Pronóstico del riesgo de mercado a partir de modelos en tiempo continuo

dc.contributor.advisorHoyos Gómez, Milena
dc.contributor.authorAcevedo Pérez, Juan Felipe
dc.date.accessioned2025-09-02T16:58:53Z
dc.date.available2025-09-02T16:58:53Z
dc.date.issued2025
dc.descriptionilustraciones (algunas a color), diagramasspa
dc.description.abstractEsta investigación contrasta el desempeño predictivo del modelo COGARCH en tiempo continuo frente a metodologías discretas ampliamente adoptadas en la práctica de gestión de riesgos, como la Simulación Histórica, el EWMA y el GARCH, al aplicarlas al pronóstico intradía del Valor en Riesgo (VaR). Con datos de alta frecuencia de activos financieros representativos, se evaluó la capacidad de cada modelo para generar pronósticos adecuados mediante pruebas de backtesting estándar bajo un esquema de ventanas móviles. Los resultados muestran que, en los casos analizados, el COGARCH logra una cobertura más consistente y supera pruebas en las que los modelos discretos son rechazados, evidenciando su mayor capacidad para capturar la dinámica de riesgo en alta frecuencia. Este trabajo aporta así evidencia empírica que respalda la aplicación de marcos en tiempo continuo para la gestión del riesgo intradía, posicionando al COGARCH como una alternativa metodológica robusta y de gran potencial para la cuantificación precisa de riesgos en mercados de alta frecuencia. (Texto tomado de la fuente)spa
dc.description.abstractThis study contrasts the predictive performance of the continuous-time COGARCH model with discrete-time methodologies widely adopted in risk management practice, such as Historical Simulation, EWMA, and GARCH, when applied to intraday Value-at-Risk (VaR) forecasting. Using high-frequency data from representative financial assets, we assess each model’s ability to deliver adequate forecasts through standard backtesting procedures under a rolling window scheme. Results show that, in the analyzed cases, COGARCH achieved more consistent coverage and passed tests in which discrete models were rejected, highlighting its stronger ability to capture high-frequency risk dynamics. This work thus provides empirical evidence supporting the use of continuous-time frameworks for intraday risk management, positioning COGARCH as a robust methodological alternative with strong potential for precise risk quantification in high-frequency marketseng
dc.description.curricularareaEstadística.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Estadística
dc.format.extentvi, 37 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88547
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.relation.referencesArtzner, P.; Delbaen, F.; Eber, J.-M. & Heath, D.: , 1997; Thinking coherently; Risk; 10 (11): 68--71.
dc.relation.referencesArtzner, P.; Delbaen, F.; Eber, J.-M. & Heath, D.: , 1999; Coherent Measures of Risk; Mathematical Finance; 9 (3): 203--228.
dc.relation.referencesBasel Committee on Banking Supervision: , 2004; International convergence of capital measurement and capital standards: A revised framework; Informe técnico; Bank for International Settlements; Basel, Switzerland; disponible en: https://www.bis.org/ publ/bcbs107.htm.
dc.relation.referencesBergstrom, A.: , 1984; Continuous time stochastic models and issues of aggregation over time; en Handbook of Econometrics, tomo 2; Elsevier; págs. 1145--1212.
dc.relation.referencesBergstrom, A. R. & Nowman, K. B.: , 2007; Introduction to Continuous Time Modelling; Cambridge University Press; pág. 1–49.
dc.relation.referencesBlack, F. & Scholes, M.: , 1973; The pricing of options and corporate liabilities; Journal of Political Economy; 81 (3): 637--654.
dc.relation.referencesBollerslev, T.: , 1986; Generalized autoregressive conditional heteroskedasticity; Journal of Econometrics; 31 (3): 307--327; doi: 10.1016/0304-4076(86)90063-1.
dc.relation.referencesBrockwell, P.; Chadraa, E. & Lindner, A.: , 2006; Continuous-time garch processes; Annals of Applied Probability; 16 (2): 790--826; doi:10.1214/105051606000000150.
dc.relation.referencesCampbell, S. D.: , 2005; A review of backtesting and backtesting procedures; Informe Técnico 2005-21; Federal Reserve Board; doi:10.17016/FEDS.2005.21
dc.relation.referencesChan, F.: , 2009; Forecasting value-at-risk using maximum entropy density; en 18th World IMACS / MODSIM Congress; URL http://mssanz.org.au/modsim09.
dc.relation.referencesChristoffersen, P. F.: , 1998; Evaluating interval forecasts; International Economic Review; 39 (4): 841--862; URL http://www. jstor.org/stable/2527341.
dc.relation.referencesCont, R.: , 2001; Empirical properties of asset returns: stylized facts and statistical issues; Quantitative Finance; 1 (2): 223--236.
dc.relation.referencesDaníelsson, J.: , 2000; The emperor has no clothes: Limits to risk modelling; preliminary draft.
dc.relation.referencesDaníelsson, J.: , 2011; Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab; Wiley-Blackwell; ISBN 9780470669433.
dc.relation.referencesDaníelsson, J.: , 2012; Backtesting and Stress Testing; capítulo 8; John Wiley & Sons, Ltd; ISBN 9781119205869; págs. 143--166; doi:10.1002/9781119205869.ch8; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119205869.ch8.
dc.relation.referencesDubinsky, A. & Johannes, M.: , 2006; Earnings announcements and equity options; Informe técnico; Columbia Business School Research Paper
dc.relation.referencesEngle, R. F.: , 1982; Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation; Econometrica; 50 (4): 987--1007; doi:10.2307/1912773.
dc.relation.referencesFama, E. F.: , 1970; Efficient capital markets: A review of theory and empirical work; The Journal of Finance; 25 (2): 383--417.
dc.relation.referencesFranke, J.; Härdle, W. K. & Hafner, C. M.: , 2011; Copulae and Value at Risk; Springer Berlin Heidelberg, Berlin, Heidelberg; ISBN 978-3-642-16521-4; págs. 405--446; doi:10.1007/978-3-642-16521-4_17; URL https://doi.org/10.1007/978-3-642-16521-4_17.
dc.relation.referencesGlosten, L. R.; Jagannathan, R. & Runkle, D. E.: , 1992; On the relation between the expected value and the volatility of the nominal excess return on stocks; Journal of Finance; 46 (5): 1779--1801; doi:10.1111/j.1540-6261.1991.tb04633.x.
dc.relation.referencesHan, N. H.; Deng, S.-J.; Peng, L. & Xia, Z.: , 2007; Interval estimation of value-at-risk based on GARCH models with heavy tailed innovations; Journal of Econometrics; 137: 556--576.
dc.relation.referencesHernán, F.: , 2010; Egarch: un modelo asimétrico para estimar la volatilidad de series financieras; Revista Ingenierías Universidad de Medellín; 9 (16): 49--60.
dc.relation.referencesIacus, S. M.; Mercuri, L. & Rroji, E.: , 2017; Cogarch(p, q): Simulation and inference with the yuima package; Journal of Statistical Software; 80 (4): 1–49; doi:10.18637/jss.v080.i04; URL https://www.jstatsoft.org/index.php/jss/article/view/v080i04.
dc.relation.referencesJ.P. Morgan & Reuters: , 1996; Riskmetrics---technical document; Informe técnico; Morgan Guaranty Trust Company; New York; URL http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html; prepared by the RiskMetrics Group, with contributions from Jacques Longerstaey.
dc.relation.referencesKheir, I.: , 2019; GARCH Modeling of Value at Risk and Expected Shortfall Using Bayesian Model Averaging; Master’s thesis; Hunter College, The City University of New York.
dc.relation.referencesKlüppelberg, C.; Lindner, A. & Maller, R.: , 2004; A continuous time garch process driven by a lévy process: Stationarity and second order behaviour; J. Appl. Probab.; 41; doi:10.1239/jap/1091543413.
dc.relation.referencesKoenker, R. & Bassett, G.: , 1978; Regression quantiles; Econometrica; 46: 33--50.
dc.relation.referencesKupiec, P. H.: , 1995; Techniques for verifying the accuracy of risk measurement models; The Journal of Derivatives; 3 (2): 73--84.
dc.relation.referencesLing, S. & McAleer, M.: , 2003; Asymptotic theory for a vector arma-garch model; Econometric Theory; 19 (2): 278--308; doi:10.1017/S0266466603192046.
dc.relation.referencesMadan, D. B. & Seneta, E.: , 1990; The Variance Gamma (V.G.) Model for Share Market Returns; The Journal of Business; 63 (4): 511--524; doi:10.1086/296519.
dc.relation.referencesMerton, R. C.: , 1973; Theory of rational option pricing; The Bell Journal of Economics and Management Science; 4 (1): 141--183.
dc.relation.referencesNadarajah, S. & Chan, S.: , 2016; Estimation methods for value at risk: A handbook of extreme value theory and its applications; en Extreme Events in Finance; doi:10.1002/9781118650318.ch12.
dc.relation.referencesNelson, D. B.: , 1990; Arch models as diffusion approximations; Journal of Econometrics; 45 (1-2): 7--38; URL https://EconPapers. repec.org/RePEc:eee:econom:v:45:y:1990:i:1-2:p:7-38.
dc.relation.referencesNovales, A.: , 2016a; Valor en Riesgo; Departamento de Economía Cuantitativa, Universidad Complutense.
dc.relation.referencesNovales, A.: , 2016b; Valor en riesgo; versión preliminar.
dc.relation.referencesPollard, M.: , 2007; Bayesian value-at-risk and the capital charge puzzle; Available at; http://www.apra.gov.au/AboutAPRA/ WorkingAtAPRA/Documents/Pollard-M_Paper-for-APRA.pdf.
dc.relation.referencesPrékopa, A.: , 2012; Multivariate value at risk and related topics; Annals of Operations Research; 193: 49--69.
dc.relation.referencesPérignon, C. & Smith, D. R.: , 2010; The level and quality of value-at-risk disclosure by commercial banks; Journal of Banking & Finance; 34: 362--377.
dc.relation.referencesPérignon, C. & Wang, Y.: , 2008; Do banks overstate their value-at-risk?; Journal of Banking & Finance; 32: 783--794.
dc.relation.referencesRighi, M. B. & Ceretta, P. S.: , 2015; A comparison of expected shortfall estimation models; Journal of Economics and Business; 78: 14--47; doi:10.1016/j.jeconbus.2014.11.002; URL https://www.sciencedirect.com/science/article/pii/S014861951400068X.
dc.relation.referencesRockinger, M. & Jondeau, E.: , 2002; Entropy densities with an application to autoregressive conditional skewness and kurtosis; Journal of Econometrics; 106 (1): 119--142; doi:10.1016/S0304-4076(01)00097-1.
dc.relation.referencesRuiz, E.: , 1994; Modelos para series temporales heterocedásticas; resumen, Departamento de Estadística y Econometría, Universidad Carlos III de Madrid.
dc.relation.referencesSuperintendencia Financiera de Colombia (SFC): , 2007; Circular externa 051 de 2007; bogotá, D.C.
dc.relation.referencesTao, Y.; Phillips, P. C. & Yu, J.: , 2019; Random coefficient continuous systems: Testing for extreme sample path behavior; Journal of Econometrics; 209 (2): 208--237; doi:https://doi.org/10.1016/j.jeconom.2019.01.002; URL https://www.sciencedirect. com/science/article/pii/S0304407619300053.
dc.relation.referencesThornton, M. A. & Chambers, M. J.: , 2016; The exact discretisation of CARMA models with applications in finance; Journal of Empirical Finance; doi:10.1016/j.jempfin.2016.03.00.
dc.relation.referencesVlastelica, R.: , 2024; Microsoft, alphabet face a ’show me’ moment after meta misfire; Bloomberg News; publicado el 25 de abril de 2024.
dc.relation.referencesWhitehead, C.: , 2011; Destructive coordination; Cornell Law Faculty Publications; 183.
dc.relation.referencesYamai, Y. & Yoshiba, T.: , 2002; Comparative analyses of expected shortfall and value-at-risk: Their estimation error, decomposition, and optimization; Monetary and Economic Studies.
dc.relation.referencesZhang & Nadarajah: , 2018; A review of backtesting for value at risk; Communications in Statistics - Theory and Methods; 47 (15): 3616--3639; doi:10.1080/03610926.2017.1361984; URL https://doi.org/10.1080/03610926.2017.1361984.
dc.relation.referencesZhang, M.-H. & Cheng, Q.: , 2005; An approach to var for capital markets with gaussian mixture; Applied Mathematics and Computation; 168: 1079--1085; doi:10.1016/j.amc.2004.10.004.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.bneEstimación estadística -- Modelos matemáticosspa
dc.subject.bneEstimation theory -- Mathematical modelseng
dc.subject.bneGestión del riesgospa
dc.subject.bneRisk managementeng
dc.subject.bneRiesgo (Economía) -- Modelos matemáticosspa
dc.subject.bneRisk -- Mathematical modelseng
dc.subject.ddc519.5
dc.subject.ddc330.015195
dc.subject.otherEstimación del riesgospa
dc.subject.otherRisk estimateeng
dc.subject.otherEstimación (Teoría de probabilidades) -- Metodologíaspa
dc.subject.otherRisk estimate -- Methodologyeng
dc.subject.proposalVaReng
dc.subject.proposalCOGARCHeng
dc.subject.proposalAlta frecuenciaspa
dc.subject.proposalTiempo continuospa
dc.subject.proposalBacktestingeng
dc.subject.proposalRiesgo idiosincráticospa
dc.subject.proposalRiesgo sistemáticospa
dc.subject.proposalHigh frequencyeng
dc.subject.proposalContinuous timeeng
dc.subject.proposalIdiosyncratic riskeng
dc.subject.proposalSystematic riskeng
dc.titlePronóstico del riesgo de mercado a partir de modelos en tiempo continuospa
dc.title.translatedMarket risk forecasting from continuous time modelseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1007249095.2025.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: