Mechanobiological approach for skeletal muscle adaptation

dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.advisorRamírez Martínez, Angélica María
dc.contributor.advisorRöhrle, Oliver
dc.contributor.authorVillota Narváez, Yesid Alexis
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2022-07-22T15:59:36Z
dc.date.available2022-07-22T15:59:36Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractSkeletal muscle is the most adaptive tissue in the human body. Its adaptation includes changes in shape and size, changes at the organelle function and distribution inside muscle cells, and changes at the molecular scale. Macroscopic characteristics such as size and strength, are related to the cellular scale via protein content in myofibrils, which are the series arrangement of units that generate force (sarcomeres); at the organelle scale, adaptation occurs in the mytochondria content, as well as sarcoplasmic reticulum function; microscopic characteristics at the molecular scale are related to the type of protein molecules that myofibrils contain, the type of molecules include a variety of myosin heavy and light chains. This adaptation processes are the outcome of stimulus like diet, hormone levels, and physical activity. The last one will be particularly important for the aim of this thesis, which is the modeling of the evolution of the characteristics of muscle tissue under the effects of personalized training protocols, i.e. physical activity.eng
dc.description.abstractEl músculo esquelético es el tejido más adaptable del cuerpo humano. Su adaptación incluye cambios en la forma y el tamaño, cambios en la función y distribución de los organelos dentro de las células musculares y cambios a escala molecular. Las características macroscópicas, como el tamaño y la fuerza, están relacionadas con la escala celular a través del contenido de proteínas en las miofibrillas, que son la disposición en serie de las unidades que generan la fuerza (sarcómeros); a escala de los organelos, la adaptación se produce en el contenido de las mitocondrias, así como en la función del retículo sarcoplásmico; las características microscópicas a escala molecular están relacionadas con el tipo de moléculas de proteínas que contienen las miofibrillas. El tipo de moléculas incluye una variedad de cadenas pesadas y ligeras de miosina. Los procesos de adaptación son el resultado de estímulos como la dieta, los niveles hormonales y la actividad física. Este último será especialmente importante para el objetivo de esta tesis, que es el modelamiento de la evolución de las características del tejido muscular bajo los efectos de protocolos de entrenamiento personalizados, es decir, la actividad física. (Texto tomado de la fuente)spa
dc.description.abstractDer Skelettmuskel ist das anpassungsf¨ahigste Gewebe im menschlichen K¨orper. Zu seiner Anpassung geh¨oren Ver¨anderungen in Form und Gr¨oße, Ver¨anderungen der Organellenfunktion und der Verteilung innerhalb der Muskelzellen sowie Ver¨anderungen auf molekularer Ebene. Makroskopische Merkmale wie Gr¨oße und St¨arke h¨angen mit der zellul¨aren Skala ¨uber den Proteingehalt in den Myofibrillen zusammen, d.h. der Reihenanordnung von Einheiten, die Kraft erzeugen (Sarkomere); auf der Organellenskala erfolgt die Anpassung im Mytochondriengehalt sowie in der Funktion des sarkoplasmatischen Retikulums; mikroskopische Merkmale auf der molekularen Skala h¨angen mit der Art der Proteinmolek¨ule zusammen, die die Myofibrillen enthalten, wobei die Art der Molek¨ule eine Vielzahl von schweren und leichten Myosinketten umfasst. Diese Anpassungsprozesse sind das Ergebnis von Reizen wie Ern¨ahrung, Hormonspiegel und k¨orperlicher Aktivit¨at. Letzteres wird f¨ur das Ziel dieser Arbeit besonders wichtig sein, n¨amlich die Modellierung der Entwicklung der Eigenschaften des Muskelgewebes unter den Auswirkungen personalisierter Trainingsprotokolle, d.h. k¨orperlicher Aktivit¨at.deu
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsModelamiento Computacionalspa
dc.description.researchareaComputational Modeling of Mechanobiological Systemsspa
dc.format.extentx, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81728
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesMounier, Y ; Holy, X ; Stevens, L: Compared properties of the contractile system of skinned slow and fast rat muscle fibres. En: Pflügers Archiv 415 (1989), Nr. 2, p. 136-141spa
dc.relation.referencesNielsen, Søren ; Scheele, Camilla ; Yfanti, Christina ; ˚ Akerström , Thorbjörn ; Nielsen, Anders R. ; Pedersen, Bente K. ; Laye, Matthew: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. En: The Journal of physiology 588 (2010), Nr. 20, p. 4029-4037spa
dc.relation.referencesNorthrop, Jeffrey P. ; Ho, Steffan N. ; Chen, Lei ; Thomas, Daryl J. ; Timmerman, Luika A. ; Nolan, Garry P. ; Admon, Arie ; Crabtree, Gerald R.: NF-AT components define a family of transcription factors targeted in T-cell activation. En: Nature 369 (1994), Nr. 6480, p. 497-502spa
dc.relation.referencesOgasawara, Riki ; Akimoto, Takayuki ; Umeno, Tokushi ; Sawada, Shuji ; Hamaoka, Takafumi ; Fujita, Satoshi: MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. En: Physiological genomics 48 (2016), Nr. 4, p. 320-324spa
dc.relation.referencesPaddon-Jones, Douglas ; Leveritt, Michael ; Lonergan, Andrew ; Abernethy, Peter: Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity. En: European journal of applied physiology 85 (2001), Nr. 5, p. 466-471spa
dc.relation.referencesPadykula, HELEN A. ; Gauthier, GF: Morphological and cytochemical characteristics of fiber types in normal mammalian skeletal muscle. En: Exploratory Concepts in Muscular Dystrophy and Related Disorders Vol. 147. Excerpta Medica Foundation Amsterdam, 1967, p. 117-128spa
dc.relation.referencesPandiyan, Balamurugan ; Merrill, Stephen J. ; Di Bari, Flavia ; Antonelli, Alessandro ; Benvenga, Salvatore: A patient-specific treatment model for Graves’ hyperthyroidism. En: Theoretical Biology and Medical Modelling 15 (2018), Nr. 1, p. 1spa
dc.relation.referencesPernelle, Jean-Jacques ; Chafey, Philippe ; Lognonne, Jean-Luc ; Righetti, Pier G. ; Bosisio, Adriana B. ; Wahrmann, Juan P.: High-resolution twodimensional electrophoresis of myofibrillar proteins with immobilized pH gradients. En: Electrophoresis 7 (1986), Nr. 4, p. 159-165spa
dc.relation.referencesPeter, James B. ; Barnard, R J. ; Edgerton, V R. ; Gillespie, Cynthia A. ; Stempel, Kerstin E.: Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. En: Biochemistry 11 (1972), Nr. 14, p. 2627-2633spa
dc.relation.referencesPette, D ; Staron, RS: Molecular basis of the phenotypic characteristics of mammalian muscle fibres. En: Ciba Foundation Symposium Vol. 138, 1988, p. 22-34spa
dc.relation.referencesPette, Dirk ; Schnez, Ursula: Myosin light chain patterns of individual fast and slow-twitch fibres of rabbit muscles. En: Histochemistry 54 (1977), Nr. 2, p. 97-107spa
dc.relation.referencesPette, Dirk ; Staron, Robert S.: Cellular and molecular diversities of mammalian skeletal muscle fibers. En: Reviews of Physiology, Biochemistry and Pharmacology, Volume 116. Springer, 1990, p. 1-76spa
dc.relation.referencesPette, Dirk ; Staron, Robert S.: Mammalian skeletal muscle fiber type transitions. En: International review of cytology 170 (1997), p. 143-223spa
dc.relation.referencesPette, Dirk ; Staron, Robert S.: Myosin isoforms, muscle fiber types, and transitions. En: Microscopy research and technique 50 (2000), Nr. 6, p. 500-509spa
dc.relation.referencesPollack, GERALD H.: The cross-bridge theory. En: Physiological reviews 63 (1983), Nr. 3, p. 1049-1113spa
dc.relation.referencesPowers, Scott K. ; Kavazis, Andreas N. ; DeRuisseau, Keith C.: Mechanisms of disuse muscle atrophy: role of oxidative stress. En: American journal of physiology. Regulatory, integrative and comparative physiology 288 (2005), Nr. 2, p. R337-R344. ISBN 0363-6119spa
dc.relation.referencesPsatha, Maria ; Wu, Zhiqing ; Gammie, Fiona M. ; Ratkevicius, Aivaras ; Wackerhage, Henning ; Lee, Jennifer H. ; Redpath, Thomas W. ; Gilbert, Fiona J. ; Ashcroft, George P. ; Meakin, Judith R. [u. a.]: A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. En: Journal of Magnetic Resonance Imaging 35 (2012), Nr. 3, p. 686-695spa
dc.relation.referencesRamírez, A ; Grasa, J ; Alonso, A ; Soteras, F ; Osta, R ; Muñoz , MJ ; Calvo, B: Active response of skeletal muscle: in vivo experimental results and model formulation. En: Journal of theoretical biology 267 (2010), Nr. 4, p. 546-553spa
dc.relation.referencesRandall, David ; Burggren, Warren ; French, Kathleen ; Eckert, Roger [u. a.]: Eckert animal physiology. Macmillan, 2002spa
dc.relation.referencesRao, Anjana ; Luo, Chun ; Hogan, Patrick G.: Transcription factors of the NFAT family: regulation and function. En: Annual review of immunology 15 (1997), Nr. 1, p. 707-747spa
dc.relation.referencesReed, Sarah A. ; Sandesara, Pooja B. ; Senf, Sarah M. ; Judge, Andrew R.: Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. En: The FASEB journal 26 (2012), Nr. 3, p. 987-1000spa
dc.relation.referencesRodriguez, E K. ; Hoger, A ; McCulloch, A D.: Stress-dependent finite growth in soft elastic tissues. En: Journal of biomechanics 27 (1994), Nr. 4, p. 455-67spa
dc.relation.referencesRodriguez, J. ; Vernus, B. ; Chelh, I. ; Cassar-Malek, I. ; Gabillard, J. C. ; Hadj Sassi, A. ; Seiliez, I. ; Picard, B. ; Bonnieu, A.: Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. En: Cellular and Molecular Life Sciences 71 (2014), Nr. 22, p. 4361-4371spa
dc.relation.referencesRui, Yanning ; Bai, Jianwu ; Perrimon, Norbert: Sarcomere formation occurs by the assembly of multiple latent protein complexes. En: PLoS Genetics 6 (2010), Nr. 11spa
dc.relation.referencesRusnak, Frank ; Mertz, Pamela: Calcineurin: form and function. En: Physiological reviews 80 (2000), Nr. 4, p. 1483-1521spa
dc.relation.referencesSakuma, Kunihiro ; Yamaguchi, Akihiko: Molecular mechanisms controlling skeletal muscle mass. En: Muscle cell tissue 484 (2015)spa
dc.relation.referencesSandri, Marco: Signaling in muscle atrophy and hypertrophy. En: Physiology (Bethesda, Md.) 23 (2008), Nr. 3, p. 160-70spa
dc.relation.referencesSandri, Marco ; Sandri, Claudia ; Gilbert, Alex ; Skurk, Carsten ; Calabria, Elisa ; Picard, Anne ; Walsh, Kenneth ; Schiaffino, Stefano ; Lecker, Stewart H. ; Goldberg, Alfred L.: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. En: Cell 117 (2004), Nr. 3, p. 399-412spa
dc.relation.referencesSchiaffino, Stefano ; Mammucari, Cristina: Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. En: Skeletal muscle 1 (2011), Nr. 1, p. 4spa
dc.relation.referencesSchiaffino, Stefano ; Sandri, Marco ; Murgia, Marta: Activity-dependent signaling pathways controlling muscle diversity and plasticity. En: Physiology 22 (2007), Nr. 4, p. 269-278spa
dc.relation.referencesSchiaffino, Stefano ; Serrano, AntonioL: Calcineurin signaling and neural control of skeletal muscle fiber type and size. En: Trends in pharmacological sciences 23 (2002), Nr. 12, p. 569-575spa
dc.relation.referencesSchmid, H ; Pauli, L ; Paulus, A ; Kuhl, Ellen ; Itskov, M: Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents. En: Computer methods in biomechanics and biomedical engineering 15 (2012), Nr. 5, p. 547-561spa
dc.relation.referencesScott, Wayne ; Stevens, Jennifer ; Binder-Macleod, Stuart A.: Human Skeletal Muscle Fiber Type Classifications. En: Physical Therapy 81 (2001), Nr. 11, p. 1810- 1816spa
dc.relation.referencesSeynnes, O R. ; Boer, M D. ; Narici, M V.: Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. En: Journal of Applied Physiology (2007), p. 368-373spa
dc.relation.referencesSharma, Mridula ; Juvvuna, Prasanna K. ; Kukreti, Himani ; McFarlane, Craig: Mega roles of microRNAs in regulation of skeletal muscle health and disease. En: Frontiers in physiology 5 (2014), p. 239spa
dc.relation.referencesShen, Wei H. ; Boyle, David W. ; Wisniowski, Paul ; Bade, Aashia ; Liechty, Edward A.: Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. En: Journal of Endocrinology 185 (2005), Nr. 2, p. 275-289spa
dc.relation.referencesSolaini, Giancarlo ; Baracca, Alessandra ; Lenaz, Giorgio ; Sgarbi, Gianluca: Hypoxia and mitochondrial oxidative metabolism. En: Biochimica et biophysica acta 1797 (2010), Nr. 6-7, p. 1171-7. ISBN 0005-2728spa
dc.relation.referencesSong, G ; Ouyang, G ; Bao, S: The activation of Akt/PKB signaling pathway and cell survival. En: J Cell Mol Med 9 (2005), Nr. 1, p. 59-71spa
dc.relation.referencesSooknanan, J ; Comissiong, D M G.: A mathematical model for the treatment of delinquent behaviour. En: Socio-Economic Planning Sciences 63 (2018), p. 1-10. - ISSN 0038-0121spa
dc.relation.referencesSpamer, Cornelia ; Pette, Dirk: Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle. En: Histochemistry 52 (1977), Nr. 3, p. 201-206spa
dc.relation.referencesStaron, Robert S. ; Gohlsch, Bärbel ; Pette, Dirk: Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle. En: Pflügers Archiv 408 (1987), Nr. 5, p. 444-450spa
dc.relation.referencesStaron, RS ; Hikida, RS ; Hagerman, FC: Reevaluation of human muscle fasttwitch subtypes: evidence for a continuum. En: Histochemistry 78 (1983), Nr. 1, p. 33-39spa
dc.relation.referencesStaron, RS ; Karapondo, DL ; Kraemer, WJ ; Fry, AC ; Gordon, SE ; Falkel, J E. ; Hagerman, FC ; Hikida, RS: Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. En: Journal of applied physiology 76 (1994), Nr. 3, p. 1247-1255spa
dc.relation.referencesStaron, RS ; Pette, D: Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. En: Histochemistry 86 (1986), Nr. 1, p. 19-23spa
dc.relation.referencesStein, John M. ; Padykula, Helen A.: Histochemical classification of individual skeletal muscle fibers of the rat. En: American Journal of Anatomy 110 (1962), Nr. 2, p. 103-123spa
dc.relation.referencesStemmer, Paul M. ; Klee, Claude B.: Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. En: Biochemistry 33 (1994), Nr. 22, p. 6859-6866spa
dc.relation.referencesStephenson, DG ; Williams, DA: Effects of sarcomere length on the force-pCa relation in fast-and slow-twitch skinned muscle fibres from the rat. En: The Journal of Physiology 333 (1982), Nr. 1, p. 637-653spa
dc.relation.referencesStock, Matt S. ; Mota, Jacob A. ; DeFranco, Ryan N. ; Grue, Katherine A. ; Jacobo, A U. ; Chung, Eunhee ; Moon, Jordan R. ; DeFreitas, Jason M. ; Beck, Travis W.: The time course of short-term hypertrophy in the absence of eccentric muscle damage. En: European journal of applied physiology 117 (2017), Nr. 5, p. 989-1004spa
dc.relation.referencesStalhand, J. ; Klarbring, A. ; Holzapfel, G A.: Smooth muscle contraction : Mechanochemical formulation for homogeneous finite strains. En: Progress in Biophysics and Molecular Biology 96 (2008), p. 465-481spa
dc.relation.referencesStuempfle, Kristin J. ; Drury, Daniel G.: The Physiological Consequences of Bed Rest. En: Health Sciences Faculty Publications Health Sciences Journal of Exercise Physiology 6 (2007), Nr. 103, p. 32-41. ISSN 1073-4449spa
dc.relation.referencesSuetta, Charlotte ; Hvid, Lars G. ; Justesen, Lene ; Christensen, Ulrik ; Neergaard, Kirsten ; Simonsen, Lene ; Ortenblad, Niels ; Magnusson, S P. ; Kjaer, Michael ; Aagaard, Per: Effects of aging on human skeletal muscle after immobilization and retraining. En: Journal of Applied Physiology 107 (2009), Nr. 4, p. 1172-1180spa
dc.relation.referencesSutherland, Hazel ; Jarvis, Jonathan C. ; Kwende, Martin M. ; Gilroy, Stephen J. ; Salmons, Stanley: The dose-related response of rabbit fast muscle to long-term low-frequency stimulation. En: Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 21 (1998), Nr. 12, p. 1632-1646spa
dc.relation.referencesSweeney, H L. ; Kushmerick, MJ ; Mabuchi, K ; Sreter, FA ; Gergely, J: Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. En: Journal of Biological Chemistry 263 (1988), Nr. 18, p. 9034-9039spa
dc.relation.referencesTakaza, Michael ; Moerman, Kevin M. ; Gindre, Juliette ; Lyons, Garry ; Simms, Ciaran K.: The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. En: Journal of the mechanical behavior of biomedical materials 17 (2013), p. 209-220spa
dc.relation.referencesTavi, Pasi ; Westerblad, H˚akan: The role of in vivo Ca2+ signals acting on Ca2+-calmodulin-dependent proteins for skeletal muscle plasticity. En: The Journal of physiology 589 (2011), Nr. 21, p. 5021-5031spa
dc.relation.referencesTrappe, Scott ; Gallagher, Philip ; Harber, Matthew ; Carrithers, John ; Fluckey, James ; Trappe, Todd: Single muscle fibre contractile properties in young and old men and women. En: The Journal of physiology 552 (2003), Nr. 1, p. 47-58spa
dc.relation.referencesVan Loocke, M´elanie ; Lyons, CG ; Simms, CK: Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. En: Journal of biomechanics 41 (2008), Nr. 7, p. 1555-1566spa
dc.relation.referencesVary, Thomas C.: IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis. En: American journal of physiology. Regulatory, integrative and comparative physiology 290 (2006), Nr. 2, p. R313-R321spa
dc.relation.referencesVillota-Narvaez, Yesid ; Garzon-Alvarado, Diego A. ; Ramirez-Martinez, Angelica M.: A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation. En: Biosystems (2021), p. 104355spa
dc.relation.referencesWang, Yu ; Zhou, Yanmin ; Graves, Dana T. ; Wang, Yu ; Zhou, Yanmin ; Graves, Dana T.: FOXO transcription factors: their clinical significance and regulation. En: BioMed research international 2014 (2014), Nr. Figure 1, p. 925350. ISBN 2314-6141 (Electronic)spa
dc.relation.referencesWeiss, Jeffrey A. ; Maker, Bradley N. ; Govindjee, Sanjay: Finite element implementation of incompressible, transversely isotropic hyperelasticity. En: Computer Methods in Applied Mechanics and Engineering 135 (1996), Nr. 1, p. 107 - 128. ISSN 0045-7825spa
dc.relation.referencesWesterblad, H ; Allen, DG: Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. En: The Journal of general physiology 98 (1991), Nr. 3, p. 615-635spa
dc.relation.referencesWestwood, SA ; Hudlicka, O ; Perry, SV: Phosphorylation in vivo of the P light chain of myosin in rabbit fast and slow skeletal muscles. En: Biochemical Journal 218 (1984), Nr. 3, p. 841-847spa
dc.relation.referencesWidrick, Jeffrey J. ; Trappe, Scott W. ; Costill, David L. ; Fitts, Robert H.: Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. En: American Journal of Physiology-Cell Physiology 271 (1996), Nr. 2, p. C676-C683spa
dc.relation.referencesWinter, David A.: Biomechanics and Motor Control of Human Movement. Vol. 2nd. 4. 2009. - 277 p.. ISBN 9780470549148spa
dc.relation.referencesWorld Health Organization: Global recommendations on physical activity for health. En: WHO, 2010, p.spa
dc.relation.referencesZöllner, Alexander M. ; Abilez, Oscar J. ; Böl , Markus ; Kuhl, Ellen: Stretching Skeletal Muscle: Chronic Muscle Lengthening through Sarcomerogenesis. En: PLoS ONE 7 (2012), Nr. 10spa
dc.relation.referencesAbbott, Karen L. ; Friday, Bret B. ; Thaloor, Deepa ; Murphy, TJ ; Pavlath, Grace K.: Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. En: Molecular biology of the cell 9 (1998), Nr. 10, p. 2905-2916spa
dc.relation.referencesAdams, Gregory R. ; McCue, Samuel A.: Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. En: Journal of Applied Physiology 84 (1998), Nr. 5, p. 1716-1722spa
dc.relation.referencesAltan, Ekin ; Zöllner, Alexander ; Avci, Okan ; Röhrle, Oliver: Towards modelling skeletal muscle growth and adaptation. En: Pamm 16 (2016), Nr. 1, p. 921-924. ISSN 16177061spa
dc.relation.referencesAndersen, Per ; Henriksson, Jan: Training induced changes in the subgroups of human type II skeletal muscle fibres. En: Acta physiologica scandinavica 99 (1977), Nr. 1, p. 123-125spa
dc.relation.referencesBarany, Michael: ATPase activity of myosin correlated with speed of muscle shortening. En: The Journal of general physiology 50 (1967), Nr. 6, p. 197-218spa
dc.relation.referencesBarnard, R J. ; Edgerton, V R. ; Furukawa, TETSUO ; Peter, JB: Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. En: American Journal of Physiology-Legacy Content 220 (1971), Nr. 2, p. 410-414spa
dc.relation.referencesBartoo, Marc L. ; Popov, Viktor I. ; Fearn, Lisa A. ; Pollack, Gerald H.: Active tension generation in isolated skeletal myofibrils. En: Journal of Muscle Research & Cell Motility 14 (1993), Nr. 5, p. 498-510spa
dc.relation.referencesBaumann, Hugo ; Cao, Kezhen ; Howald, Hans: Improved resolution with onedimensional polyacrylamide gel electrophoresis: myofibrillar proteins from typed single fibers of human muscle. En: Analytical biochemistry 137 (1984), Nr. 2, p. 517-522spa
dc.relation.referencesBickel, C S. ; Bickel, C S. ; Slade, Jill ; Slade, Jill ; Mahoney, Ed ; Mahoney, Ed ; Haddad, Fadia ; Haddad, Fadia ; Dudley, Gary a. ; Dudley, Gary a. ; Adams, Gregory R. ; Adams, Gregory R. ; Scott, C ; Scott, C: Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. En: Journal of Applied Physiology 4560 (2005), p. 482- 488spa
dc.relation.referencesBijalwan, Ashutosh ; Patel, BP ; Marieswaran, M ; Kalyanasundaram, Dinesh: Volumetric locking free 3D finite element for modelling of anisotropic viscohyperelastic behaviour of anterior cruciate ligament. En: Journal of biomechanics 73 (2018), p. 1-8spa
dc.relation.referencesBilleter, Rudolf ; Heizmann, Claus W. ; Howald, Hans ; Jenny, Eduard: Analysis of myosin light and heavy chain types in single human skeletal muscle fibers. En: European Journal of Biochemistry 116 (1981), Nr. 2, p. 389-395spa
dc.relation.referencesBleiler, Christian ; Castañeda, Pedro P. ; Roehrle, Oliver: A microstructurallybased, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue. En: Journal of the mechanical behavior of biomedical materials 97 (2019), p. 171-186spa
dc.relation.referencesBonaldo, Paolo ; Sandri, Marco: Cellular and molecular mechanisms of muscle atrophy. En: Disease models & mechanisms 6 (2013), Nr. 1, p. 25-39. ISBN 1754-8411spa
dc.relation.referencesBonet, Javier ; Wood, Richard D.: Nonlinear continuum mechanics for finite element analysis. Cambridge university press, 1997spa
dc.relation.referencesBooth, Frank W. ; Baldwin, Kenneth M.: Muscle plasticity: energy demand and supply processes. En: Comprehensive Physiology (2010), p. 1075-1123spa
dc.relation.referencesBrocca, Lorenza ; Cannavino, Jessica ; Coletto, Luisa ; Biolo, Gianni ; Sandri, Marco ; Bottinelli, Roberto ; Pellegrino, Maria A.: The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. En: The Journal of physiology 590 (2012), Nr. 20, p. 5211-5230spa
dc.relation.referencesBrooke, Michael H. ; Kaiser, Kenneth K.: Muscle fiber types: how many and what kind? En: Archives of neurology 23 (1970), Nr. 4, p. 369-379spa
dc.relation.referencesBrooke, Michael H. ; Kaiser, Kenneth K.: Three" myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence. En: Journal of Histochemistry & Cytochemistry 18 (1970), Nr. 9, p. 670-672spa
dc.relation.referencesBrown, WE ; Salmons, S ; Whalen, RG: The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. En: Journal of Biological Chemistry 258 (1983), Nr. 23, p. 14686-14692spa
dc.relation.referencesBrown, Wendy E. ; Salmons, Stanley ; Whalen, Robert G.: Mechanisms underlying the asynchronous replacement of myosin light chain isoforms during stimulationinduced fibre-type transformation of skeletal muscle. En: FEBS letters 192 (1985), Nr. 2, p. 235-238spa
dc.relation.referencesBurke, RE ; Tsairis, P: Anatomy and innervation ratios in motor units of cat gastrocnemius. En: The Journal of physiology 234 (1973), Nr. 3, p. 749-765spa
dc.relation.referencesCalvo, B ; Ramírez, A ; Alonso, A ; Grasa, J ; Soteras, F ; Osta, R ; Munoz ~ , M J.: Passive nonlinear elastic behaviour of skeletal muscle: Experimental results and model formulation. En: Journal of Biomechanics 43 (2010), Nr. 2, p. 318-325. ISSN 0021-9290spa
dc.relation.referencesCamera, Donny M. ; Edge, Johann ; Short, Michael J. ; Hawley, John A. ; Coffey, Vernon G.: Early time course of Akt phosphorylation after endurance and resistance exercise. En: Medicine and science in sports and exercise 42 (2010), Nr. 10, p. 1843-1852spa
dc.relation.referencesCamera, Donny M. ; Ong, Jun N. ; Coffey, Vernon G. ; Hawley, John A.: Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. En: Frontiers in physiology 7 (2016), p. 87spa
dc.relation.referencesCampos, Gerson E. ; Luecke, Thomas J. ; Wendeln, Heather K. ; Toma, Kumika ; Hagerman, Fredrick C. ; Murray, Thomas F. ; Ragg, Kerry E. ; Ratamess, Nicholas A. ; Kraemer, William J. ; Staron, Robert S.: Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. En: European journal of applied physiology 88 (2002), Nr. 1, p. 50-60spa
dc.relation.referencesCastro, MJ J. ; Apple, D F. ; Hillegass, E A. ; Dudley, G A. ; Jr, DF A.: Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. En: European Journal Of Applied Physiology And Occupational Physiology 80 (1999), p. 373-378spa
dc.relation.referencesCatalanotto, Caterina ; Cogoni, Carlo ; Zardo, Giuseppe: MicroRNA in control of gene expression: an overview of nuclear functions. En: International journal of molecular sciences 17 (2016), Nr. 10, p. 1712spa
dc.relation.referencesChen, JS ; Satyamurthy, K ; Hirschfelt, LR: Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. En: Computers & structures 50 (1994), Nr. 6, p. 715-727spa
dc.relation.referencesChin, David ; Means, Anthony R.: Calmodulin: a prototypical calcium sensor. En: Trends in cell biology 10 (2000), Nr. 8, p. 322-328spa
dc.relation.referencesChin, Eva R.: Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message. En: Exercise and sport sciences reviews 38 (2010), Nr. 2, p. 76-85spa
dc.relation.referencesChin, Eva R. ; Olson, Eric N. ; Richardson, James A. ; Yang, Quan ; Humphries, Caroline ; Shelton, John M. ; Wu, Hai ; Zhu, Weiguang ; Bassel-Duby, Rhonda ; Williams, R S.: A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. En: Genes & development 12 (1998), Nr. 16, p. 2499-2509spa
dc.relation.referencesCieniewski-bernard, Caroline ; Bastide, Bruno ; Mysoet, Julien ; Dupont, Erwan: Hypoactivity Affects IGF-1 Level and PI3K / AKT Signaling Pathway in Cerebral Structures Implied in Motor Control. En: PLoS ONE 9 (2014), Nr. 9spa
dc.relation.referencesClose, R: Properties of motor units in fast and slow skeletal muscles of the rat. En: The Journal of physiology 193 (1967), Nr. 1, p. 45-55spa
dc.relation.referencesCoffey, Vernon G. ; Hawley, John a.: The Molecular Basis of Training Adaptation. En: Sports Medicine 37 (2007), Nr. 9, p. 737-763spa
dc.relation.referencesCoffey, Vernon G. ; Zhong, Zhihui ; Shield, Anthony ; Canny, Benedict J. ; Chibalin, Alexander V. ; Zierath, Juleen R. ; Hawley, John a.: Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. En: FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20 (2006), Nr. 1, p. 190-192. ISBN 1530-6860 (Electronic)spa
dc.relation.referencesCounts, Brittany R. ; Buckner, Samuel L. ; Mouser, J G. ; Dankel, Scott J. ; Jessee, Matthew B. ; Mattocks, Kevin T. ; Loenneke, Jeremy P.: Muscle growth: To infinity and beyond? En: Muscle & Nerve 56 (2017), Nr. 6, p. 1022-1030spa
dc.relation.referencesCraig, R ; Padrón, Raúl: Molecular structure of the sarcomere. En: Myology 3 (2004), p. 129-144spa
dc.relation.referencesCraig, Roger ; Woodhead, John L.: Structure and function of myosin filaments. En: Current opinion in structural biology 16 (2006), Nr. 2, p. 204-212spa
dc.relation.referencesCromie, Melinda J. ; Sanchez, Gabriel N. ; Schnitzer, Mark J. ; Delp, Scott L.: Sarcomere lengths in human extensor carpi radialis brevis measured by microendoscopy. En: Muscle & Nerve 48 (2013), Nr. 2, p. 286-292spa
dc.relation.referencesDalla Libera, Luciano ; Sartore, Saverio ; Pierobon-Bormioli, Sandra ; Schiaffino, Stefano: Fast-white and fast-red isomyosins in guinea pig muscles. En: Biochemical and biophysical research communications 96 (1980), Nr. 4, p. 1662-1670spa
dc.relation.referencesDamas, Felipe ; Phillips, Stuart M. ; Lixandrao ~ , Manoel E. ; Vechin, Felipe C. ; Libardi, Cleiton A. ; Roschel, Hamilton ; Tricoli, Valmor ; Ugrinowitsch, Carlos: Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. En: European journal of applied physiology 116 (2016), Nr. 1, p. 49-56spa
dc.relation.referencesD’Antona, Giuseppe ; Pellegrino, Maria A. ; Adami, Raffaella ; Rossi, Rosetta ; Carlizzi, Carmine N. ; Canepari, Monica ; Saltin, Bengt ; Bottinelli, Roberto: The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. En: The Journal of physiology 552 (2003), Nr. 2, p. 499-511spa
dc.relation.referencesDash, Ranjan K. ; Dibella, John A. ; Cabrera, Marco E.: A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise. En: Biomedical engineering online 6 (2007), p. 14spa
dc.relation.referencesDavidsen, Peter K. ; Gallagher, Iain J. ; Hartman, Joseph W. ; Tarnopolsky, Mark A. ; Dela, Flemming ; Helge, Jørn W ; Timmons, James A. ; Phillips, Stuart M.: High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. En: Journal of applied physiology (2011)spa
dc.relation.referencesDe Boer, Maarten D. ; Selby, Anna ; Atherton, Philip ; Smith, Ken ; Seynnes, Olivier R. ; Maganaris, Constantinos N. ; Maffulli, Nicola ; Movin, Tomas ; Narici, Marco V. ; Rennie, Michael J.: The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. En: The Journal of physiology 585 (2007), Nr. 1, p. 241-251spa
dc.relation.referencesDe Deyne, Patrick G.: Application of passive stretch and its implications for muscle fibers. En: Physical therapy 81 (2001), Nr. 2, p. 819-827spa
dc.relation.referencesDeFreitas, Jason M. ; Beck, Travis W. ; Stock, Matt S. ; Dillon, Michael A. ; Kasishke, Paul R.: An examination of the time course of training-induced skeletal muscle hypertrophy. En: European Journal of Applied Physiology 111 (2011), Nr. 11, p. 2785-2790. ISBN 1439-6319spa
dc.relation.referencesDreyer, H C. ; Fujita, S ; Cadenas, J G. ; Chinkes, D L. ; Volpi, E ; Rasmussen, B B.: Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. En: J Physiol 576 (2006), Nr. Pt 2, p. 613-624spa
dc.relation.referencesEgerman, Marc a. ; Glass, David J.: Signaling pathways controlling skeletal muscle mass. En: Critical reviews in biochemistry and molecular biology 49 (2014), Nr. 1, p. 59-68spa
dc.relation.referencesEhler, Elisabeth ; Gautel, Mathias: The sarcomere and sarcomerogenesis. En: The Sarcomere and Skeletal Muscle Disease. Springer, 2008, p. 1-14spa
dc.relation.referencesEisenberg, Brenda R. ; Salmons, Stanley: The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. En: Cell and tissue research 220 (1981), Nr. 3, p. 449-471spa
dc.relation.referencesEskandari, Mona ; Kuhl, Ellen: Systems biology and mechanics of growth. En: Wiley Interdisciplinary Reviews: Systems Biology and Medicine 7 (2015), Nr. 6, p. 401-412spa
dc.relation.referencesFlitney, FW ; Hirst, DG: Cross-bridge detachment and sarcomere ‘give’ during stretch of active frog’s muscle. En: The Journal of Physiology 276 (1978), Nr. 1, p. 449-465spa
dc.relation.referencesGautel, Mathias: The Sarcomere and Skeletal Muscle Disease. En: The Sarcomere and the Nucleus: Functional Links to Hypertrophy, Atrophy and Sarcopenia. New York : Springer New York, 2008, Kapitel 13, p. 176-191spa
dc.relation.referencesGautel, Mathias: Biomechanics and motor control of human movement. 4. Springer Science and Business Media, 2009spa
dc.relation.referencesGershman, Lewis C. ; Stracher, A ; Dreizen, P: Subunit structure of myosin III. A proposed model for rabbit skeletal myosin. En: Journal of Biological Chemistry 244 (1969), Nr. 10, p. 2726-2736spa
dc.relation.referencesGöktepe, Serdar ; Abilez, Oscar J. ; Kuhl, Ellen: A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. En: Journal of the Mechanics and Physics of Solids 58 (2010), Nr. 10, p. 1661-1680. ISBN 0022-5096spa
dc.relation.referencesGöktepe, Serdar ; Abilez, Oscar J. ; Parker, Kevin K. ; Kuhl, Ellen: A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. En: Journal of theoretical biology 265 (2010), Nr. 3, p. 433-442spa
dc.relation.referencesGoldspink, Geoffrey: Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. En: The Journal of Anatomy 194 (1999), Nr. 3, p. 323-334spa
dc.relation.referencesGordon, AM ; Huxley, Andrew F. ; Julian, FJ: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. En: The Journal of physiology 184 (1966), Nr. 1, p. 170-192spa
dc.relation.referencesGorostiaga, EM ; Navarro-Amezqueta ´ , I ; Calbet, JAL ; Sanchez- Medina ´ , L ; Cusso, R ; Guerrero, M ; Granados, C ; Gonzalez-Izal ´ , M ; Iba´nez ~ , J ; Izquierdo, M: Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. En: Journal of strength and conditioning research 28 (2014), Nr. 10, p. 2775-2785spa
dc.relation.referencesGoss, Richard J.: Muscle: Atrophy versus Hypertrophy. En: The Physiology of Growth. Academic Press, 1978. ISBN 978-0-12-293055-3, p. 153 - 182spa
dc.relation.referencesGrasa, J ; Hernandez-Gascón, B ; Ramírez, A ; Rodríguez, J F. ; Calvo, B: Modelado num´erico del comportamiento del tejido músculo-esquelético. En: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28 (2012), Nr. 3, p. 177-186. ISSN 0213-1315spa
dc.relation.referencesGreaser, Miarion L. ; Moss, Richard L. ; Reiser, Peter J.: Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. En: The Journal of Physiology 406 (1988), Nr. 1, p. 85-98spa
dc.relation.referencesHanson, Jean ; Huxley, Hugh E.: Structural basis of the cross-striations in muscle. En: Nature 172 (1953), Nr. 4377, p. 530spa
dc.relation.referencesHay, Nissim ; Sonenberg, Nahum: Upstream and downstream of mTOR. En: Genes and Development 18 (2004), Nr. 16, p. 1926-1945spa
dc.relation.referencesHeidlauf, Thomas ; Klotz, Thomas ; Rode, Christian ; Siebert, Tobias ; Röhrle , Oliver: A continuum-mechanical skeletal muscle model including actintitin interaction predicts stable contractions on the descending limb of the force-length relation. En: PLoS computational biology 13 (2017), Nr. 10, p. e1005773spa
dc.relation.referencesHemenway, Charles S. ; Heitman, Joseph: Calcineurin. En: Cell biochemistry and biophysics 30 (1999), Nr. 1, p. 115-151spa
dc.relation.referencesHennebry, Alexander ; Oldham, Jenny ; Shavlakadze, Tea ; Grounds, Miranda D. ; Sheard, Philip ; Fiorotto, Marta L. ; Falconer, Shelley ; Smith, Heather K. ; Berry, Carole ; Jeanplong, Ferenc [u. a.]: IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. En: Journal of Endocrinology 234 (2017), Nr. 2, p. 187-200spa
dc.relation.referencesHernandez-Gascón , B ; Grasa, J ; Calvo, B ; Rodríguez, JF: A 3D electromechanical continuum model for simulating skeletal muscle contraction. En: Journal of theoretical biology 335 (2013), p. 108-118spa
dc.relation.referencesHikida, Robert S. ; Gollnick, Philip D. ; Dudley, Gary A. ; Convertino, Victor A. ; Buchanan, Paul: Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. En: Aviation, Space, and Environmental Medicine 60 (1989), Nr. 7, p. 664-670spa
dc.relation.referencesHolzapfel, Gerhard A.: Nonlinear solid mechanics: a continuum approach for engineering. Wiley, 2000spa
dc.relation.referencesHoppeler, H: The range of mitochondrial adaptation in muscle fibers. En: The dynamic state of muscle fibers (1990), p. 567-586spa
dc.relation.referencesHoppeler, H ; Hudlicka, O ; Uhlmann, E: Relationship between mitochondria and oxygen consumption in isolated cat muscles. En: The Journal of Physiology 385 (1987), Nr. 1, p. 661-675spa
dc.relation.referencesHornberger, T. A.: Intracellular Signaling Specificity in Response to Uniaxial vs. Multiaxial Stretch: Implications for Mechanotransduction. En: AJP: Cell Physiology 0298 (2004), p. 185-194. ISSN 0363-6143spa
dc.relation.referencesHuijing, Peter A.: Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. En: Journal of biomechanics 32 (1999), Nr. 4, p. 329-345spa
dc.relation.referencesHuxley, AF: Cross-bridge action: present views, prospects, and unknowns. En: Journal of biomechanics 33 (2000), Nr. 10, p. 1189-1195spa
dc.relation.referencesHuxley, HE ; Hanson, Jean: The structural basis of the contraction mechanism in striated muscle. En: Annals of the New York Academy of Sciences 81 (1959), Nr. 2, p. 403-408spa
dc.relation.referencesJones, Simon W. ; Hill, Roger J. ; Krasney, Philip A. ; O’Conner, Barbara ; Peirce, Nicholas ; Greenhaff, Paul L.: Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. En: The FASEB journal 18 (2004), Nr. 9, p. 1025-1027spa
dc.relation.referencesKawakami, Yasuo ; Abe, Takashi ; Kuno, Shin-Ya ; Fukunaga, Tetsuo: Traininginduced changes in muscle architecture and specific tension. En: European journal of applied physiology and occupational physiology 72 (1995), Nr. 1-2, p. 37-43spa
dc.relation.referencesKent-Braun, Jane A. ; Ng, Alexander V.: Specific strength and voluntary muscle activation in young and elderly women and men. En: Journal of applied physiology 87 (1999), Nr. 1, p. 22-29spa
dc.relation.referencesKjaer, Michael: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. En: Physiological reviews 84 (2004), Nr. 2, p. 649-698spa
dc.relation.referencesKlee, CB ; Crouch, TH ; Richman, PG: Calmodulin. En: Annual review of biochemistry 49 (1980), Nr. 1, p. 489-515spa
dc.relation.referencesKorthuis, Ronald J.: Skeletal muscle circulation. En: Colloquium Series on Integrated Systems Physiology: From Molecule to Function Vol. 3,4 Morgan & Claypool Life Sciences, 2011, p. 1-144spa
dc.relation.referencesKraus, William E. ; Torgan, Carol E. ; Taylor, Doris A.: Skeletal muscle adaptation to chronic low-frequency motor nerve stimulation. En: Exercise and sport sciences reviews 22 (1994), Nr. 1, p. 313-360spa
dc.relation.referencesKumar, A.: Distinct Signaling Pathways Are Activated in Response to Mechanical Stress Applied Axially and Transversely to Skeletal Muscle Fibers. En: Journal of Biological Chemistry 277 (2002), Nr. 48, p. 46493-46503. ISSN 00219258spa
dc.relation.referencesLee, E H.: Elastic-Plastic Deformation at Finite Strains. En: Journal of Applied Mechanics 36 (1969), Nr. 1, p. 1. ISBN 0021-8936spa
dc.relation.referencesLéger, Bertrand ; Cartoni, Romain ; Praz, Manu ; Lamon, S´everine ; D´ eriaz, Olivier ; Crettenand, Antoinette ; Gobelet, Charles ; Rohmer, Paul ; Konzelmann, Michel ; Luthi, Fran¸cois ; Russell, Aaron P.: Akt signalling through GSK- 3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. En: The Journal of physiology 576 (2006), Nr. Pt 3, p. 923-33spa
dc.relation.referencesLi, Yanjun ; Lai, Nicola ; Kirwan, John P. ; Saidel, Gerald M.: Computational model of cellular metabolic dynamics in skeletal muscle fibers during moderate intensity exercise. En: Cellular and molecular bioengineering 5 (2012), Nr. 1, p. 92-112spa
dc.relation.referencesLieber, Richard L.: Skeletal muscle structure, function, and plasticity. 2. Lippincott Williams & Wilkins, 2002spa
dc.relation.referencesLieber, Richard L. ; Friden ´ , Jan: Functional and clinical significance of skeletal muscle architecture. En: Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 23 (2000), Nr. 11, p. 1647-1666spa
dc.relation.referencesLiu, Y ; Schlumberger, A ; Wirth, K ; Schmidtbleicher, D ; Steinacker, Jürgen M: Different effects on human skeletal myosin heavy chain isoform expression: strength vs. combination training. En: Journal of Applied Physiology 94 (2003), Nr. 6, p. 2282-2288spa
dc.relation.referencesLiu, Yewei ; Cseresnyes ´ , Zolt´an ; Randall, William R. ; Schneider, Martin F.: Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. En: The Journal of cell biology 155 (2001), Nr. 1, p. 27-40spa
dc.relation.referencesLopez-Guajardo, Ana ; Sutherland, Hazel ; Jarvis, Jonathan C. ; Salmons, Stanley: Dynamics of stimulation-induced muscle adaptation: insights from varying the duty cycle. En: Journal of Muscle Research & Cell Motility 21 (2000), Nr. 8, p. 725-735spa
dc.relation.referencesLopez-Guajardo, Ana ; Sutherland, Hazel ; Jarvis, Jonathan C. ; Salmons, Stanley: Induction of a fatigue-resistant phenotype in rabbit fast muscle by small daily amounts of stimulation. En: Journal of Applied Physiology 90 (2001), Nr. 5, p. 1909-1918spa
dc.relation.referencesLouis, Emily ; Raue, Ulrika ; Yang, Yifan ; Jemiolo, Bozena ; Trappe, Scott: Time course of proteolytic , cytokine , and myostatin gene expression after acute exercise in human skeletal muscle. En: Journal of applied physiology (Bethesda, Md. : 1985) 47306 (2007), p. 1744-1751spa
dc.relation.referencesLowey, Susan ; Slayter, Henry S. ; Weeds, Alan G. ; Baker, Harry: Substructure of the myosin molecule: I. Subfragments of myosin by enzymic degradation. En: Journal of molecular biology 42 (1969), Nr. 1, p. 1-29spa
dc.relation.referencesMammucari, Cristina ; Milan, Giulia ; Romanello, Vanina ; Masiero, Eva ; Rudolf, Ruediger ; Del Piccolo, Paola ; Burden, Steven J. ; Di Lisi, Raffaella ; Sandri, Claudia ; Zhao, Jinghui [u. a.]: FoxO3 controls autophagy in skeletal muscle in vivo. En: Cell metabolism 6 (2007), Nr. 6, p. 458-471spa
dc.relation.referencesMartins, J. A. C. ; Pires, E. B. ; Salvado, R. ; Dinis, P. B.: A numerical model of passive and active behavior of skeletal muscles. En: Computer Methods in Applied Mechanics and Engineering 151 (1998), Nr. 97, p. 419-433. ISBN 0045-7825spa
dc.relation.referencesMatthews, Bryan H.: The response of a muscle spindle during active contraction of a muscle. En: The Journal of physiology 72 (1931), Nr. 2, p. 153-174 Maurel, Walter ; Thalmann, D ; Wu, Yin ; Thalmann, NM ; Magneat Thalman, N. ; Thalman, D.: Biomechanical Models for Soft Tissue Simulation. 1. 1998. - 174 p.. ISBN 3540637427spa
dc.relation.referencesMcCarthy, John J. ; Esser, Karyn A.: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. En: Journal of applied physiology 102 (2007), Nr. 1, p. 306-313spa
dc.relation.referencesMcDonagh, Jennifer C. ; Binder, Marc D. ; Reinking, Robert M. ; Stuart, Douglas G.: A commentary on muscle unit properties in cat hindlimb muscles. En: Journal of morphology 166 (1980), Nr. 2, p. 217-230spa
dc.relation.referencesMcMahon, Elaine M. ; Corcoran, Paul ; Regan, Grace O. ; Keeley, Helen ; Cannon, Mary ; Carli, Vladimir ; Wasserman, Camilla ; Hadlaczky, Gergö: Physical activity in European adolescents and associations with anxiety , depression and well - being. En: European Child & Adolescent Psychiatry 26 (2017). ISSN 1435-165Xspa
dc.relation.referencesMeans, Anthony R. ; Dedman, John R.: Calmodulin|an intracellular calcium receptor. En: Nature 285 (1980), Nr. 5760, p. 73-77spa
dc.relation.referencesMelzer, W ; Rios, E ; Schneider, MF: Time course of calcium release and removal in skeletal muscle fibers. En: Biophysical journal 45 (1984), Nr. 3, p. 637-641spa
dc.relation.referencesMiller, Mark S. ; Bedrin, Nicholas G. ; Ades, Philip A. ; Palmer, Bradley M. ; Toth, Michael J.: Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. En: American Journal of Physiology-Cell Physiology 308 (2015), Nr. 6, p. C473-C484spa
dc.relation.referencesMiokovic, Tanja ; Armbrecht, Gabriele ; Felsenberg, Dieter ; Belavy`, Daniel L.: Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. En: Journal of applied physiology 113 (2012), Nr. 10, p. 1545-1559spa
dc.relation.referencesMolkentin, Jeffery D. ; Lu, Jian-Rong ; Antos, Christopher L. ; Markham, Bruce ; Richardson, James ; Robbins, Jeffrey ; Grant, Stephen R. ; Olson, Eric N.: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. En: Cell 93 (1998), Nr. 2, p. 215-228spa
dc.relation.referencesMorrow, Duane A. ; Donahue, Tammy L H. ; Odegard, Gregory M. ; Kaufman, Kenton R.: Transversely isotropic tensile material properties of skeletal muscle tissue. En: Journal of the mechanical behavior of biomedical materials 3 (2010), Nr. 1, p. 124-129spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherSistema Musculoesqueléticospa
dc.subject.otherMusculoskeletal Systemeng
dc.subject.otherMechanobiologyeng
dc.subject.otherMecanobiologíaeng
dc.subject.proposalModelamientospa
dc.subject.proposalCascadas de señalizaciónspa
dc.subject.proposalMecanobiologíaspa
dc.subject.proposalMecánica del continuospa
dc.subject.proposalMúsculo esqueléticospa
dc.subject.proposalModelingeng
dc.subject.proposalSignaling pathwayseng
dc.subject.proposalMechanobiologyeng
dc.subject.proposalContinuum mechanicseng
dc.subject.proposalSkeletal muscleeng
dc.subject.proposalSistemas dinámicosspa
dc.subject.proposalDynamical systemseng
dc.subject.proposalTensor de crecimientospa
dc.subject.proposalGrowth tensoreng
dc.titleMechanobiological approach for skeletal muscle adaptationeng
dc.title.translatedAproximación mecanobiológica para la adaptación de músculo esqueléticospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
12754592.2022.pdf
Tamaño:
4.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: