Evaluación de bacterias fermentadoras abe de suelo Rizosférico para producción de solventes
dc.contributor.advisor | Guerrero Fajardo, Carlos Alberto | |
dc.contributor.advisor | Campos Rincon, Ivonne Maritza | |
dc.contributor.author | Castro Tibabisco , Karol Tatiana | |
dc.contributor.orcid | Castro Tibabisco, Karol Tatiana [0000000344730606] | |
dc.contributor.researchgroup | Aprovechamiento Energético de Recursos Naturales | |
dc.date.accessioned | 2025-09-16T13:14:20Z | |
dc.date.available | 2025-09-16T13:14:20Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | Este estudio tiene como objetivo evaluar la producción de solventes (acetona, butanol y etanol) mediante fermentación ABE (Acetona-Butanol-Etanol) utilizando bacterias anaerobias aisladas de suelos rizosféricos de cultivo de papa Solanum tuberosum, a su vez se usaron residuos agroindustriales para evaluar la fermentación en los aislados y en 3 cepas de referencia conocidas. Se seleccionaron, se caracterizaron varias cepas, incluyendo Clostridium beijerinckii, Clostridium sacharoperacetonicum y Clostridium acetobutylicum ATCC 824, para su capacidad de producir solventes a partir de almidones extraídos de estos residuos agrícolas. La fermentación se realizó bajo condiciones anaerobias controladas, con una duración de 120 horas, cuantificándose los productos mediante cromatografía líquida (HPLC). Los resultados mostraron que el almidón de ñame fue el sustrato que generó mayores concentraciones de butanol, alcanzando hasta 4.5 g/L en las cepas más eficientes. Las cepas aisladas mostraron ser competitivas frente a las cepas de referencia, indicando el potencial de los residuos agrícolas como fuentes sostenibles para la producción de biocombustibles. Las conclusiones destacan la viabilidad de estos procesos en el contexto de la economía circular y la sostenibilidad industrial (Texto tomado de la fuente). | eng |
dc.description.abstract | This study aims to evaluate the production of solvents (acetone, butanol, and ethanol) through ABE (Acetone-Butanol-Ethanol) fermentation using anaerobic bacteria isolated from rhizospheric soils of potato crops (Solanum tuberosum). Additionally, agro-industrial residues were used to assess fermentation in the isolated strains as well as in three known reference strains. Several strains, including Clostridium beijerinckii, Clostridium saccharoperacetonicum, and Clostridium acetobutylicum, were selected and characterized for their ability to produce solvents from starches extracted from these agricultural residues. The fermentation was carried out under controlled anaerobic conditions for 120 hours, with the products being quantified using High-Performance Liquid Chromatography (HPLC). The results showed that yam starch was the substrate that produced the highest concentrations of butanol, reaching up to 4.5 g/L in the most efficient strains. The isolated strains demonstrated competitiveness compared to the reference strains, indicating the potential of agricultural residues as sustainable sources for biofuel production. The conclusions highlight the feasibility of these processes in the context of the circular economy and industrial sustainability. | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ciencias - Microbiología | |
dc.description.methods | El área de estudio se desarrolló en la Unidad Agroambiental el Vergel en el municipio de Facatativá Cundinamarca con las coordenadas de 4°52'01.6"N 74°20'28.8"W perteneciente a la Universidad de Cundinamarca, esta finca ha sido usada para cultivo de papa como actividad académica y de investigación. El área usada para cultivo de papa fue la base del muestreo realizado. | |
dc.description.researcharea | Biotecnología: Aprovechamiento de recursos | |
dc.format.extent | 144 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88790 | |
dc.language.iso | spa | |
dc.publisher | Univesridad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.relation.references | Abubackar, H. N., Veiga, M. C., & Kennes, C. (2018). Biobutanol production from starch-based feedstocks: Recent advances and future perspectives. *Bioengineered, 9*(1), 321–336. [https://doi.org/10.1080/21655979.2018.1459875](https://doi.org/10.1080/21655979.2018.1459875) | |
dc.relation.references | Adegboye, M. F., Ojuederie, O. B., Talia, P., & Babalola, O. O. (2021). Bioprospecting of microbial strains for biofuel production: Metabolic engineering, applications, and challenges. *Biotechnology for Biofuels*. [https://doi.org/10.1186/s13068-021-01999-4](https://doi.org/10.1186/s13068-021-01999-4) | |
dc.relation.references | Alam, M. S., & Tanveer, M. S. (2020). *Bioreactors*. \[Editorial]. | |
dc.relation.references | Al-Shorgani, N. K., Kalil, M. S., Yusoff, W. M. W., & Hamid, A. A. (2019). Acetone–butanol–ethanol production by *Clostridium acetobutylicum* using different carbon sources. *Industrial Crops and Products, 132*, 239–248. [https://doi.org/10.1016/j.indcrop.2019.02.020](https://doi.org/10.1016/j.indcrop.2019.02.020) | |
dc.relation.references | Aristizábal, J., Sánchez, T., & Mejía Lorío, D. (2007). *Guía técnica para producción y análisis de yuca*. Universidad Nacional de Colombia. | |
dc.relation.references | Barea, J.-M., Pozo, M. J., & Azcón, R. (2005). Microbial co-operation in the rhizosphere. *Journal of Experimental Botany, 56*(416), 1761–1778. [https://doi.org/10.1093/jxb/eri217](https://doi.org/10.1093/jxb/eri217) | |
dc.relation.references | Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. *Trends in Plant Science, 17*(8), 478–486. [https://doi.org/10.1016/j.tplants.2012.04.001](https://doi.org/10.1016/j.tplants.2012.04.001) Bhowmick, | |
dc.relation.references | Bhowmick, G. D., Saha, R. K., & Ramkrishna, S. (2017). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products. *Reviews in Environmental Science and Biotechnology, 16*(2), 289–329. [https://doi.org/10.1007/s11157-017-9436-4](https://doi.org/10.1007/s11157-017-9436-4) | |
dc.relation.references | BP. (2022). *Statistical Review of World Energy 2022*. British Petroleum. | |
dc.relation.references | Cárdenas, D. P., Pulido, C., Aragón, Ó. L., Aristizábal, F. A., Suárez, Z. R., & Montoya, D. (2007). Evaluación de la producción de 1,3-propanodiol por cepas nativas de *Clostridium* sp. mediante fermentación a partir de glicerol USP y glicerol industrial subproducto de biodiésel. *Revista Colombiana de Ciencias Químico-Farmacéuticas, 36*(2), 215–224. | |
dc.relation.references | Collas, F., Viamajala, S., Yang, S. T., & Buitelaar, R. M. (2012). Enzymatic hydrolysis of cassava starch for biobutanol production by *Clostridium beijerinckii*. *Bioresource Technology, 118*, 149–157. [https://doi.org/10.1016/j.biortech.2012.05.042](https://doi.org/10.1016/j.biortech.2012.05.042) | |
dc.relation.references | Corrales, L. C., Antolinez Romero, D. M., & Bohórquez Macías, J. A. (2015). Anaerobic bacteria: Processes they perform and their contribution to soil ecology. *Anaerobe, 33*, 1–7. [https://doi.org/10.1016/j.anaerobe.2015.04.009](https://doi.org/10.1016/j.anaerobe.2015.04.009) | |
dc.relation.references | Cortazar, S. M., Wolf, E. D., & Armendáriz González, I. (2013). Effect of plant density on growth and yield in “Barraganete” plantain. *Plant Ecology*, *214*(1), 25–36. [https://doi.org/10.1007/s11258-012-0122-1](https://doi.org/10.1007/s11258-012-0122-1) | |
dc.relation.references | Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? *FEMS Microbiology Ecology, 72*(3), 313–327. [https://doi.org/10.1111/j.1574-6941.2010.00860.x](https://doi.org/10.1111/j.1574-6941.2010.00860.x) | |
dc.relation.references | Durre, P. (2007). *Handbook on Clostridia*. CRC Press. | |
dc.relation.references | Ewing, T. A., Nourse, N., van Lint, M., van Haveren, J., Hugenholtz, J., & van Es, D. S. (2022). Fermentation for the production of biobased chemicals in a circular economy: A perspective for 2022–2050. *Green Chemistry, 24*(6), 2915–2933. [https://doi.org/10.1039/D1GC04364H](https://doi.org/10.1039/D1GC04364H) | |
dc.relation.references | FAO. (2015). *Bioenergy and Food Security: The BEFS Analytical Framework*. Food and Agriculture Organization of the United Nations. | |
dc.relation.references | Forte, H., & García, N. (2018). Efecto de diferentes fuentes de carbono sobre el crecimiento de un aislado de *Rhizobium* sp. S11. *Cultivos Tropicales, 39*(2), 101–108. | |
dc.relation.references | Geng, H., & Jiang, R. (2015). cAMP receptor protein (CRP)–mediated resistance/tolerance in bacteria: Mechanism and applications in biotechnology. *Applied Microbiology and Biotechnology, 99*(12), 5359–5371. [https://doi.org/10.1007/s00253-015-6545-7](https://doi.org/10.1007/s00253-015-6545-7) | |
dc.relation.references | Global Carbon Budget. (2023). *Global Carbon Project*. [https://doi.org/10.18160/GCP-2023](https://doi.org/10.18160/GCP-2023) | |
dc.relation.references | Gu, Y., Hu, S., Chen, J., Shao, L., He, H., Yang, Y., … Jiang, W. (2009). Ammonium acetate enhances solvent production by *Clostridium*. *Journal of Industrial Microbiology & Biotechnology, 36*(10), 1395–1402. [https://doi.org/10.1007/s10295-009-0611-0](https://doi.org/10.1007/s10295-009-0611-0) | |
dc.relation.references | Guancha, M. A., Realpe, M. D., & García, J. C. (2021). Obtención de polihidroxialcanoatos (PHA) a partir de biomasa lignocelulósica: Una revisión. *Ingeniería y Competitividad, 23*(1), 65–78. [https://doi.org/10.25100/iyc.v23i1.12056](https://doi.org/10.25100/iyc.v23i1.12056) | |
dc.relation.references | Guo, M., Shi, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. *Renewable and Sustainable Energy Reviews, 42*, 712–725. [https://doi.org/10.1016/j.rser.2014.10.013](https://doi.org/10.1016/j.rser.2014.10.013) | |
dc.relation.references | Heap, J. (2023). Ingeniería cromosómica de la producción inducible de isopropanol-butanol-etanol en *Clostridium acetobutylicum*. *Fronteras en Bioingeniería y Biotecnología, 11*, 994. [https://doi.org/10.3389/fbioe.2023.994](https://doi.org/10.3389/fbioe.2023.994) | |
dc.relation.references | IRENA. (2023). *Global Energy Transformation: A Roadmap to 1.5 °C*. International Renewable Energy Agency. | |
dc.relation.references | Jang, Y., & Etsahan, V. (2016). Ingeniería metabólica de *Clostridium acetobutylicum* para mejorar la producción de butanol. *Biotechnology Advances, 34*(4), 483–495. [https://doi.org/10.1016/j.biotechadv.2016.04.001](https://doi.org/10.1016/j.biotechadv.2016.04.001) | |
dc.relation.references | Jung, H. M., Moo-Young, J., & Min, K. Y. (2015). Metabolic engineering of *Klebsiella pneumoniae* for the production of cis,cis-muconic acid. *Applied Microbiology and Biotechnology, 99*(19), 7991–8000. [https://doi.org/10.1007/s00253-015-6740-1](https://doi.org/10.1007/s00253-015-6740-1) | |
dc.relation.references | Kamla, M., Capareda, S. C., Kamboj, R. B., Malik, S., Arya, S., & Bishnoi, D. K. (2024). Biofuels production: A review on sustainable alternatives to traditional fuels and energy sources. *Fuels, 4*(1), 123–145. [https://doi.org/10.3390/fuels4010010](https://doi.org/10.3390/fuels4010010) | |
dc.relation.references | Krueger, C. L., Radetski, C. M., Bendia, A. G., Castro-Silva, M. D. L., Rambo, C. R., & Lima, A. S. (2012). Bioconversion of cassava starch by-product into polyhydroxyalkanoates by *Bacillus* and related bacteria. *Bioprocess and Biosystems Engineering, 35*(2), 277–287. [https://doi.org/10.1007/s00449-011-0610-1](https://doi.org/10.1007/s00449-011-0610-1) | |
dc.relation.references | Lee, S. Y., Kim, H. J., & Park, J. H. (2023). Advances in metabolic engineering of *Clostridium* species for butanol production. *Biotechnology Advances, 63*, 108116. [https://doi.org/10.1016/j.biotechadv.2023.108116](https://doi.org/10.1016/j.biotechadv.2023.108116) | |
dc.relation.references | Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by clostridia. *Biotechnology and Bioengineering, 101*(2), 209–228. [https://doi.org/10.1002/bit.21901](https://doi.org/10.1002/bit.21901) | |
dc.relation.references | Li, S., Yang, X., Yang, S., Zhu, Y., & Yan, Y. (2013). *Clostridium*: A promising biofuel producer. *Advances in Applied Microbiology, 82*, 91–118. [https://doi.org/10.1016/B978-0-12-407672-3.00003-8](https://doi.org/10.1016/B978-0-12-407672-3.00003-8) | |
dc.relation.references | Lütke-Eversloh, T., & Bahl, H. (2011). Metabolic engineering of *Clostridium acetobutylicum*: Recent advances to improve butanol production. *Current Opinion in Biotechnology, 22*(5), 634–639. [https://doi.org/10.1016/j.copbio.2011.05.005](https://doi.org/10.1016/j.copbio.2011.05.005) | |
dc.relation.references | Mahish, P. K., Kumar Verma, D., Verma, K., Arora, C., & Otero, P. (2024). Microbial bioconversion of food waste to bio-fertilizers. *Sustainable Food Technology, 15*, 45–59. [https://doi.org/10.1016/j.suft.2024.02.002](https://doi.org/10.1016/j.suft.2024.02.002) | |
dc.relation.references | Md. Saiful Alam, & Tanveer, S. (2020). Diseño sostenible y aplicaciones industriales en la mitigación de emisiones de gases de efecto invernadero. *Journal of Sustainable Engineering, 12*(4), 215–232. | |
dc.relation.references | Meléndez, J. R., Velásquez-Rivera, J., Salous, A. E., & Peñalver, A. (2021). Gestión para la producción de biocombustibles de segunda generación: Revisión del escenario tecnológico y económico. *Ingeniería Energética, 42*(3), 89–108. | |
dc.relation.references | Montgomery, D. C. (2017). *Design and Analysis of Experiments* (9th ed.). Wiley. | |
dc.relation.references | Monica, P., Sánchez, T., Ceballos, H., Morante, N., & Dominique, D. (2016). Diversificación de los almidones de yuca y sus posibles usos en la industria alimentaria. *Revista Colombiana de Biotecnología, 18*(1), 23–38. | |
dc.relation.references | Nasser, N. K., Shorgani, A., Kalil, M. S., Mohtar, W., & Yusoff, W. M. W. (2013). Fermentation of sago starch to biobutanol in a batch culture using *Clostridium saccharoperbutylacetonicum*. *Annals of Microbiology, 63*(4), 1649–1654. [https://doi.org/10.1007/s13213-012-0592-8](https://doi.org/10.1007/s13213-012-0592-8) | |
dc.relation.references | Naik, S., Goud, V. V., & Prasant, K. (2010). Production of first and second generation biofuels: A comprehensive review. *Renewable and Sustainable Energy Reviews, 14*(2), 578–597. [https://doi.org/10.1016/j.rser.2009.07.017](https://doi.org/10.1016/j.rser.2009.07.017) | |
dc.relation.references | Ntaikou, I., Antonopoulou, G., & Lyberatos, G. (2022). Recent developments in ABE fermentation: Efforts toward industrial sustainability. *Bioresource Technology, 352*, 127075. [https://doi.org/10.1016/j.biortech.2022.127075](https://doi.org/10.1016/j.biortech.2022.127075) | |
dc.relation.references | Okabe, S., Oshiki, M., Shaoyu, C., Xi, W., Nukada, T., Haozhe, Z., … & Satoshi, O. (2023). Mecanismos de tolerancia al oxígeno y desintoxicación en bacterias anaeróbicas oxidantes de amonio (anammox). *Nature Microbiology, 8*, 710–718. [https://doi.org/10.1038/s41564-023-01392-x](https://doi.org/10.1038/s41564-023-01392-x) | |
dc.relation.references | Overend, R. P. (2000). Thermochemical conversion of biomass. *Fuel Processing Technology, 65–66*, 149–155. [https://doi.org/10.1016/S0378-3820(00)00137-1](https://doi.org/10.1016/S0378-3820%2800%2900137-1) | |
dc.relation.references | Patel, J. P., Patel, Y. S., & Panchal, H. K. (2022). Isolation and characterization of plant growth-promoting rhizospheric soil bacteria. *International Journal of Novel Research and Development, 7*(3), 14–23. | |
dc.relation.references | Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. *Nature Reviews Microbiology, 11*, 789–799. [https://doi.org/10.1038/nrmicro3109](https://doi.org/10.1038/nrmicro3109) | |
dc.relation.references | Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2006). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. *Bioprocess and Biosystems Engineering, 28*(2), 93–102. [https://doi.org/10.1007/s00449-005-0026-x](https://doi.org/10.1007/s00449-005-0026-x) | |
dc.relation.references | Rao, A., Sathiavelu, A., & Mythili, S. (2016). Genetic engineering in biobutanol production and tolerance. *Brazilian Archives of Biology and Technology, 59*, e16160212. [https://doi.org/10.1590/1678-4324-2016160212](https://doi.org/10.1590/1678-4324-2016160212) | |
dc.relation.references | Rusănescu, C. O., Cioban, M., Rusănescu, M., & Dinculoiu, R. L. (2024). Pretreatments applied to wheat straw to obtain bioethanol. *Applied Sciences, 14*(1), 310. [https://doi.org/10.3390/app14010310](https://doi.org/10.3390/app14010310) | |
dc.relation.references | Shao, X., Babu, R., Zhang, M., Mielenz, J., Brown, S., Guss, A., & Lynd, L. R. (2011). Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of *Clostridium thermocellum*. *Applied Microbiology and Biotechnology, 92*(4), 719–727. [https://doi.org/10.1007/s00253-011-3950-7](https://doi.org/10.1007/s00253-011-3950-7) | |
dc.relation.references | Suárez-Bertoa, R., Zardini, A., & Keuken, H. (2015). Impact of ethanol-containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light-duty Test Cycle (WLTC). *Fuel, 144*, 376–383. [https://doi.org/10.1016/j.fuel.2014.12.053](https://doi.org/10.1016/j.fuel.2014.12.053) | |
dc.relation.references | Survase, S. A. (2011). Continuous and batch acetone–butanol–ethanol (ABE) fermentation using *Clostridium beijerinckii*. *Journal of Industrial Microbiology & Biotechnology, 38*(2), 267–275. [https://doi.org/10.1007/s10295-010-0801-y](https://doi.org/10.1007/s10295-010-0801-y) | |
dc.relation.references | Tiotiu, A. I., Novakova, P., Denislava, N., Chong-Neto, H. J., Novakova, S., & Krzysztof, K. (2020). Impact of air pollution on asthma outcomes. *International Journal of Environmental Research and Public Health, 17*(5), 1754. [https://doi.org/10.3390/ijerph17051754](https://doi.org/10.3390/ijerph17051754) | |
dc.relation.references | Wang, S., Huang, H., Kahnt, J., Müller, A. P., Köpke, M., & Thauer, R. K. (2020). NADP-specific electron-bifurcating \[FeFe]-hydrogenase in a functional complex with formate dehydrogenase in *Clostridium autoethanogenum*. *Journal of Bacteriology, 202*(3), e00559-19. [https://doi.org/10.1128/JB.00559-19](https://doi.org/10.1128/JB.00559-19) | |
dc.relation.references | Zhang, C., & Yang, S. T. (2009). Inhibitory effect of butyric acid on butanol fermentation by *Clostridium beijerinckii*. *Applied Microbiology and Biotechnology, 82*(5), 917–926. [https://doi.org/10.1007/s00253-009-1888-y](https://doi.org/10.1007/s00253-009-1888-y) | |
dc.relation.references | Zhao, J., Guo, L., Lu, C., & Wei, X. (2021). Optical density measurements and dry cell weight correlation for *Clostridium* species in solvent fermentation. *Microbial Cell Factories, 20*, 1–11. [https://doi.org/10.1186/s12934-021-01599-1](https://doi.org/10.1186/s12934-021-01599-1) | |
dc.relation.references | Zhao, Y., Zhang, Y., & Yang, S. T. (2019). Metabolic flux analysis and process optimization for ABE fermentation using *Clostridium beijerinckii*. *Biochemical Engineering Journal, 151*, 107319. | |
dc.relation.references | Zhang, X., & Yu, J. (2021). Fermentative production of bio-butanol: Recent progress and future prospects. *Renewable and Sustainable Energy Reviews, 150*, 111484. [https://doi.org/10.1016/j.rser.2021.111484](https://doi.org/10.1016/j.rser.2021. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | |
dc.subject.lemb | INDUSTRIA DE ALMIDONES | spa |
dc.subject.lemb | Starch industry | eng |
dc.subject.lemb | INDUSTRIA DE PRODUCTOS VEGETALES | spa |
dc.subject.lemb | Plant products industry | eng |
dc.subject.lemb | DISOLVENTES | spa |
dc.subject.lemb | Solvents | eng |
dc.subject.lemb | ACETONA | spa |
dc.subject.lemb | Acetone | eng |
dc.subject.lemb | ALCOHOL | spa |
dc.subject.lemb | Alcohol | eng |
dc.subject.lemb | FERMENTACION | spa |
dc.subject.lemb | Fermentation | eng |
dc.subject.proposal | Fermentacion ABE | spa |
dc.subject.proposal | Bacterias anaerobias | spa |
dc.subject.proposal | Anaerobias facultativas | spa |
dc.subject.proposal | Fuente de Carbono | spa |
dc.subject.proposal | Almidones | spa |
dc.subject.proposal | Aislamiento | spa |
dc.subject.proposal | Papa | spa |
dc.subject.proposal | Arracacha | spa |
dc.subject.proposal | Ñame | spa |
dc.subject.proposal | ABE fermentation | eng |
dc.subject.proposal | Anaerobic bacteria | eng |
dc.subject.proposal | Carbon source | eng |
dc.subject.proposal | Starches | eng |
dc.subject.proposal | Isolation | eng |
dc.subject.proposal | Potato | eng |
dc.subject.proposal | Yam | eng |
dc.title | Evaluación de bacterias fermentadoras abe de suelo Rizosférico para producción de solventes | spa |
dc.title.translated | Evaluation of ABE-fermenting bacteria from rhizospheric soil for solvent production | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis MSc KTCT .pdf
- Tamaño:
- 4.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: