Modelación conjunta de datos longitudinales y de sobrevivencia: una aplicación a datos de biomarcadores en pacientes con Covid-19

dc.contributor.advisorGonzález García, Luz Meryspa
dc.contributor.authorChaparro Martínez, Diego Alejandrospa
dc.date.accessioned2023-10-05T20:26:23Z
dc.date.available2023-10-05T20:26:23Z
dc.date.issued2023-10-05
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl siguiente documento presenta una alternativa para el modelamiento de datos de sobrevivencia, con covariables tiempo-dependientes de carácter endógeno, donde modelos clásicos como el modelo extendido de Cox no son apropiados, ya que no tienen en cuenta la estructura de asociación de la covariable endógena con la ocurrencia del evento. La alternativa bajo la cual se modelan las covariables tiempo-dependientes endógenas, en los modelos de sobrevivencia, se conoce como modelamiento conjunto para datos longitudinales y de sobrevivencia, metodología con aportes recientes que han optimizado el proceso de estimación de parámetros. Este trabajo tiene como objetivo explorar la metodología de modelamiento conjunto para datos longitudinales y de sobrevivencia, lo que hace de este una guía para su uso. Finalmente, para verificar los resultados se desarrolla una aplicación a datos clínicos de biomarcadores, en el contexto de la pandemia del Covid-19, en el que se observan las virtudes del método. (Texto tomado de la fuente).spa
dc.description.abstractThis document presents an alternative for modeling survival data, with endogenous time-dependent covariables, where classical models such as the extended Cox model are not appropriate, since they do not take into account the association structure of the endogenous covariable with the occurrence of the event. The alternative under which the endogenous time-dependent covariables are modeled, in the survival models, it is known as joint modeling for longitudinal and survival data, methodology with recent contributions that have optimized the parameter estimation process. The aim of this document is to explore the joint modeling methodology for longitudinal and survival data, making it a guide for its use. Finally, to verify the results, an application to clinical biomarker data is developed, in the context of the Covid-19 pandemic, in which the virtues of the method are observed.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaEstadística aplicadaspa
dc.format.extentxii, 84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84775
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedBiremespa
dc.relation.referencesAbers, M. S., Delmonte, O. M., Ricotta, E. E., Fintzi, J., Fink, D. L., de Jesus, A. A. A., . . . others (2021). An immune-based biomarker signature is associated with mortality in covid-19 patients. Journal of Clinical Investigations insight, 6 (1).spa
dc.relation.referencesAndersen, P. K., y Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. The Annals of Statistics, 1100–1120.spa
dc.relation.referencesBondell, H. D., Krishna, A., y Ghosh, S. K. (2010). Joint variable selection for fixed and random effects in linear mixed-effects models. Biometrics, 66 (4), 1069–1077.spa
dc.relation.referencesCopaescu, A., James, F., Mouhtouris, E., Vogrin, S., Smibert, O. C., Gordon, C. L., . . . Trubiano, J. A. (2021). The role of immunological and clinical biomarkers to predict clinical covid-19 severity and response to therapy—a prospective longitudinal study. Frontiers in Immunology, 12 , 646095.spa
dc.relation.referencesCox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34 (2), 187–202.spa
dc.relation.referencesCox, D. R., y Hinkley, D. V. (1979). Theoretical statistics. CRC Press.spa
dc.relation.referencesDavidian, M., Diggle, P., Follmann, D., Louis, T. A., Taylor, J., Zeger, S., . . . others (2004). Discussion of joint modeling longitudinal and survival data. Statistica Sinica, 14 (3), 621–624.spa
dc.relation.referencesDavis, C. S. (2002). Statistical methods for the analysis of repeated measurements (Inf.Téc.). New York: Springer.spa
dc.relation.referencesDempster, A. (1977). Maximum likelihood from incomplete data via em algorithm. Journal Royal Statistics Society B., 39 (1), 1–38.spa
dc.relation.referencesFaucett, C. L., y Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Statistics in medicine, 15 (15), 1663–1685.spa
dc.relation.referencesFitzmaurice, G. M., Laird, N. M., y Ware, J. H. (2012). Applied longitudinal analysis (Vol. 998). Boston, MA: John Wiley & Sons.spa
dc.relation.referencesFreedman, D. A. (2008). Survival analysis: A primer. The American Statistician, 62 (2), 110–119.spa
dc.relation.referencesGrambsch, P. M., y Therneau, T. M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81 (3), 515–526.spa
dc.relation.referencesGuan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., . . . others (2020). Clinical characteristics of coronavirus disease 2019 in china. New England Journal of Medicine, 382 (18), 1708–1720.spa
dc.relation.referencesJones, R. H., y Boadi-Boateng, F. (1991). Unequally spaced longitudinal data with AR (1) serial correlation. Biometrics, 47 , 161–175.spa
dc.relation.referencesKalbfleisch, J. D., y Prentice, R. L. (2011). The statistical analysis of failure time data. Hoboken, Nwe Jersey; John Wiley & Sons.spa
dc.relation.referencesKlein, J. P., y Moeschberger, M. L. (2003). Survival analysis: techniques for censored and truncated data (Vol. 1230). Springer.spa
dc.relation.referencesLasso, G., Khan, S., Allen, S. A., Mariano, M., Florez, C., Orner, E. P., . . . others (2022). Longitudinally monitored immune biomarkers predict the timing of Covid19 outcomes. PLoS Computational Biology, 18 (1), e1009778.spa
dc.relation.referencesLittle, R. J., y Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). Hoboken, New Jersey; John Wiley & Sons.spa
dc.relation.referencesMartinussen, T. (2009). The frailty model. l. duchateau and p. janssen (2008). New York: Springer, 978-0-387-72834-6 (hardback). Standford, California: Wiley Online Library.spa
dc.relation.referencesMiller, A. (2002). Subset selection in regression. Boca Raton, Florida: Chapman and Hall/CRC.spa
dc.relation.referencesNobre, J., y Singer, J. (2007). Residual analysis for linear mixed models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 49 (6), 863–875.spa
dc.relation.referencesPonti, G., Maccaferri, M., Ruini, C., Tomasi, A., y Ozben, T. (2020). Biomarkers associated with Covid-19 disease progression. Critical Reviews in Clinical Laboratory Sciences, 57 (6), 389–399.spa
dc.relation.referencesPress, W. H., Teukolsky, S. A., Vetterling, W. T., y Flannery, B. P. (2007). Numerical recipes 3rd edition: The art of scientific computing. New York: Cambridge University Press.spa
dc.relation.referencesPáramo Hernández, J. A. (2021). Coagulación, Dímero d y Covid-19. Accedido en 20-10-2022 a https://www.covid-19.seth.es/coagulacion-dimero-d-y-covid-19/.spa
dc.relation.referencesRiley, R. S., Gilbert, A. R., Dalton, J. B., Pai, S., y McPherson, R. A. (2016). Widely used types and clinical applications of D-Dimer assay. Laboratory Medicine, 47 (2), 90–102.spa
dc.relation.referencesRizopoulos, D. (2010). Jm: An r package for the joint modeling of longitudinal and time-to-event data. Journal of Statistical Software, 35 , 1–33.spa
dc.relation.referencesRizopoulos, D. (2012a). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive gaussian quadrature rule. Computational Statistics & Data Analysis, 56 (3), 491–501.spa
dc.relation.referencesRizopoulos, D., Verbeke, G., y Lesaffre, E. (2009). Fully exponential laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71 (3), 637–654.spa
dc.relation.referencesRizopoulos, D., Verbeke, G., y Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika, 95 (1), 63–74.spa
dc.relation.referencesRizopoulos, D., Verbeke, G., y Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics, 66 (1), 20–29.spa
dc.relation.referencesRuppert, D., Wand, M. P., y Carroll, R. J. (2003). Semiparametric regression (n.o 12). Cambridge: Cambridge University Press.spa
dc.relation.referencesSahu, S. K., Dey, D. K., Aslanidou, H., y Sinha, D. (1997). A Weibull regression model with Gamma frailties for multivariate survival data. Lifetime data analysis, 3, 123–137.spa
dc.relation.referencesSelf, S., y Pawitan, Y. (1992). Modeling a marker of disease progression and onset of disease. AIDS Epidemiology: Methodological Issues, 34 , 231–255.spa
dc.relation.referencesSiddiqi, H. K., y Mehra, M. R. (2020). Covid-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. The Journal of Heart and Lung Transplantation, 39 (5), 405–407.spa
dc.relation.referencesWang, Y., y Taylor, J. M. G. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96 (455), 895–905.spa
dc.relation.referencesWaternaux, C., Laird, N. M., y Ware, J. H. (1989). Methods for analysis of longitudinal data: blood-lead concentrations and cognitive development. Journal of the American Statistical Association, 84 (405), 33–41.spa
dc.relation.referencesWulfsohn, M. S., y Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 330–339.spa
dc.relation.referencesZhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., . . . others (2020). Clinical course and risk factors for mortality of adult inpatients with covid-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062.spa
dc.relation.referencesLaMotte, L. R. (2007). A direct derivation of the reml likelihood function. Statistical Papers, 48 (2), 321–327.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.decsBiomarcadoresspa
dc.subject.decsBiomarkerseng
dc.subject.decsCOVID-19/epidemiologíaspa
dc.subject.decsCOVID-19/epidemiologyeng
dc.subject.proposalBiomarcadoresspa
dc.subject.proposalCovid-19spa
dc.subject.proposalModelación conjuntaspa
dc.subject.proposalModelos longitudinalesspa
dc.subject.proposalModelos de sobrevivenciaspa
dc.subject.proposalBiomarkerseng
dc.subject.proposalEndogenous covariableseng
dc.subject.proposalJoint modelingeng
dc.subject.proposalLongitudinal modelseng
dc.subject.proposalSurvival modelseng
dc.subject.proposalTime-dependent covariableseng
dc.subject.proposalCovariables endógenasspa
dc.subject.proposalCovariables tiempo-dependientesspa
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.titleModelación conjunta de datos longitudinales y de sobrevivencia: una aplicación a datos de biomarcadores en pacientes con Covid-19spa
dc.title.translatedJoint modeling of longitudinal and survival data: an application to biomarker data in patients with Covid-19eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026577391.2023.pdf
Tamaño:
1.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: