Modeling shallow landslides triggered by rainfall in tropical and mountainous terrains

dc.contributor.advisorJaboyedoff, Michel
dc.contributor.authorAristizábal Giraldo, Edier Vicente
dc.date.accessioned2024-03-11T15:36:28Z
dc.date.available2024-03-11T15:36:28Z
dc.date.issued2013-02
dc.descriptionIlustracionesspa
dc.description.abstractLandslides are one of the most common causes of fatalities and economic losses worldwide (Schuster, 1996), therefore the capacity to predict these movements has been a topic of great interest to scientific community (Caine, 1980; Montgomery & Dietrich, 1994; Finlay et al., 1997; Iverson, 2000; Aleotti, 2004; Crosta & Frattinni, 2008; Sidle & Ochiai, 2006). Although landslides do represent changes in terrain morphology within the natural and continuous geomorphologic cycle (Scheidegger, 1998) its occurrence and losses associated in the last decades has been closely tied to world population growth and consequent urban expansion on susceptible slopes to landslides. The urban population of developing countries has increased by 5 in 40 years and continues increasing rapidly (UNFP, 2007). The greatest landslide losses occur in the Ring of Fire countries (Alcantara - Ayala, 2002). Estimation made by Varnes (1981) indicates that 89% of deaths, due to landslides, are located in those countries. Data presented by Sidle & Ochiai (2006) pointed to Nepal, Japan and China as the countries with the biggest number of landslide fatalities per year, with values between 190 and 150; in Latin America, Brazil lead the ranking with an average of 88 people killed per year. In economic terms, Japan is the country most affected by landslides, with an estimated loss of 4 billion dollars annually, followed by Italy, India and the United States with losses ranging from 1 to 2 billion dollars per year (Cruden et al., 1989; Schuster, 1996; Schuster & Highland, 2001; Sidle & Ochiai, 2006). Unfortunately Colombia has no accurate databases to estimate this statistics. Numerous studies have been developed in recent years that have allowed an increasing understanding of the causes that involve these morphodynamic processes. However, because of the complexity involved in landslide occurrence, a great uncertainty still exists in predicting this kind of events. (Texto tomado de la introducción)eng
dc.description.degreelevelMaestríaspa
dc.format.extent44 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85792
dc.language.isoengspa
dc.publisherUniversidad de Génova - Facultad de Cienciasspa
dc.publisher.branchspa
dc.publisher.facultyspa
dc.publisher.programspa
dc.relation.indexedN/Aspa
dc.relation.referencesAleotti, P., 2004. A warning system for rainfall-induced shallow failures. Engineering Geology 73. Pág. 247-265.spa
dc.relation.referencesAlcantara-Ayala, I. 2002. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47. Pág. 107-124.spa
dc.relation.referencesAnderson S.A., Sitar N. 1995. Analysis of rainfall-induced debris flows. Ournal of Geotechnical Engineering. Pàg. 544-552.spa
dc.relation.referencesÁngel, P., Botero, V., Sanín, M. V., 2002. Metodología para la evaluación de la susceptibilidad al deslizamiento utilizando sistemas de información geográfica. IX Congreso de Geotecnia, Medellín.spa
dc.relation.referencesAnon. 1995. The description and classification of weathered rocks for engineering purposes. Geological Society Engineering Group Working Party Report. Quarterly Journal of Engineering Geology, 28, 207-242.spa
dc.relation.referencesArea Metropolitana del Valle de Aburrá, AMVA. 2002. Microzonificación sísmica de los municipios del Valle de Aburrá y definición de zonas de riesgo por movimientos en masa e inundaciones en el Valle de Aburrá. Grupo de Sismología de Medellín. Informe interno.spa
dc.relation.referencesArias A., 2003. La diversidad del relieve y lo suelos en el altiplano de Santa Rosa de Osos (Antioquia): sus significados ambientales. Boletín Ciencias de la Tierra. No. 15. pp. 51-72.spa
dc.relation.referencesAristizabal, E. Gonzalez, T., Montoya, J.D., Velez, J.I., Martinez, H., Guerra, A. 2011. Analisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia. Revista Escuela de Ingenieria de Antioquia, No. 15, Pag. 95-111.spa
dc.relation.referencesAristizábal, E., Gómez, J., 2007. Inventario de emergencias y desastres en el Valle de Aburrá: originados por fenómenos naturales y antrópicos en el periodo 1880-2007. Revista Gestión y Ambiente, Vol. 10 No 2. Pág. 17-30.spa
dc.relation.referencesAristizábal, E., Roser, B., Yokota, S. 2005. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes.Enginnering Geology (ELSEVIER) No 81.Pág. 389-406.spa
dc.relation.referencesAristizabal, E., Yokota, S. 2006. Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Revista Dyna 149. Pág. 5-16.spa
dc.relation.referencesBaum R.L., Savage W.Z., Godt W. 2002. TRIGRS-a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. Open file report 02-424 USGS.spa
dc.relation.referencesBarredo J. I., Benavides A., Hervas H., van Westen C.J., 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Titajana basin, Gran Canaria Island, Spian. International Journal of Applied Earth Observation and Geoinformation 2, Issue 1, 9-23.spa
dc.relation.referencesBorga, M., Dalla Fontana, G., Cazorzi F. 2002. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index.Journal of Hydrology 268.Pág. 56-71.spa
dc.relation.referencesBrunsden, D., Prior, D. B., 1984. Slope instability, John Wiley, New York.spa
dc.relation.referencesCastellanos, R. 1996. Lluvias Críticas en la Evaluación de Amenazas de Eventos de Remoción de Masa. Tesis de Magister en Geotecnia - Universidad Nacional de Colombia - Departamento de Ingeniería Civil. Santafé de Bogotá. 270 p.spa
dc.relation.referencesCastellanos, R. & González, A. 1997. Relaciones entre la Lluvia Anual y la Lluvia Crítica que Dispara Movimientos en Masa. IX Jornadas Geotécnicas de la Ingeniería Colombiana. Santa Fe de Bogotá. Pp. 4.62 – 4.70.spa
dc.relation.referencesCaine, N., 1980. The rainfall intensity – duration control of shallow landslides and debris flows. GeografiskaAnnaler, 62A (1-2). Pág.23-27.spa
dc.relation.referencesChiang S-H., Chang K-T. 2009. Application of radar data to modeling rainfall-induced landslides. Geomorphology 103. Pág. 299-309.spa
dc.relation.referencesChica, A. 1987. Geología y geotecnia en terrenos inclinados, modelo para la elaboración de planos geologico-geotecnicos. Magazine Fac. De Minas, Universidad Nacional de Colombia 119, 27-32.spa
dc.relation.referencesCollins B.D., Znidarcic D. 2004. Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering.Pág. 362-371. Vol. 130, No. 4spa
dc.relation.referencesCrosta, G., 1998. Regionalization of rainfall threshold: an aid for landslide susceptibility zonation. Enviromental Geology, 35, (2-3), 131-145.spa
dc.relation.referencesCrosta, G., Frattini, P., 2003. Distributed modeling of shallow landslides triggered by intense rainfall. Natural Hazard and Earth System Sciences 3. Pág. 81-93.spa
dc.relation.referencesCrosta, G., Frattini, P,. 2008. Rainfall-induced landslides and debris flows. Hydrological Processes 22, pág. 473-477.spa
dc.relation.referencesCrozier, M., 1999. Prediction of rainfall-triggering landslides: a test of the antecedent water status model. Earth surface processes and landforms 24. Pág. 825-833.spa
dc.relation.referencesCruden, D.M.S., Thomson, B.D., Bomhold, J-Y., Locat, J., Evans, J.A., Heginbottom, K., Moran, D.J., Piper, R., Powell, R., Prior, D., Qugley, R.M. 1989. Landslides: extent and economic significance in Canada, en Landslides: extent and economic significance, editado por Brabb E.E: y Harrod B.L., Proc. 28th Intl. Geol. Congr. Symp. On Landslides, Wash. D.C: Pág. 1-23.spa
dc.relation.referencesCurtis, C.D., 1976. Chemistry of rock weathering, in E. Debyshire, editor, Geomorphology and climate: London, John Wiley & Sons, P. 25-57.spa
dc.relation.referencesDai, F.C., Lee C.F. 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Canadian Geotechnical Journal 38, 911-923.spa
dc.relation.referencesDANE – Departamento Administrativo Nacional de Estadística. 2007. Censo General de 2005. www.dane.gov.co.spa
dc.relation.referencesDeere, D. U., Patton, F. D., 1971. Slope stability in residual soils, Fourth Panam. Conf. SMFE, San Juan, Puerto Rico, 1, 87–170, 1971.spa
dc.relation.referencesEcheverri, O., Valencia, Y., 2004. Análisis de los deslizamientos en la Cuenca de la quebrada la Iguaná de la ciudad de Medellín a partir de la integración lluvia-pendiente-formación geológica. Dyna, Universidad Nacional de Colombia pág.33-45.spa
dc.relation.referencesEkanayake J.C., Phillips C.J., 1999. A model for determining thresholds for initiation of shallow landslides under near-saturated conditions in the East Coast region, New Zealand. Journal of Hydrology 38 (1): Pág. 1-28.spa
dc.relation.referencesFinlay, P., J., Fell, R., Maguire, P., K., 1997. The relationship between the probability of landslide occurrence and rainfall.Can. Geotech. Journal 34. Pág. 811-824.spa
dc.relation.referencesFlorez, M., Molina M., Ramírez I. 1997.Método cualitativo para la determinación de los niveles de amenaza por movimientos en masa de la ciudad de Medellín, ladera occidental. Alcaldía de Medellín, 90 pp.spa
dc.relation.referencesFlorez, M., Molina M., Ramírez I. 1996. Método cualitativo para la determinación de los niveles de amenaza por movimientos en masa de la ciudad de Medellín, ladera occidental. Alcaldia de Medellín, 90 pp.spa
dc.relation.referencesFookes, P.G., 1997. Tropical residual soils. A geological society engineering group working party revised report. London: The Geological Society.spa
dc.relation.referencesFrancés, F. I. Vélez and J. Vélez, 2007. Split‐parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332, 226‐240.spa
dc.relation.referencesFrattini, P., Crosta, G, Sosio, R. 2009. Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrological Processes, 23.Pag. 1444-1460.spa
dc.relation.referencesGarcía, H. 2004. Evaluación de la susceptibilidad a los movimientos de masa usando sistemas de información geogràfica y redes neuronales artificiales. Disertación de Maestrìa, Universidad de Brasilia, Brasilia.spa
dc.relation.referencesGraham J., 1984. Methods of stability analysis In Slope Instability Edited by D. Brunsden and D.B. Prior. Jhon Wiley & Sons Ltda. Pag. 171-215.spa
dc.relation.referencesGómez, S., 1990. Predicción de niveles freáticos a partir de la precipitación y su influencia en la estabilidad de taludes (caso de aplicación en la meseta de Bucaramanga). Tesis de Maestría. Universidad Nacional de Colombia, Medellín.spa
dc.relation.referencesGuzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31, 181-216.spa
dc.relation.referencesHammond, C., D. Hall, S. Miller and P. Swetik, (1992), "Level I Stability Analysis (LISA) Documentation for Version 2.0," General Technical Report INT-285, USDA Forest Service Intermountain Research Station.spa
dc.relation.referencesHermelin, M., 1984. Riesgo geológico en el valle de Aburrá. I Conferencia geológica sobre Riesgos Geológicos del Valle de Aburrá. Sociedad Colombiana de Geología. Medellín.spa
dc.relation.referencesHo J.Y., Lee K.T., Chang T.C., Wang Z.Y., Liao Y.H., 2012. Influences of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology 124. Pag. 38-46.spa
dc.relation.referencesHormaza, M., 1991. Investigación preliminar de las causas probables de deslizamientos en las laderas de Medellín. Tesis pregrado, Universidad Nacional de Colombia, 529 pp.spa
dc.relation.referencesHuat B.B.K., Ali F.H.J., Low T.H. 2006. Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering 24. Pág. 1293-1306.spa
dc.relation.referencesHutchinson, J.N. 1995. Keynote paper, Landslide hazard assessment. Proceeding of the 6th International Symposium on Landslides, Christchurch, New Zealand 3, 1805-1841.spa
dc.relation.referencesIida T., 1999. A stochastic hydro-geomorphological model for shallow landsliding due to rainstorm. Catena 34 (3-4). Pag. 293-313.spa
dc.relation.referencesIverson, R., 2000. Landslide triggering by rain infiltration. Water Resources Research, Vol. 36. No 7. Pág. 1897-1910.spa
dc.relation.referencesIngeominas, 1990. Zonificacion de aptitud del suelo para el uso urbano costado occidental de Medellín. INGEOMINAS. 91pp.spa
dc.relation.referenceskubota, J., Sivapalan, M. (1995) Towards A Catchment-Scale Model Of Subsurface Runoff Generation Based On Synthesis Of Small-Scales Process-Based Modeling And Field Studies. En: Scale Issues in hydrological modeling. Editado por: M Sivapalan. John Wiley and sons. 297-310.spa
dc.relation.referencesLeopold, L. B. and Maddock, T. J., 1953, Hydraulic geometry of stream channels and some physiographic implications. U. S. Geological Survey Professional Paper 252, 55 p.spa
dc.relation.referencesLittle, A.L., 1969. The engineering classification of residual soils. Seventh International Conference on Soil Mechanics and Foundation Engineering, ISSMFE. Mexico, vol. 1, pp. 1 – 10.spa
dc.relation.referencesLondoño, J.P. 2007. Evaluación holística de riesgos frente a movimientos en masa en áreas urbanas andinas. Una propuesta metodológica. Boletín de Ciencias de la Tierra, Nº 20, Junio. Medellín.spa
dc.relation.referencesMatsushi Y., Hattanji T., Matsukura Y. 2006. Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan.Geomorphology 76. Pág. 92-108.spa
dc.relation.referencesMayorga, M. R., 2003. Determinación de umbrales de lluvia detonantes de deslizamientos en Colombia. Tessi de posgrado Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá. Pág 223.spa
dc.relation.referencesMilne, G. 1935. Some suggested units of classification and mapping for East African soils. Soil Res. 4:183–198.spa
dc.relation.referencesMontoya, J.J., 2008. Desarrollo de un modelo conceptual de producción, transporte y depósito de sedimentos. Phd Thesis. Universidad Politécnica de Valencia. Pag. 267.spa
dc.relation.referencesMontgomery, D. R., Dietrich, W. E. 1994. A physically based model for the topographic control of shallow landsliding. Water Resource Research 30. Pág. 1153-1171.spa
dc.relation.referencesMoreno, H., A., Vélez, M., V., Montoya, J., D., Rhenals, R., L., 2006. La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intranual y diaria. Revista Escuela de Ingeniería de Antioquia, No 5. Pág. 59-69.spa
dc.relation.referencesO’Loughlin, E. M. 1986. Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis, Water Resour. Res., 22, Pág. 794–804.spa
dc.relation.referencesOllier, C.D., 1988. Deep weathering, groundwater and climate. Geografiska Annaler. Series A, Physical Geograph. Vol. 70, No. 4 (1988), pp. 285-290.spa
dc.relation.referencesPack, R. T., D. G. Tarboton and C. N. Goodwin, (1998), "Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.00," Report Number 4114-0, Terratech Consulting Ltd., Salmon Arm, B.C., Canada (www.tclbc.com).spa
dc.relation.referencesPaniconi C., Troch P.A., van Loon E.E., Arno G., Hilberts J. 2003. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model. Water Resource Research 39. No 11, 1317.spa
dc.relation.referencesParsons, A.J., A.D. Abrahams, J. Wainwright. 1994. On determining resistance to interril overland flow. Water Resources Research, 30 (12), Pag. 3515-3521.spa
dc.relation.referencesPaz, C. I., Torres A. M., 1989. Precipitación y su influencia sobre algunos deslizamientos ocurridos en las laderas del Valle de Aburrá. Tesis pregrado, Universidad Nacional de Colombia. 174 pp.spa
dc.relation.referencesQiu C., Esaki T., Xie M., Mitani Y., Wang C. 2007. Spatio-temporal estimation of shallow landslide hazard triggered by rainfall using a three-dimensional model.Environmental Geology 52.Pág. 1569-1579.spa
dc.relation.referencesRahardjo H., Ong T.H., Rezaur R.B., Leong E.C. 2007. Factors controlling instability of homogeneous soil slopes under rainfall. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12. Pág. 1532-1543.spa
dc.relation.referencesRendon, A., Vargas, R., 1998. Sistematización del proceso de evaluación de la amenaza por movimientos en masa, en zonas de ladera del Municipio de Medellín. Graduate Thesis, Universidad de Antioquia. 123 pp.spa
dc.relation.referencesRezzoug A., Schumann A., Chifflard P., Zepp H. 2005. Field measurements of soil moisture dynamics and numerical simulation using the kinematic wave approximation. Advances in Water resources 28. Pág. 917-926.spa
dc.relation.referencesSalciarini D, Godt JW, Savage WZ, Conversini R, Baum RL, Michael JA (2006) Modelling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194.spa
dc.relation.referencesSharma, R., H., Nakagawa, H., 2005. Shallow landslide modeling for heavy rainfall events.Annuals of Disas. Prev. Res. Inst. Kyoto Univ. 48.spa
dc.relation.referencesScheidegger, A. E., 1998. Tectonic predesign of mass movements, with examples from the Chinese Himalaya. Geomorphology 26, 37-46.spa
dc.relation.referencesSegoni, S., Rossi G., Catani F., 2012. Improving basin scale shallow landslide modelling using reliable soil thickness maps. Natural Hazards 61. Pag. 85-101.spa
dc.relation.referencesShlemon, R., 1979. Zonas de deslizamientos en los alrededores de Medellín, Antioquia (Colombia). Publicaciones Geológicas Especiales del Ingeominas. 45 pp.spa
dc.relation.referencesSchuster R. L,. 1996. Socieconomic significance of landslides. In: A.K. Turner & R.L. Schuster (Eds) Landslides Investigation and Mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, DC, ISA. 129-177 pp.spa
dc.relation.referencesSchuster, R.L., Highland, M.L. 2001.Socieconomic and environmental impacts of landslides in the Western Hemisphere. Open file report 01-0276. USGS.spa
dc.relation.referencesSetyo, A., Liao, H-J. 2008. Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model. Environ. Geol. DOI 10.1007/s00254-008-1215-2.spa
dc.relation.referencesSidle R.C., Ochiai H. 2006. Landslides: processes, prediction, and land use. Water Resources Monograph 18. American Geophysical Union, Washington D.C.spa
dc.relation.referencesSistema Municipal de Prevención y Atención de Desastres SIMPAD. 1999. Instrumentación y microzonificación sísmica del área urbana de Medellín. Municipio de Medellín – Sistema Municipal de Prevención y Atención de desastres, 135 pp.spa
dc.relation.referencesSuarez D. J. 2008. Árbol de decisiones para la predicción y alera de deslizamientos activados por lluvias. XII Congreso Colombiano de Geotecnia. Bogotá. 6 pp.spa
dc.relation.referencesTerlien, M.T.J., 1997. Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology 20. Pág. 165-175.spa
dc.relation.referencesTerlien, M. T. J., 1998. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology 35 (2-3). Pág. 124-130.spa
dc.relation.referencesTroch P., van Loon E., Hilberts A. 2002. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advance Water Resource 25. Pág. 637-649.spa
dc.relation.referencesTroch P.A., Paniconi C., van Loon E.E. 2003. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Res Res 39. No 11, 1316.spa
dc.relation.referencesUnited Nations Program for Development, UNDP, 1998. La Amenaza y la vulnerabilidad en el análisis de riesgos. La microcuenca de la quebrada La Iguaná. Alcaldía de Medellín – PNUD. 175 pp.spa
dc.relation.referencesUNFP (United Nation Population Fund), 2007.Estado de la Población Mundial 2007: liberar el potencial del crecimiento urbano. Informe de la UNPF, Pag. 108.spa
dc.relation.referencesUniversidad Nacional de Colombia, UNal, Escuela del Hábitat, 2009. Mapas de amenaza, vulnerabilidad y riesgo por movimientos en masa, inundaciones ya venidas torrenciales en el Valle de Aburrá. Área Metropolitana del Valle de Aburrá, Informe interno.spa
dc.relation.referencesVan Asch Th.W.J., Van Beek L.P.H., Bogaard, T.A. 2009. The diversity in hydrological triggering systems of landslides. Proceedings of the 1st Italian Workshop on Landslides, Picarelli L., Tommasi P., Urciuoli G. & Versace P. (eds.) Rainfall-Induced Landslides: mechanisms, monitoring techniques and nowcasting models for early warning systems. Naples, 8-10 June 2009, Vol. 1.spa
dc.relation.referencesVan Beek L.P.H., van Asch TH.W.J. 2004. Regional assessment of the effects of land-use change on landslide hazard by means of physically based modeling. Natural Hazards 31: pág. 289-304.spa
dc.relation.referencesVan Westen, C.J., van Duren, I., Kruse, H.M.G., Terlien, M.T.J. 1994. GISSIZ: training package for Geographic Information System in slope instability zonation. ITC Publication, No. 5 Vol. 1, Pág. 359.spa
dc.relation.referencesVan Westen, C.J. and Terlien, M.T.J. 1996. An approach towards deterministic landslide hazard analysis in GIS.A case study from Manizales (Colombia). Earth Surface Processes and landforms, 21: 853-868.spa
dc.relation.referencesVan Westen C.J., van Asch T.W.J., Soeters R. 2006. Landslide hazard and risk zonation – why is it still so difficult?. Bull Eng Geol Env 65. Pág 167-184.spa
dc.relation.referencesVarnes, D. J., 1984. Landslide hazard zonation: a review of principles and practice. Natural Hazards, 3, UNESCO Press. Paris, 64 pp.spa
dc.relation.referencesVarnes, D.J. 1981. Slope stability problems of Circum-Pacific Region as related to mineral and energy resources, Am. Assoc. Pet. Geol. Studies Geol., 12. Pág. 489-505.spa
dc.relation.referencesVelasquez N., 2011. Simulación de sedimentos a partir de un modelo conceptual distribuido no lineal. MSc Thesis. Universidad Nacional de Colombia. Pag. 116.spa
dc.relation.referencesVélez, J. I., 2001. Desarrollo de un modelo hidrológico conceptual distribuido orientado a la simulación de crecidas. Valencia. Tesis Doctoral. Universidad Politécnica de Valencia.spa
dc.relation.referencesVélez, J., I., Villarraga, M., R., Álvarez, O., D., Alarcón, J., E., Quintero, F., 2004. Modelo distribuido para determinar la amenaza de deslizamiento superficial por efecto de tormentas intensas y sismos. XXI Congreso latinoamericano de hidráulica, Sao Pedro, Brasil.spa
dc.relation.referencesXie M., Esaki T., Cai M., 2004. A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environmental Geology 46. Pág. 840-850.spa
dc.relation.referencesWang, G., Sassa, K., 2003. Pore pressure generation and movement of rainfall-induced landslides: effects of grain size and fine particle content. Engineering Geology Vol. 69, Pág.109-125.spa
dc.relation.referencesWang, F., Shibata, H. 2007. Influence of sol permeability on rainfall-induced flowslides in laboratory flume tests. Can. Geotech. Journal 44. Pág. 1128-1136.spa
dc.relation.referencesWieczorek G.F., Guzzetti F. 2000. A review of rainfall thresholds for triggering landslides, Mediterranean Storms, Proceeding of the EGS Plinius Conference, Maratea, Italia.spa
dc.relation.referencesWu, W., Sidle, R. C., 1995.a distributed slope stability model for steep forested basins. Water resources Research, vol. 31, No. 8. Pág. 2097-2110.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembDeslizamientos de tierraspa
dc.subject.lembModelos matemáticosspa
dc.subject.proposalLandslideseng
dc.subject.proposalRainfalleng
dc.subject.proposalTropical terrainseng
dc.subject.proposalMountainous terrainseng
dc.subject.proposalTerrenos montañososspa
dc.subject.proposalTerrenos tropicalesspa
dc.subject.proposalDeslizamientosspa
dc.subject.proposalLluviaspa
dc.titleModeling shallow landslides triggered by rainfall in tropical and mountainous terrainseng
dc.title.translatedModelado de deslizamientos de tierra superficiales provocados por lluvias en terrenos tropicales y montañososspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
EDIER_ Modeling shallow landslides.pdf
Tamaño:
4.9 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: