Pronóstico del riesgo de mercado a partir de modelos en tiempo continuo
dc.contributor.advisor | Hoyos Gómez, Milena | |
dc.contributor.author | Acevedo Pérez, Juan Felipe | |
dc.date.accessioned | 2025-09-02T16:58:53Z | |
dc.date.available | 2025-09-02T16:58:53Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (algunas a color), diagramas | spa |
dc.description.abstract | Esta investigación contrasta el desempeño predictivo del modelo COGARCH en tiempo continuo frente a metodologías discretas ampliamente adoptadas en la práctica de gestión de riesgos, como la Simulación Histórica, el EWMA y el GARCH, al aplicarlas al pronóstico intradía del Valor en Riesgo (VaR). Con datos de alta frecuencia de activos financieros representativos, se evaluó la capacidad de cada modelo para generar pronósticos adecuados mediante pruebas de backtesting estándar bajo un esquema de ventanas móviles. Los resultados muestran que, en los casos analizados, el COGARCH logra una cobertura más consistente y supera pruebas en las que los modelos discretos son rechazados, evidenciando su mayor capacidad para capturar la dinámica de riesgo en alta frecuencia. Este trabajo aporta así evidencia empírica que respalda la aplicación de marcos en tiempo continuo para la gestión del riesgo intradía, posicionando al COGARCH como una alternativa metodológica robusta y de gran potencial para la cuantificación precisa de riesgos en mercados de alta frecuencia. (Texto tomado de la fuente) | spa |
dc.description.abstract | This study contrasts the predictive performance of the continuous-time COGARCH model with discrete-time methodologies widely adopted in risk management practice, such as Historical Simulation, EWMA, and GARCH, when applied to intraday Value-at-Risk (VaR) forecasting. Using high-frequency data from representative financial assets, we assess each model’s ability to deliver adequate forecasts through standard backtesting procedures under a rolling window scheme. Results show that, in the analyzed cases, COGARCH achieved more consistent coverage and passed tests in which discrete models were rejected, highlighting its stronger ability to capture high-frequency risk dynamics. This work thus provides empirical evidence supporting the use of continuous-time frameworks for intraday risk management, positioning COGARCH as a robust methodological alternative with strong potential for precise risk quantification in high-frequency markets | eng |
dc.description.curriculararea | Estadística.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Estadística | |
dc.format.extent | vi, 37 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88547 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
dc.relation.references | Artzner, P.; Delbaen, F.; Eber, J.-M. & Heath, D.: , 1997; Thinking coherently; Risk; 10 (11): 68--71. | |
dc.relation.references | Artzner, P.; Delbaen, F.; Eber, J.-M. & Heath, D.: , 1999; Coherent Measures of Risk; Mathematical Finance; 9 (3): 203--228. | |
dc.relation.references | Basel Committee on Banking Supervision: , 2004; International convergence of capital measurement and capital standards: A revised framework; Informe técnico; Bank for International Settlements; Basel, Switzerland; disponible en: https://www.bis.org/ publ/bcbs107.htm. | |
dc.relation.references | Bergstrom, A.: , 1984; Continuous time stochastic models and issues of aggregation over time; en Handbook of Econometrics, tomo 2; Elsevier; págs. 1145--1212. | |
dc.relation.references | Bergstrom, A. R. & Nowman, K. B.: , 2007; Introduction to Continuous Time Modelling; Cambridge University Press; pág. 1–49. | |
dc.relation.references | Black, F. & Scholes, M.: , 1973; The pricing of options and corporate liabilities; Journal of Political Economy; 81 (3): 637--654. | |
dc.relation.references | Bollerslev, T.: , 1986; Generalized autoregressive conditional heteroskedasticity; Journal of Econometrics; 31 (3): 307--327; doi: 10.1016/0304-4076(86)90063-1. | |
dc.relation.references | Brockwell, P.; Chadraa, E. & Lindner, A.: , 2006; Continuous-time garch processes; Annals of Applied Probability; 16 (2): 790--826; doi:10.1214/105051606000000150. | |
dc.relation.references | Campbell, S. D.: , 2005; A review of backtesting and backtesting procedures; Informe Técnico 2005-21; Federal Reserve Board; doi:10.17016/FEDS.2005.21 | |
dc.relation.references | Chan, F.: , 2009; Forecasting value-at-risk using maximum entropy density; en 18th World IMACS / MODSIM Congress; URL http://mssanz.org.au/modsim09. | |
dc.relation.references | Christoffersen, P. F.: , 1998; Evaluating interval forecasts; International Economic Review; 39 (4): 841--862; URL http://www. jstor.org/stable/2527341. | |
dc.relation.references | Cont, R.: , 2001; Empirical properties of asset returns: stylized facts and statistical issues; Quantitative Finance; 1 (2): 223--236. | |
dc.relation.references | Daníelsson, J.: , 2000; The emperor has no clothes: Limits to risk modelling; preliminary draft. | |
dc.relation.references | Daníelsson, J.: , 2011; Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab; Wiley-Blackwell; ISBN 9780470669433. | |
dc.relation.references | Daníelsson, J.: , 2012; Backtesting and Stress Testing; capítulo 8; John Wiley & Sons, Ltd; ISBN 9781119205869; págs. 143--166; doi:10.1002/9781119205869.ch8; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119205869.ch8. | |
dc.relation.references | Dubinsky, A. & Johannes, M.: , 2006; Earnings announcements and equity options; Informe técnico; Columbia Business School Research Paper | |
dc.relation.references | Engle, R. F.: , 1982; Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation; Econometrica; 50 (4): 987--1007; doi:10.2307/1912773. | |
dc.relation.references | Fama, E. F.: , 1970; Efficient capital markets: A review of theory and empirical work; The Journal of Finance; 25 (2): 383--417. | |
dc.relation.references | Franke, J.; Härdle, W. K. & Hafner, C. M.: , 2011; Copulae and Value at Risk; Springer Berlin Heidelberg, Berlin, Heidelberg; ISBN 978-3-642-16521-4; págs. 405--446; doi:10.1007/978-3-642-16521-4_17; URL https://doi.org/10.1007/978-3-642-16521-4_17. | |
dc.relation.references | Glosten, L. R.; Jagannathan, R. & Runkle, D. E.: , 1992; On the relation between the expected value and the volatility of the nominal excess return on stocks; Journal of Finance; 46 (5): 1779--1801; doi:10.1111/j.1540-6261.1991.tb04633.x. | |
dc.relation.references | Han, N. H.; Deng, S.-J.; Peng, L. & Xia, Z.: , 2007; Interval estimation of value-at-risk based on GARCH models with heavy tailed innovations; Journal of Econometrics; 137: 556--576. | |
dc.relation.references | Hernán, F.: , 2010; Egarch: un modelo asimétrico para estimar la volatilidad de series financieras; Revista Ingenierías Universidad de Medellín; 9 (16): 49--60. | |
dc.relation.references | Iacus, S. M.; Mercuri, L. & Rroji, E.: , 2017; Cogarch(p, q): Simulation and inference with the yuima package; Journal of Statistical Software; 80 (4): 1–49; doi:10.18637/jss.v080.i04; URL https://www.jstatsoft.org/index.php/jss/article/view/v080i04. | |
dc.relation.references | J.P. Morgan & Reuters: , 1996; Riskmetrics---technical document; Informe técnico; Morgan Guaranty Trust Company; New York; URL http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html; prepared by the RiskMetrics Group, with contributions from Jacques Longerstaey. | |
dc.relation.references | Kheir, I.: , 2019; GARCH Modeling of Value at Risk and Expected Shortfall Using Bayesian Model Averaging; Master’s thesis; Hunter College, The City University of New York. | |
dc.relation.references | Klüppelberg, C.; Lindner, A. & Maller, R.: , 2004; A continuous time garch process driven by a lévy process: Stationarity and second order behaviour; J. Appl. Probab.; 41; doi:10.1239/jap/1091543413. | |
dc.relation.references | Koenker, R. & Bassett, G.: , 1978; Regression quantiles; Econometrica; 46: 33--50. | |
dc.relation.references | Kupiec, P. H.: , 1995; Techniques for verifying the accuracy of risk measurement models; The Journal of Derivatives; 3 (2): 73--84. | |
dc.relation.references | Ling, S. & McAleer, M.: , 2003; Asymptotic theory for a vector arma-garch model; Econometric Theory; 19 (2): 278--308; doi:10.1017/S0266466603192046. | |
dc.relation.references | Madan, D. B. & Seneta, E.: , 1990; The Variance Gamma (V.G.) Model for Share Market Returns; The Journal of Business; 63 (4): 511--524; doi:10.1086/296519. | |
dc.relation.references | Merton, R. C.: , 1973; Theory of rational option pricing; The Bell Journal of Economics and Management Science; 4 (1): 141--183. | |
dc.relation.references | Nadarajah, S. & Chan, S.: , 2016; Estimation methods for value at risk: A handbook of extreme value theory and its applications; en Extreme Events in Finance; doi:10.1002/9781118650318.ch12. | |
dc.relation.references | Nelson, D. B.: , 1990; Arch models as diffusion approximations; Journal of Econometrics; 45 (1-2): 7--38; URL https://EconPapers. repec.org/RePEc:eee:econom:v:45:y:1990:i:1-2:p:7-38. | |
dc.relation.references | Novales, A.: , 2016a; Valor en Riesgo; Departamento de Economía Cuantitativa, Universidad Complutense. | |
dc.relation.references | Novales, A.: , 2016b; Valor en riesgo; versión preliminar. | |
dc.relation.references | Pollard, M.: , 2007; Bayesian value-at-risk and the capital charge puzzle; Available at; http://www.apra.gov.au/AboutAPRA/ WorkingAtAPRA/Documents/Pollard-M_Paper-for-APRA.pdf. | |
dc.relation.references | Prékopa, A.: , 2012; Multivariate value at risk and related topics; Annals of Operations Research; 193: 49--69. | |
dc.relation.references | Pérignon, C. & Smith, D. R.: , 2010; The level and quality of value-at-risk disclosure by commercial banks; Journal of Banking & Finance; 34: 362--377. | |
dc.relation.references | Pérignon, C. & Wang, Y.: , 2008; Do banks overstate their value-at-risk?; Journal of Banking & Finance; 32: 783--794. | |
dc.relation.references | Righi, M. B. & Ceretta, P. S.: , 2015; A comparison of expected shortfall estimation models; Journal of Economics and Business; 78: 14--47; doi:10.1016/j.jeconbus.2014.11.002; URL https://www.sciencedirect.com/science/article/pii/S014861951400068X. | |
dc.relation.references | Rockinger, M. & Jondeau, E.: , 2002; Entropy densities with an application to autoregressive conditional skewness and kurtosis; Journal of Econometrics; 106 (1): 119--142; doi:10.1016/S0304-4076(01)00097-1. | |
dc.relation.references | Ruiz, E.: , 1994; Modelos para series temporales heterocedásticas; resumen, Departamento de Estadística y Econometría, Universidad Carlos III de Madrid. | |
dc.relation.references | Superintendencia Financiera de Colombia (SFC): , 2007; Circular externa 051 de 2007; bogotá, D.C. | |
dc.relation.references | Tao, Y.; Phillips, P. C. & Yu, J.: , 2019; Random coefficient continuous systems: Testing for extreme sample path behavior; Journal of Econometrics; 209 (2): 208--237; doi:https://doi.org/10.1016/j.jeconom.2019.01.002; URL https://www.sciencedirect. com/science/article/pii/S0304407619300053. | |
dc.relation.references | Thornton, M. A. & Chambers, M. J.: , 2016; The exact discretisation of CARMA models with applications in finance; Journal of Empirical Finance; doi:10.1016/j.jempfin.2016.03.00. | |
dc.relation.references | Vlastelica, R.: , 2024; Microsoft, alphabet face a ’show me’ moment after meta misfire; Bloomberg News; publicado el 25 de abril de 2024. | |
dc.relation.references | Whitehead, C.: , 2011; Destructive coordination; Cornell Law Faculty Publications; 183. | |
dc.relation.references | Yamai, Y. & Yoshiba, T.: , 2002; Comparative analyses of expected shortfall and value-at-risk: Their estimation error, decomposition, and optimization; Monetary and Economic Studies. | |
dc.relation.references | Zhang & Nadarajah: , 2018; A review of backtesting for value at risk; Communications in Statistics - Theory and Methods; 47 (15): 3616--3639; doi:10.1080/03610926.2017.1361984; URL https://doi.org/10.1080/03610926.2017.1361984. | |
dc.relation.references | Zhang, M.-H. & Cheng, Q.: , 2005; An approach to var for capital markets with gaussian mixture; Applied Mathematics and Computation; 168: 1079--1085; doi:10.1016/j.amc.2004.10.004. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.bne | Estimación estadística -- Modelos matemáticos | spa |
dc.subject.bne | Estimation theory -- Mathematical models | eng |
dc.subject.bne | Gestión del riesgo | spa |
dc.subject.bne | Risk management | eng |
dc.subject.bne | Riesgo (Economía) -- Modelos matemáticos | spa |
dc.subject.bne | Risk -- Mathematical models | eng |
dc.subject.ddc | 519.5 | |
dc.subject.ddc | 330.015195 | |
dc.subject.other | Estimación del riesgo | spa |
dc.subject.other | Risk estimate | eng |
dc.subject.other | Estimación (Teoría de probabilidades) -- Metodología | spa |
dc.subject.other | Risk estimate -- Methodology | eng |
dc.subject.proposal | VaR | eng |
dc.subject.proposal | COGARCH | eng |
dc.subject.proposal | Alta frecuencia | spa |
dc.subject.proposal | Tiempo continuo | spa |
dc.subject.proposal | Backtesting | eng |
dc.subject.proposal | Riesgo idiosincrático | spa |
dc.subject.proposal | Riesgo sistemático | spa |
dc.subject.proposal | High frequency | eng |
dc.subject.proposal | Continuous time | eng |
dc.subject.proposal | Idiosyncratic risk | eng |
dc.subject.proposal | Systematic risk | eng |
dc.title | Pronóstico del riesgo de mercado a partir de modelos en tiempo continuo | spa |
dc.title.translated | Market risk forecasting from continuous time models | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1007249095.2025.pdf
- Tamaño:
- 1.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: