Exploración de características geológicas de la superficie lunar de Encélado (Saturno) utilizando técnicas de aprendizaje automático para la clasificación de imágenes satelitales
dc.contributor.advisor | Montenegro Diaz, Alvaro Mauricio | spa |
dc.contributor.author | Forero Larrotta, Juliana Paola | spa |
dc.date.accessioned | 2024-09-06T15:01:46Z | |
dc.date.available | 2024-09-06T15:01:46Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | El análisis de imágenes satelitales brinda mucha información valiosa que puede ser aplicada en diferentes contextos. En el caso de los cuerpos planetarios, el análisis de imágenes tomadas por sondas espaciales es útil para determinar el origen, evolución, distribución y comportamiento geológico de un cuerpo del sistema solar (planetas, lunas, meteoritos). Gracias a estos datos podemos determinar la edad geológica relativa de un cuerpo con base en impactos de meteoritos observados que como consecuencia dejan cráteres y deforman superficies planetarias y lunares, incluso podemos determinar distintas propiedades fisicoquímicas que nos pueden dar indicio de la existencia de fuentes de agua, composiciones atmosféricas, abundancia de elementos y minerales de interés y así comprender mejor la mecánica interna y externa del cuerpo. Este tipo de aplicación requiere la identificación manual de particularidades y características morfológicas y composicionales en cientos de imágenes tomadas por diferentes instrumentos en diferentes longitudes de onda, con diferentes características de resolución, ángulo de captura de la imagen, tiempo de exposición, longitud de onda captada, posición del cuerpo planetario respecto a su estrella más cercana, ente otros factores. El presente trabajo es una aplicación de modelos de aprendizaje automático de tipo no supervisado como el clustering para el procesamiento de imágenes de la luna de Encelado del planeta Saturno tomadas por la sonda Cassini-Huygens entre los años 2005 y 2017 y que se pueden encontrar en el siguiente repositorio del proyecto PILOT de la NASA (Planetary Image Locator Tool) (USGS/NASA, 2015, https://pilot.wr.usgs.gov), el cual es el archivo más completo de imágenes tomadas por sondas enviadas al espacio hasta la fecha. La clasificación de las imágenes tomadas por la sonda Cassini-Huygens permite ampliar la comprensión de los diferentes procesos que dieron lugar a una gran variedad de características morfológicas y tectónicas de su superficie, ya que basta con observar y clasificar distintos tipos de geoformas como lo son cráteres de impacto, fracturas, fallas, surcos, elevaciones, montañas, distribución y tamaño de partículas, para entender la dinámica geológica de la luna y su dinámica criovolcánica. Se plantea un marco de trabajo para la aplicación de modelos de aprendizaje automático no supervisado como el k-means, MeanShift, DBSCAN y Mixtura Gaussiana para abordar el problema de segmentación de la imagen y detección de particularidades en la clasificación de morfologías, ya que este tipo de algoritmos permite dividir un conjunto de imágenes en grupos basados en sus características o propiedades identificadas, adicionalmente se entrena un modelo de red neuronal convolucional que toma las imágenes etiquetadas con k-means y busca predecir la clase sobre nuevas imágenes. Se prueban distintas combinaciones de técnicas de preprocesamiento y extracción de características y se aplica la técnica de transferencia de aprendizaje en modelos de redes neuronales preentrenadas tanto para poder extraer las características de una imagen, como para poder entrenar un clasificador que permita agrupar nuevas imágenes lunares en las categorías identificadas. Para Encélado, la sonda Cassini Huygens cuenta con dos tipos de instrumentos para la toma de datos: ISS (Cassini Imaging Science Subsystem) y VIMS (Visual and Infrared Mapping Spectrometer), los cuales producen imágenes de alta resolución. Se usaron 5167 imágenes mapeadas mediante un lente NA (Narrow Angle), es decir, un ángulo de imagen normal y no más amplio, del instrumento ISS que cuenta con imágenes tanto en el canal visible como en el infrarrojo cercano, estas imágenes fueron tomadas a distintas distancias y capturan distintas regiones de la luna (Texto tomado de la fuente). | spa |
dc.description.abstract | The analysis of satellite images provides valuable information that can be applied in different contexts. In the case of planetary bodies, the analysis of images taken by space probes is useful to determine the origin, evolution, distribution and geological behavior of a solar system body (planets, moons, meteorites). Thanks to these data we can determine the relative geological age of a body based on observed meteorite impacts that as a consequence leave craters and deform planetary and lunar surfaces, we can even determine different physicochemical properties that can give us an indication of the existence of water sources, atmospheric compositions, abundance of elements and minerals of interest and thus better understand the internal and external mechanics of the body. This type of application requires the manual identification of morphological and compositional features and characteristics in hundreds of images taken by different instruments at different wavelengths, with different resolution characteristics, image capture angle, exposure time, wavelength captured, position of the planetary body respect to its nearest star, among other factors. The present work is an application of unsupervised machine learning models such as clustering for the processing of images of the Enceladus moon of the planet Saturn taken by the Cassini-Huygens probe between the years 2005 and 2017 and that can be found in the following repository of NASA’s PILOT (Planetary Image Locator Tool) project (USGS/NASA, 2015, https://pilot.wr.usgs.gov), which is the most complete archive of images taken by probes sent to space to date. The classification of the images taken by the Cassini-Huygens probe allows to understand the different processes that gave rise to a great variety of morphological and tectonic characteristics of its surface, since it is enough to observe and classify different types of geoforms such as impact craters, fractures, faults, grooves, elevations, mountains, distribution and size of particles, to understand the geological dynamics of the moon and its cryovolcanic dynamics. A framework is proposed for the application of unsupervised machine learning models such as k-means, MeanShift, DBSCAN and Gaussian Mixture to address the problem of image segmentation and detection of particularities in the classification of morphologies, since this type of algorithms allows dividing a set of images into groups or clusters based on their identified characteristics or properties. In addition, a convolutional neural network model is trained that takes the images labeled with k-means and seeks to predict the class on new images. Different combinations of preprocessing and feature extraction techniques are tested and the transfer learning technique is applied to pre-trained neural network models both to extract features from an image and to train a classifier to group new lunar images into the identified categories. For Enceladus, the Cassini Huygens probe has two types of instruments for data acquisition: ISS (Cassini Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer), which produce high-resolution images. We used 5167 images mapped by means of a NA (Narrow Angle) lens, that is, a normal image angle and not wider, of the ISS instrument that has images in both the visible and near infrared channels, these images were taken at different distances and capture different regions of the moon. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.format.extent | viii, 162 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86800 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | Smoothing Images. In: Docs OpenCV. Enhanced by Google https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html | spa |
dc.relation.references | ADDISON, Automatic: Pros and Cons of Gaussian Smoothing. In: Automatic Addison (2019). https://automaticaddison.com/pros-and-cons-of-gaussian-smoothing/ | spa |
dc.relation.references | ALIYARI GHASSABEH, Youness: On the convergence of the mean shift algorithm in the one-dimensional space. In: Journal of Multivariate Analysis (2013), Nr. arXiv:1407.2961. Bibcode:2013PaReL..34.1423A. doi:10.1016/j.patrec.2013.05.004. S2CID 10233475, S. 1423–1427 | spa |
dc.relation.references | ALIYARI GHASSABEH, Youness: A sufficient condition for the convergence of the meanshift algorithm with Gaussian kernel. In: Journal of Multivariate Analysis (2015), Nr. doi:10.1016/j.jmva.2014.11.009, S. 1–10 | spa |
dc.relation.references | BARGHOUT, Lawrence W. L. Lauren: Perceptual information processing system. In: Paravue Inc. U.S. Patent Application 10 (2003), S. 618,543 | spa |
dc.relation.references | BEER A., Hohma E. Jahn P. Frey C. Assent I. Draganov A. A. Draganov A.: Connecting the Dots – Density-Connectivity Distance unifies DBSCAN, k-Center and Spectral Clustering. In: KDD ’23, Long Beach, CA, USA (2023), Nr. 10.1145/3580305.3599283, 80-92. https://web.archive.org/web/20100421170848/http://academic.research.microsoft.com/CSDirectory/paper_category_7.htm | spa |
dc.relation.references | BRADSKI, Adrian Gary; K. Gary; Kaehler: Learning OpenCV: Computer vision with the OpenCV library. In: O’Reilly Media, Inc. (2008), S. 6 | spa |
dc.relation.references | C., Menor-Salván: Qué sabemos realmente de la vida y la habitabilidad en Encelado, la luna de Saturno. In: The Conversation (2023). | spa |
dc.relation.references | C., Piech: Stanford CS221. In: stanford.edu (2013). https://stanford.edu/~cpiech/cs221/handouts/kmeans.html | spa |
dc.relation.references | C., Rebecca: K-means Clustering. In: Steorts, Duke University (2018), Nr. STA 325, Chapter10 ISL. http://www2.stat.duke.edu/~rcs46/lectures_2017/10-unsupervise/10-kmeans_v2.pdf | spa |
dc.relation.references | C., Yizong: Mean Shift, Mode Seeking, and Clustering. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (1995), Nr. 10.1109/34.400568, S. 790–799 | spa |
dc.relation.references | CHANG, Kenneth: Cassini Vanishes Into Saturn, Its Mission Celebrated and Mourned. In: The New York Times (2017). https://www.nytimes.com/2017/09/14/science/cassini-grand-finale-saturn.html | spa |
dc.relation.references | CHANG, Kenneth: The ’Sounds’ of Space as NASA’s Cassini Dives by Saturn. In: The New York Times (2017). https://www.nytimes.com/2017/05/03/science/nasa-cassini-sound-recording-saturn.html | spa |
dc.relation.references | CHENG, Yizong: Mean Shift, Mode Seeking, and Clustering. In: HIPRIEEE Transactions on Pattern Analysis and Machine Intelligence2 (1995), Nr. doi:10.1109/34.400568, S. 790–799 | spa |
dc.relation.references | COATES A., Ng A. Lee H. H. Lee H.: An Analysis of Single-Layer Networks in Unsupervised Feature Learning. In: Stanford University, University of Michigan (2011). https: //proceedings.mlr.press/v15/coates11a/coates11a.pdf | spa |
dc.relation.references | COHN R., Holm E.: Unsupervised machine learning via transfer learning and k-means clustering to classify materials image data. In: arXiv (2020), Nr. arXiv:2007.08361v1 [cond-mat.mtrl-sci]. https://arxiv.org/pdf/2007.08361v1.pdf | spa |
dc.relation.references | CORUM, Jonathan: Mapping Saturn’s Moons. In: The New York Times (2015). https://www.nytimes.com/interactive/2015/12/18/science/space/nasa-cassini-maps-saturns-moons.html | spa |
dc.relation.references | CORUM, Jonathan: Saturn Plunge Nears for Cassini Spacecraft. In: NASA - National Aeronautics and Space Administration (2017). https://www.nasa.gov/feature/jpl/saturn-plunge-nears-for-cassini-spacecraft | spa |
dc.relation.references | D., Bolles: Cassini: FAQ. In: Science NASA (2023). https://science.nasa.gov/mission/cassini/faq/ | spa |
dc.relation.references | D., Marin: Encélado tiene un océano global subterráneo. In: Eureka (2015) | spa |
dc.relation.references | DOMÍNGUEZ, Nuño: Una sonda de la NASA confirma que puede haber vida en Encélado. In: El País (2017) | spa |
dc.relation.references | DYCHES, D.; Mullins S. P.; Brown B. P.; Brown: Cassini Spacecraft Reveals 101 Geysers and More on Icy Saturn Moon. (2014) | spa |
dc.relation.references | E., Guzmán L.: Métricas para la validación de Clustering / Universidad Nacional de Colombia Ingeniería de Sistemas y Computación. – Forschungsbericht | spa |
dc.relation.references | ESTER, Hans-Peter; Sander Jörg; Xu Xiaowei Simoudis Evangelos; Han Jiawei; Fayyad Usama M. Martin; Kriegel K. Martin; Kriegel: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (1996), Nr. 1-57735-004-9, S. 226–231 | spa |
dc.relation.references | ESTER M., Sander J. Kriegel H.-P. ; X., Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96) (1996), 226-231. https://faratarjome.ir/u/media/shopping_files/store-EN-1486556195-4303.pdf | spa |
dc.relation.references | F., Chollet: Transfer learning fine-tuning. Building powerful image classification models using very little data. In: The Keras Blog (2020). https://keras.io/guides/transfer_learning/ | spa |
dc.relation.references | FISHER, Walker W. Perkins: Spatial Filters - Laplacian of Gaussian. Image Processing Learning Resources. In: HIPR2 (2003). https://homepages.inf.ed.ac.uk/rbf/HIPR2/ log.htm | spa |
dc.relation.references | FUKUNAGA, Keinosuke; Larry D. H.: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. In: IEEE Transactions on Information Theory (1975), Nr. doi:10.1109/TIT.1975.1055330, S. 32–40 | spa |
dc.relation.references | GOODFELLOW, Bengio Y. Courville A. I.: Deep Learning. MIT Press, 20161 | spa |
dc.relation.references | H., Rodríguez: Saturno, el famoso planeta de los anillos. In: National Geographic. (2023). https://www.nationalgeographic.com.es/ciencia/ saturno-famoso-planeta-anillos_18640 | spa |
dc.relation.references | HE, Zhang X. Ren S. Sun J. K.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) | spa |
dc.relation.references | HOSNA A., Gyalmo J. Alom Z. Aung Z. Azim M. Merry E. E. Merry E.: Transfer learning: a friendly introduction. In: Journal of Big Data (2022). https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00652-w | spa |
dc.relation.references | I., Dabbura: K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. In: Towards Data Science (2018). | spa |
dc.relation.references | J., Lara: Diplomado DEEP LEARNING: INTRODUCCIÓN AL APRENDIZAJE PROFUNDO CON PYTHON. Módulo 5, Clase Redes Neuronales Convolucionales / Universidad Nacional de Colombia. Departamento de Ingenieria Industrial y de Sistemas. 2022. – Forschungsbericht | spa |
dc.relation.references | J. ZHANG, et al. et a.: Wireless Channel Propagation Scenarios Identification: A Perspective of Machine Learning. In: IEEE Acess 4 (2016), Nr. 10.1109/ACCESS.2020.2979220 | spa |
dc.relation.references | K., Nayar S.: Introduction to Computer Vision. Monograph: FPCV-0-1 / Computer Science Department, School of Engineering and Applied Sciences, Columbia University. 2022. – Forschungsbericht | spa |
dc.relation.references | KE T., Guo Y. Wang X. Yu S. Hwang J. J. Hwang J.: Unsupervised Hierarchical Semantic Segmentation with Multiview Cosegmentation and Clustering Transformers. In: UC Berkeley / ICSI (2022), Nr. arXiv:2204.11432v1 | spa |
dc.relation.references | KRIZHEVSKY, Sutskever I. Hinton G. E. A.: Imagenet classification with deep convolutional neural networks. In: Neural Computation (2012) | spa |
dc.relation.references | KRIZHEVSKY, Sutskever I. Hinton G. E. A.: Very deep convolutional networks for large-scale image recognition. In: arXiv (2014) | spa |
dc.relation.references | KURT DEMAAGD, Nathan Oostendorp Katherine S. Anthony Oliver O. Anthony Oliver: Practical Computer Vision with SimpleCV. O’Reilly Media, Inc., 2012 | spa |
dc.relation.references | L., Forero: Distribución de crioclastos en la región damascus sulcus de la luna Encélado (Saturno) usando imágenes vims. (2016) | spa |
dc.relation.references | LECUN, Bengio Y. Hinton G. Y.: Deep learning. In: Nature 521 (2015), S. 436–444 | spa |
dc.relation.references | LECUN, Boser B. Denker J. S. Henderson D. Howard R. E. Hubbard W. Jackel L. D. Y.: Backpropagation Applied to Handwritten Zip Code Recognition. In: Neural Computation (1989) | spa |
dc.relation.references | LI, Zhanyi; Wu F. Xiangru; Hu H. Xiangru; Hu: A note on the convergence of the mean shift. In: Journal of Multivariate Analysis (2007), Nr. Bibcode:2007PatRe..40.1756L. doi:10.1016/j.patcog.2006.10.016, S. 1756–1762 | spa |
dc.relation.references | LIU Y., Xiong H. Gao X. Wu J. Li Z. Z. Li Z.: Understanding of Internal Clustering Validation Measures. In: IEEE International Conference on Data Mining (2010). https://medium.com/@haataa/how-to-measure-clustering-performances-when-there-are-no-ground-truth-db027e9a871c | spa |
dc.relation.references | MONGODB: What is Unstructured Data? https://www.mongodb.com/resources/basics/unstructured-data. Version: 2024. – Accessed: 2024-07-27 | spa |
dc.relation.references | MOSHER, Dave: NASA will destroy a 3.26 billion Saturn probe this summer to protect an alien water world. In: Business Insider (2017). https://www.businessinsider.com/cassini-death-grand-finale-reason-2017-4 | spa |
dc.relation.references | NIELSEN F., Nock R.: On region merging: The statistical soundness of fast sorting, with applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2 (2003), Nr. doi:10.1109/CVPR.2003.1211447. ISBN 0-7695-1900-8, S. II:19–26 | spa |
dc.relation.references | OVERBYE, Dennis: Cassini Flies Toward a Fiery Death on Saturn. In: The New York Times (2017). https://www.nytimes.com/2017/09/08/science/cassini-saturn-nasa.html | spa |
dc.relation.references | P., Getreuer: A Survey of Gaussian Convolution Algorithms. In: Image Processing On Line -IPOL (2013). https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm | spa |
dc.relation.references | PAPERS, Microsoft Academic S.: Most cited data mining articles according to Microsoft academic search; DBSCAN is on rank 24. In: Microsoft Academic Search: Papers (2010). https://web.archive.org/web/20100421170848/http://academic.research.microsoft.com/CSDirectory/paper_category_7.htm | spa |
dc.relation.references | PEDREGOSA, Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. ... Duchesnay E. F.: Scikit-learn: Machine Learning in Python. In: Journal of Machine Learning Research 12 (2011), S. 2825–2830 | spa |
dc.relation.references | PINHEIRO P., Collobert R.: From Image-level to Pixel-level Labeling with Convolutional Networks. In: Computer Vision Foundation 2 (2015). https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Pinheiro_From_Image-Level_to_2015_CVPR_paper.pdf | spa |
dc.relation.references | PLATT, B. J.; B. J.; Bell: NASA Space Assets Detect Ocean inside Saturn Moon. (2014) | spa |
dc.relation.references | PRITT M, Chern G.: Satellite Image Classification with Deep Learning. In: Research Gate (2017) | spa |
dc.relation.references | PULLI, Anatoly; Kornyakov Kirill; Eruhimov V. Kari; Baksheev B. Kari; Baksheev: Realtime Computer Vision with OpenCV. In: Queue 10 (2012), Nr. doi:10.1145/2181796.2206309, S. 40:40–40:56 | spa |
dc.relation.references | PULLI, Anatoly; Kornyakov Kirill; Eruhimov V. Kari; Baksheev B. Kari; Baksheev: Intel acquires Itseez. In: Wayback Machine (2019) | spa |
dc.relation.references | R. A., P. G.; Bordi J. J.; Criddle K. E.; Ionasescu R.; Jones J. B.; MacKenzie R. A.; Meek M. C. et a. Jacobson; Antreasian A. Jacobson; Antreasian: The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data. In: The Astronomical Journal 132 (2006), S. 2520–2526 | spa |
dc.relation.references | R. FISHER, A. W. S. Perkins P. S. Perkins ; WOLFART., E.: A to Z of Common Image Processing Concepts. Edge Detectors. In: Image Processing Learning Resources, HIPR2 (2003). https:// homepages.inf.ed.ac.uk/rbf/HIPR2/edgdetct.htm | spa |
dc.relation.references | R. FISHER, A. W. S. Perkins P. S. Perkins ; WOLFART., E.: A to Z of Common Image Processing Concepts. Grayscale Images. In: Image Processing Learning Resources, HIPR2 (2003). https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm | spa |
dc.relation.references | R. FISHER, A. W. S. Perkins P. S. Perkins ; WOLFART., E.: A to Z of Common Image Processing Concepts. Kernel. In: Image Processing Learning Resources, HIPR2 (2003). https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm | spa |
dc.relation.references | R. FISHER, A. W. S. Perkins P. S. Perkins ; WOLFART., E.: A to Z of Common Image Processing Concepts. Pixel Values. In: Image Processing Learning Resources, HIPR2 (2003). https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm | spa |
dc.relation.references | RADFORD A., Salimans T. Sutskever I. Narasimham K. K. Narasimham K.: Improving Language Understanding by Generative Pre-Training. In: OpenAI (2018). https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf | spa |
dc.relation.references | SAAVEDRA, Sanchez J. F.: 48. CRIOVOLCANISMO, LOS MECANISMOS TÉRMICOS Y DE FUERZAS DE MAREA EN EL POLO SUR DE ENCÉLADO: ANÁLOGOS EN LA TIERRA Y TITÁN. In: XV CONGRESO COLOMBIANO DE GEOLOGÍA, 2015 ”Innovar en Sinergia con el Medio Ambiente” Bucaramanga, Colombia (2015). https://www.researchgate.net/publication/ 282253101_Criovolcanismo_los_mecanismos_termicos_y_de_fuerzas_de_marea_en_el_polo_sur_de_Encelado_Analogos_en_la_Tierra_y_Titan | spa |
dc.relation.references | SANDER, Martin; Kriegel Hans-Peter; Xu X. Jörg; Ester E. Jörg; Ester: Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. In: Data Mining and Knowledge Discovery. Berlin: Springer-Verlag. 2 (1998), Nr. doi:10.1023/A:1009745219419, S. 169–194 | spa |
dc.relation.references | SCHMIDHUBER, J.: Deep learning in neural networks: An overview. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 61 (2015), S. 85–117 | spa |
dc.relation.references | SCHUBERT, Jörg; Ester Martin; Kriegel Hans Peter; Xu X. Erich; Sander S. Erich; Sander: DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. In: ACM Trans. Database Syst. 42 (2017), Nr. 10.1145/3068335, S. 226–231 | spa |
dc.relation.references | SHAPIRO, G L. G. S. L. G. Stockman: Computer Vision. Prentice Hall, 2001. – 137, 150 S. | spa |
dc.relation.references | SHAPIRO L. G., Stockman G. C.: Computer Vision. In: New Jersey, Prentice-Hall ISBN 0-13-030796-3 (2001), S. 279–325 | spa |
dc.relation.references | SPENCER, F. J. R.; N. J. R.; Nimmo: Enceladus: An Active Ice World in the Saturn System. In: Annual Review of Earth and Planetary Sciences 41 (2013), S. 693–717 | spa |
dc.relation.references | SZELISKI, Richard: Computer Vision, Algorithms and Applications. Springer, 2011 | spa |
dc.relation.references | TEAM, Great L.: OpenCV Tutorial: A Guide to Learn OpenCV in Python. In: Great Learning (2023). https://www.mygreatlearning.com/blog/opencv-tutorial-in-python/ | spa |
dc.relation.references | TEAM, OpenCV: CUDA. In: opencv.org (2020) | spa |
dc.relation.references | TEAM, OpenCV: OpenCV Consulting Site. In: OpenCV Consulting Site (2024) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 310 - Colecciones de estadística general | spa |
dc.subject.ddc | 520 - Astronomía y ciencias afines | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.lemb | GEOLOGÍA LUNAR | spa |
dc.subject.lemb | Lunar geology | eng |
dc.subject.lemb | SONDAS ESPACIALES | spa |
dc.subject.lemb | Space probes | eng |
dc.subject.lemb | CRONOLOGÍA GEOLÓGICA | spa |
dc.subject.lemb | Geological time | eng |
dc.subject.lemb | METEORITOS | spa |
dc.subject.lemb | Meteorites | eng |
dc.subject.lemb | CRATERES METEORICOS | spa |
dc.subject.lemb | Meteorite craters | eng |
dc.subject.lemb | PROPIEDADES FISICOQUÍMICAS | spa |
dc.subject.lemb | Chemicophysical properties | eng |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Clustering | eng |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Transferencia de aprendizaje | spa |
dc.subject.proposal | Imágenes satelitales | spa |
dc.subject.proposal | Aprendizaje no supervisado | spa |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Deep learning | eng |
dc.subject.proposal | Neural networks | eng |
dc.subject.proposal | Unsupervised learning | eng |
dc.subject.proposal | Satellite images | eng |
dc.subject.proposal | Transfer learning | eng |
dc.title | Exploración de características geológicas de la superficie lunar de Encélado (Saturno) utilizando técnicas de aprendizaje automático para la clasificación de imágenes satelitales | spa |
dc.title.translated | Exploration of geological features of the lunar surface of Enceladus (Saturn) using machine learning and deep learning techniques for image classification | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026277472.2024.pdf
- Tamaño:
- 24.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: