiology, 8(5), 489–500. https://doi.org/10.1016/0011-2240(71)90040-Xspa
dc.relation.referencesMishra, C., Palai, T. K., Sarangi, L. N., Prusty, B. R., & Maharana, B. R. (2013). Candidate gene markers for sperm quality and fertility in bulls. Veterinary World, 6(11), 905–910. https://doi.org/10.14202/vetworld.2013.905-910spa
dc.relation.referencesMoreno, J., & Galarza, D. (2019). Criopreservación de espermatozoides en especies domésticas y silvestres: estado actual de los avances tecnológicos (Sperm cryopreservation in domestic and wild species: a review of recent advances). Revista Ecuatoriana de Ciencia Animal, 3, 18–38. http://revistaecuatorianadecienciaanimal.com/index.php/RECA/article/view/116spa
dc.relation.referencesMorris, G. J. (2006). Rapidly cooled human sperm: no evidence of intracellular ice formation. Human Reproduction, 21(8), 2075–2083. https://doi.org/10.1093/humrep/del116spa
dc.relation.referencesMoustafa, M., Sharma, R. K., Thornton, J., Mascha, E., Abdel-Hafez, M. A., Thomas, A. J., & Agarwal, A. (2004). Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Human Reproduction, 19(1), 129–138. https://doi.org/10.1093/humrep/deh024spa
dc.relation.referencesMuiño-Blanco, T., Pérez-Pé, R., & Cebrián-Pérez, J. A. (2008). Seminal plasma proteins and sperm resistance to stress. In Reproduction in Domestic Animals (Vol. 43, Issue SUPPL.4, pp. 18–31). John Wiley & Sons, Ltd. https://doi.org/10.1111/j.1439- 0531.2008.01228.xspa
dc.relation.referencesNallella, K. P., Sharma, R. K., Said, T. M., & Agarwal, A. (2004). Inter-sample variability in post-thaw human spermatozoa. Cryobiology, 49(2), 195–199. https://doi.org/10.1016/j.cryobiol.2004.07.003spa
dc.relation.referencesNaresh, S., & Atreja, S. K. (2015). The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. In Cryobiology (Vol. 70, Issue 3, pp. 211–216). Academic Press. https://doi.org/10.1016/j.cryobiol.2015.03.008spa
dc.relation.referencesNazari, H., Ahmadi, E., Hosseini Fahraji, H., Afzali, A., & Davoodian, N. (2021). Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Veterinary Medicine and Science, 7(1), 127–135. https://doi.org/10.1002/vms3.355spa
dc.relation.referencesNeild, D. M., Gadella, B. M., Chaves, M. G., Miragaya, M. H., Colenbrander, B., & Agüero, A. (2003). Membrane changes during different stages of a freeze-thaw protocol for equine semen cryopreservation. Theriogenology, 59(8), 1693–1705. https://doi.org/10.1016/S0093-691X(02)01231-1spa
dc.relation.referencesNicolas, M., Alvarez, M., Borragán, S., Martinez-Pastor, F., Chamorro, C. A., Alvarez- Rodriguez, M., de Paz, P., & Anel, L. (2012). Evaluation of the qualitative and quantitative effectiveness of three media of centrifugation (Maxifreeze, Cushion Fluid Equine, and PureSperm 100) in preparation of fresh or frozen-thawed brown bear spermatozoa. Theriogenology, 77(6), 1119–1128. https://doi.org/10.1016/j.theriogenology.2011.10.016spa
dc.relation.referencesNoiles, E. E., Bailey, J. L., & Storey, B. T. (1995). The temperature dependence in the hydraulic conductivity, lp, of the mouse sperm plasma membrane shows a discontinuity between 4 and 0°C. Cryobiology, 32(3), 220–238. https://doi.org/10.1006/cryo.1995.1022spa
dc.relation.referencesO’Brien, E., Esteso, M. C., Castaño, C., Toledano-Díaz, A., Bóveda, P., Martínez- Fresneda, L., López-Sebastián, A., Martínez-Nevado, E., Guerra, R., López Fernández, M., Vega, R. S., Guillamón, F. G., & Santiago-Moreno, J. (2019). Effectiveness of ultra-rapid cryopreservation of sperm from endangered species, examined by morphometric means. Theriogenology, 129, 160–167. https://doi.org/10.1016/j.theriogenology.2019.02.024spa
dc.relation.referencesO’Connell, M., McClure, N., & Lewis, S. E. M. (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Human Reproduction, 17(3), 704–709. https://doi.org/10.1093/humrep/17.3.704spa
dc.relation.referencesO’Flaherty, C., Breininger, E., Beorlegui, N., & Beconi, M. T. (2005). Acrosome reaction in bovine spermatozoa: Role of reactive oxygen species and lactate dehydrogenase C4. Biochimica et Biophysica Acta - General Subjects, 1726(1), 96–101. https://doi.org/10.1016/j.bbagen.2005.07.012spa
dc.relation.referencesOzkavukcu, S., Erdemli, E., Isik, A., Oztuna, D., & Karahuseyinoglu, S. (2008). Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. Journal of Assisted Reproduction and Genetics, 25(8), 403–411. https://doi.org/10.1007/s10815-008-9232-3spa
dc.relation.referencesPagl, R., Aurich, J. E., Müller-Schlösser, F., Kankofer, M., & Aurich, C. (2006). Comparison of an extender containing defined milk protein fractions with a skim milk- based extender for storage of equine semen at 5 °C. Theriogenology, 66(5), 1115– 1122. https://doi.org/10.1016/j.theriogenology.2006.03.006spa
dc.relation.referencesParks, J. E., & Graham, J. K. (1992). Effects of cryopreservation procedures on sperm membranes. Theriogenology, 38(2), 209–222. https://doi.org/10.1016/0093- 691X(92)90231-Fspa
dc.relation.referencesParrish, J. J., Susko-Parrish, J. L., & Graham, J. K. (1999). In vitro capacitation of bovine spermatozoa: Role of intracellular calcium. Theriogenology, 51(2), 461–472. https://doi.org/10.1016/S0093-691X(98)00240-4spa
dc.relation.referencesPegg, D., & Diaper, M. (1989). The ‘unfrozen fraction’ hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence. Cryobiology, 26(1), 30– 43.spa
dc.relation.referencesPeña, F. J., Macías García, B., Samper, J. C., Aparicio, I. M., Tapia, J. A., & Ortega Ferrusola, C. (2011). Dissecting the molecular damage to stallion spermatozoa: The way to improve current cryopreservation protocols? In Theriogenology (Vol. 76, Issue 7, pp. 1177–1186). https://doi.org/10.1016/j.theriogenology.2011.06.023spa
dc.relation.referencesPereira, R., Sá, R., Barros, A., & Sousa, M. (2017). Major regulatory mechanisms involved in sperm motility. In Asian Journal of Andrology (Vol. 19, Issue 1, pp. 5–14). Wolters Kluwer -- Medknow Publications. https://doi.org/10.4103/1008-682X.167716spa
dc.relation.referencesPeris-Frau, P., Soler, A. J., Iniesta-Cuerda, M., Martín-Maestro, A., Sánchez-Ajofrín, I., Medina-Chávez, D. A., Fernández-Santos, M. R., García-álvarez, O., Maroto- Morales, A., Montoro, V., & Garde, J. J. (2020). Sperm cryodamage in ruminants: Understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. International Journal of Molecular Sciences, 21(8). https://doi.org/10.3390/ijms21082781spa
dc.relation.referencesPeris, S. I., Bilodeau, J.-F., Dufour, M., & Bailey, J. L. (2007). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Molecular Reproduction and Development, 74(7), 878– 892. https://doi.org/10.1002/mrd.20686spa
dc.relation.referencesPeris, S. I., Bilodeau, J.-F., Dufour, M., & Bailey, J. L. (2007). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Molecular Reproduction and Development, 74(7), 878– 892. https://doi.org/10.1002/mrd.20686spa
dc.relation.referencesPickett, B. W., Martig, R. C., & Cowan, W. A. (1961). Preservation of Bovine Spermatozoa at −79 and −196° C. Journal of Dairy Science, 44(11), 2089–2096. https://doi.org/10.3168/jds.S0022-0302(61)90023-6spa
dc.relation.referencesPommer, A. C., Rutllant, J., & Meyers, S. A. (2002). The role of osmotic resistance on equine spermatozoal function. Theriogenology, 58(7), 1373–1384. https://doi.org/10.1016/S0093-691X(02)01039-7spa
dc.relation.referencesPommer, A. C., Rutllant, J., & Meyers, S. A. (2003). Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biology of Reproduction, 68(4), 1208–1214. https://doi.org/10.1095/biolreprod.102.011106spa
dc.relation.referencesPrihantoko, K. D., Kusumawati, A., Widayati, D. T., & Pangestu, M. (2020). Effects of storage duration on mitochondrial activity and dna fragmentation of post-thawed spermatozoa from several ongole grade bull in Indonesia. Veterinary Practitioner, 21(2), 264–268.spa
dc.relation.referencesPryor, W. (1976). Free radicals in biology. In Antioxidants and the Skin (pp. 21–29). Academic Press. https://doi.org/10.1201/9781315207254-2spa
dc.relation.referencesRaad, G., Bakos, H. W., Bazzi, M., Mourad, Y., Fakih, F., Shayya, S., Mchantaf, L., & Fakih, C. (2021). Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: A prospective study. Andrology, 9(5), 1549–1559. https://doi.org/10.1111/andr.13038spa
dc.relation.referencesRamírez-Reveco, A., Hernández, J. L., & Aros, P. (2016). Long‐Term Storing of Frozen Semen at −196°C does not Affect the Post-Thaw Sperm Quality of Bull Semen. In Cryopreservation in Eukaryotes. InTech. https://doi.org/10.5772/64948spa
dc.relation.referencesReers, M., Smith, T. W., & Chen, L. B. (1991). J-Aggregate Formation of a Carbocyanine as a Quantitative Fluorescent Indicator of Membrane Potential. Biochemistry, 30(18), 4480–4486. https://doi.org/10.1021/bi00232a015spa
dc.relation.referencesRibeiro-Peres, A., Munita-Barbosa, L., Yumi-Kanazawa, M., Mello-Martins, M. I., & Ferreira De Souza, F. (2014). Criopreservación de espermatozoides bovinos extraídos de la cola del epidídimo utilizando los métodos convencional y automatizado. Archivos de Medicina Veterinaria, 46(1), 31–38. https://doi.org/10.4067/S0301-732X2014000100005spa
dc.relation.referencesRodriguez-Martinez, H., Tienthai, P., Suzuki, K., Funahashi, H., Ekwall, H., & Johannisson, A. (2001). Involvement of oviduct in sperm capacitation and oocyte development in pigs. In Reproduction (Cambridge, England) Supplement (Vol. 58, pp. 129–145). https://doi.org/10.1530/biosciprocs.16.0010spa
dc.relation.referencesRodriguez, O. L., Berndtson, W. E., Ennen, B. D., & Pickett, B. W. (1975). Effect of rates of freezing, thawing and level of glycerol on the survival of bovine spermatozoa in straws. Journal of Animal Science, 41(1), 129–136. https://doi.org/10.2527/jas1975.411129xspa
dc.relation.referencesRoldan, E. R. S. (1998). Signal transduction during mammalian sperm acrosomal exocytosis. In Gametes: Development and function (pp. 219–228). https://www.researchgate.net/profile/Eduardo- Roldan/publication/349771261_Signal_transduction_during_mammalian_sperm_acr osomal_exocytosis/links/60410c5792851c077f187c70/Signal-transduction-during- mammalian-sperm-acrosomal-exocytosis.pdfspa
dc.relation.referencesRubio, J. L., Quintero, A. A., & González, D. M. (2009). Efecto de la criopreservación sobre la integridad de la membrana plasmática y acrosomal de espermatozoides de toros. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 19(4), 382–389. http://ve.scielo.org/scielo.php?pid=S0798- 22592009000400010&script=sci_arttext&tlng=ptspa
dc.relation.referencesRuiz, E., Diez, C., López, M., & Enriquez, J. (2007). The Role of the Mitochondrion in Sperm Function: Is There a Place for Oxidative Phosphorylation or Is This a Purely Glycolytic Process? In The Mitochondrion in Germline and Early Development (pp. 3–14).spa
dc.relation.referencesSa-Ardrit, M., Saikhun, J., Thongtip, N., Damyang, M., Mahasawangkul, S., Angkawanish, T., Jansittiwate, S., Faisaikarm, T., Kitiyanant, Y., Pavasuthipaisit, K., & Pinyopummin, A. (2006). Ultrastructural alterations of frozen-thawed Asian elephant (Elephas maximus) spermatozoa. International Journal of Andrology, 29(2), 346– 352. https://doi.org/10.1111/j.1365-2605.2005.00578.xspa
dc.relation.referencesSaid, T. M., Gaglani, A., & Agarwal, A. (2010). Implication of apoptosis in sperm cryoinjury. In Reproductive BioMedicine Online (Vol. 21, Issue 4, pp. 456–462). Elsevier. https://doi.org/10.1016/j.rbmo.2010.05.011spa
dc.relation.referencesSalazar, J. L., Teague, S. R., Love, C. C., Brinsko, S. P., Blanchard, T. L., & Varner, D. D. (2011). Effect of cryopreservation protocol on postthaw characteristics of stallion sperm. Theriogenology, 76(3), 409–418. https://doi.org/10.1016/j.theriogenology.2011.02.016spa
dc.relation.referencesSalisbury, G. W. (1967). Aging Phenomena in Spermatozoa. III. Effect of Season and Storage at −79 to −88 C on Fertility and Prenatal Losses. Journal of Dairy Science, 50(10), 1683–1689. https://doi.org/10.3168/jds.S0022-0302(67)87694-Xspa
dc.relation.referencesSalisbury, G. W., & Hart, R. G. (1970). Gamete aging and its consequences. Biology of Reproduction. Supplement, 2, 1–13. https://doi.org/10.1095/biolreprod2.Supplement_2.1spa
dc.relation.referencesSalvioli, S., Ardizzoni, A., Franceschi, C., & Cossarizza, A. (1997). JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Letters, 411(1), 77–82. https://doi.org/10.1016/S0014-5793(97)00669-8spa
dc.relation.referencesSatorre, M., & Córdoba, M. (2010). Involvement of intracellular calcium and src tyrosine- kinase in capacitation of cryopreserved bovine spermatozoa. InVet, 12(1), 75–83.spa
dc.relation.referencesSchober, D., Aurich, C., Nohl, H., & Gille, L. (2007). Influence of cryopreservation on mitochondrial functions in equine spermatozoa. Theriogenology, 68(5), 745–754. https://doi.org/10.1016/j.theriogenology.2007.06.004spa
dc.relation.referencesShimizu, T., & Johnson, K. A. (1983). Kinetic evidence for multiple dynein ATPase sites. Journal of Biological Chemistry, 258(22), 13841–13846. https://doi.org/10.1016/s0021-9258(17)43994-9spa
dc.relation.referencesShoshan-Barmatz, V., Krelin, Y., & Shteinfer-Kuzmine, A. (2018). VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. In Cell Calcium (Vol. 69, pp. 81–100). Churchill Livingstone. https://doi.org/10.1016/j.ceca.2017.06.007spa
dc.relation.referencesSieme, H., Harrison, R. A. P., & Petrunkina, A. M. (2008). Cryobiological determinants of frozen semen quality, with special reference to stallion. Animal Reproduction Science, 107(3–4), 276–292. https://doi.org/10.1016/j.anireprosci.2008.05.001spa
dc.relation.referencesStohs, S. J. (1995). The role of free radicals in toxicity and disease. Journal of Basic and Clinical Physiology and Pharmacology, 6(3–4), 205–228. https://doi.org/10.1515/JBCPP .1995.6.3-4.205spa
dc.relation.referencesStorey, B. T. (2008). Mammalian sperm metabolism: Oxygen and sugar, friend and foe. International Journal of Developmental Biology, 52(5–6), 427–437. https://doi.org/10.1387/ijdb.072522bsspa
dc.relation.referencesStornelli, M. C., Tittarelli, C. M., Savignone, C. A., & Stornelli, M. A. (2005). Efecto de los procesos de criopreservación sobre la fertilidad seminal. Analecta Veterinaria, 25(2), 28–35. http://sedici.unlp.edu.ar/handle/10915/11180spa
dc.relation.referencesStradaioli, G., Noro, T., Sylla, L., & Monaci, M. (2007). Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: Comparison between two extenders. Theriogenology, 67(7), 1249–1255. https://doi.org/10.1016/j.theriogenology.2007.01.009spa
dc.relation.referencesSullivan, J. J., & Mixner, J. P. (1963). Effects of Storage Temperature and Length of Storage Time upon the Post-thawing Motility and Metabolic Activity of Frozen Bull Semen. Journal of Dairy Science, 46(8), 850–853. https://doi.org/10.3168/jds.S0022- 0302(63)89160-2spa
dc.relation.referencesSun, W., Jiang, S., Su, J., Zhang, J., Bao, X., Ding, R., Shi, P., Li, S., Wu, C., Zhao, G., Cao, G., Sun, Q. Y., Yu, H., & Li, X. (2020). The effects of cryopreservation on the acrosome structure, enzyme activity, motility, and fertility of bovine, ovine, and goat sperm. Animal Reproduction, 17(4), 1–10. https://doi.org/10.1590/1984-3143- AR2020-0219spa
dc.relation.referencesTanga, B. M., Qamar, A. Y., Raza, S., Bang, S., Fang, X., Yoon, K., & Cho, J. (2021). Semen evaluation: Methodological advancements in sperm quality-specific fertility assessment - A review. Animal Bioscience, 34(8), 1253–1270. https://doi.org/10.5713/ab.21.0072spa
dc.relation.referencesThomas, A. D., Meyers, S. A., & Ball, B. A. (2006). Capacitation Like Changes in Equine Spermatozoa following Cryopreservation. Theriogenology, 65(8), 1531–1550.spa
dc.relation.referencesThomas, C. A., Garner, D. L., Dejarnette, J. M., & Marshall, C. E. (1998). Effect of cryopreservation on bovine sperm organelle function and viability as determined by flow cytometry. Biology of Reproduction, 58(3), 786–793. https://doi.org/10.1095/biolreprod58.3.786spa
dc.relation.referencesThurston, L. M., Watson, P. F., & Holt, W. V. (1999). Sources of variation in the morphological characteristics of sperm subpopulations assessed objectively by a novel automated sperm morphology analysis system. Journal of Reproduction and Fertility, 117(2), 271–280. https://doi.org/10.1530/jrf.0.1170271spa
dc.relation.referencesThurston, Lisa M., Watson, P. F., & Holt, W. V. (2002). Semen cryopreservation: A genetic explanation for species and individual variation? Cryo-Letters, 23(4), 255– 262. https://www.researchgate.net/publication/5329483_Semen_cryopreservation_A_gen etic_explanation_for_species_and_individual_variationspa
dc.relation.referencesTreulen, F., Arias, M. E., Aguila, L., Uribe, P., & Felmer, R. (2018). Cryopreservation induces mitochondrial permeability transition in a bovine sperm model. Cryobiology, 83(June), 65–74. https://doi.org/10.1016/j.cryobiol.2018.06.001spa
dc.relation.referencesTriphan, J., Aumüller, G., Brandenburger, T., & Wilhelm, B. (2007). Localization and regulation of plasma membrane Ca2+-ATPase in bovine spermatozoa. European Journal of Cell Biology, 86(5), 265–273. https://doi.org/10.1016/j.ejcb.2007.02.003spa
dc.relation.referencesTulsiani, D. R. P., Zeng, H.-T., & Abou-Haila, A. (2007). Multiple signaling pathways leading to capacitation Biology of sperm capacitation: evidence for multiple signaling pathways. Reprod Fertil Suppl., 63(257–72).spa
dc.relation.referencesUgur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm. In Frontiers in Veterinary Science (Vol. 6, p. 268). Frontiers Media S.A. https://doi.org/10.3389/fvets.2019.00268spa
dc.relation.referencesUpadhyay, V. R., Ramesh, V., Dewry, R. K., Kumar, G., Raval, K., & Patoliya, P. (2021). Implications of cryopreservation on structural and functional attributes of bovine spermatozoa: An overview. In Andrologia (Vol. 53, Issue 8, p. e14154). John Wiley & Sons, Ltd. https://doi.org/10.1111/and.14154spa
dc.relation.referencesVan Dop, C., Hutson, S. M., & Lardy, H. A. (1977). Pyruvate metabolism in bovine epididymal spermatozoa. Journal of Biological Chemistry, 252(4), 1303–1308. https://doi.org/10.1016/s0021-9258(17)40655-7spa
dc.relation.referencesVan Overveld, F. W. P. C., Haenen, G. R. M. M., Rhemrev, J., Vermeiden, J. P. W., & Bast, A. (2000). Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chemico-Biological Interactions, 127(2), 151–161. https://doi.org/10.1016/S0009-2797(00)00179-4spa
dc.relation.referencesVilla Duque, N., Amaya Torres, C. M., García Rojas, D., Nieto Omeara, N., & Terán Acuña, N. (2016). Efecto de la manipulación del semen criopreservado de bovinos Bos Taurus sobre la integridad espermática. CIENCIA Y AGRICULTURA, 13(1), 9. https://doi.org/10.19053/01228420.4802spa
dc.relation.referencesWang, A. W., Zhang, H., Ikemoto, I., Anderson, D. J., & Loughlin, K. R. (1997). Reactive oxygen species generation by seminal cells during cryopreservation. Urology, 49(6), 921–925. https://doi.org/10.1016/S0090-4295(97)00070-8spa
dc.relation.referencesWatson, P. F. (1981). The effects of cold shock on sperm cell membranes. Trends in Biochemical Sciences, Effects of low temperatures on biological membranes, 189-21 8. https://ci.nii.ac.jp/naid/10027566484/spa
dc.relation.referencesWatson, P. F. (1995). Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility and Development, 7(4), 871–891. https://doi.org/10.1071/RD9950871spa
dc.relation.referencesWatson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science, 60–61, 481–492. https://doi.org/10.1016/S0378- 4320(00)00099-3spa
dc.relation.referencesWood, P. L., Scoggin, K., Ball, B. A., Troedsson, M. H., & Squires, E. L. (2016). Lipidomics of equine sperm and seminal plasma: Identification of amphiphilic (O- acyl)-ω-hydroxy-fatty acids. Theriogenology, 86(5), 1212–1221. https://doi.org/10.1016/j.theriogenology.2016.04.012spa
dc.relation.referencesWoolley, D. M., & Richardson, D. W. (1978). Ultrastructural injury to human spermatozoa after freezing and thawing. Journal of Reproduction and Fertility, 53(2), 389–394. https://doi.org/10.1530/jrf.0.0530389spa
dc.relation.referencesYanagimachi, R. (1994). The physiology of Reproduction. Raven Press, 189–317.spa
dc.relation.referencesYildiz, C., Yavas, I., Bozkurt, Y., & Aksoy, M. (2015). Effect of cholesterol-loaded cyclodextrin on cryosurvival and fertility of cryopreserved carp (Cyprinus carpio) sperm. Cryobiology, 70(2), 190–194. https://doi.org/10.1016/j.cryobiol.2015.01.009spa
dc.relation.referencesYoon, S.-J., Kwon, W.-S., Rahman, M. S., Lee, J.-S., & Pang, M.-G. (2015). A Novel Approach to Identifying Physical Markers of Cryo-Damage in Bull Spermatozoa. PLOS ONE, 10(5), e0126232. https://doi.org/10.1371/journal.pone.0126232spa
dc.relation.referencesYoon, S. J., Rahman, M. S., Kwon, W. S., Ryu, D. Y., Park, Y. J., & Pang, M. G. (2016). Proteomic identification of cryostress in epididymal spermatozoa. Journal of Animal Science and Biotechnology, 7(1), 67. https://doi.org/10.1186/s40104-016-0128-2spa
dc.relation.referencesZamboni, L. (1987). The ultrastructural pathology of the spermatozoon as a cause of infertility: The role of electron microscopy in the evaluation of semen quality. In Fertility and Sterility (Vol. 48, Issue 5, pp. 711–734). Elsevier. https://doi.org/10.1016/s0015-0282(16)59520-xspa
dc.relation.referencesZhang, X. G., Hu, S., Han, C., Zhu, Q. C., Yan, G. J., & Hu, J. H. (2015). Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology, 70(2), 164–169. https://doi.org/10.1016/j.cryobiol.2014.12.010spa
dc.relation.referencesZhu, W. J., & Liu, X. G. (2000). Cryodamage to plasma membrane integrity in head and tail regions of human sperm. Asian Journal of Andrology, 2(2), 135–138. http://www.asiaandro.com/archive/1008-682X/2/135.htmspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::637 - Procesamiento lechero y productos relacionadosspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsPreservación de semenspa
dc.subject.decsSemen Preservationeng
dc.subject.decsSemenspa
dc.subject.decsEspermatozoidesspa
dc.subject.decsSpermatozoaeng
dc.subject.decsPreservación de la fertilidadspa
dc.subject.decsFertility Preservationeng
dc.subject.lembReproducción dirigidaspa
dc.subject.lembReproduction controleng
dc.subject.proposalEvaluaciónspa
dc.subject.proposalEvaluationeng
dc.subject.proposalMetabolismospa
dc.subject.proposalMetabolismeng
dc.subject.proposalEspermatozoidesspa
dc.subject.proposalSpermeng
dc.subject.proposalCriopreservaciónspa
dc.subject.proposalCryopreservationeng
dc.subject.proposalTiempo de almacenamientospa
dc.subject.proposalStorage timeeng
dc.subject.proposalBovinospa
dc.subject.proposalBovineeng
dc.titleImpacto del tiempo de almacenamiento sobre el metabolismo de espermatozoides bovinos criopreservadosspa
dc.title.translatedImpact of storage time on the metabolism of cryopreserved bovine spermatozoaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleImpacto del tiempo de almacenamiento sobre el metabolismo de espermatozoides bovinos criopreservadosspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
F390177.2023.pdf
Tamaño:
901.95 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: