Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.authorTalero Osorio, Diego Camilo
dc.contributor.refereePinzón Velasco, Andrés Mauricio
dc.contributor.researchgroupCentro de Bioinformática del Instituto de Biotecnología (CBIB)spa
dc.date.accessioned2022-08-08T19:50:57Z
dc.date.available2022-08-08T19:50:57Z
dc.date.issued2022-08-08
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractUno de los problemas frecuentes en salud pública son las Infecciones Asociadas a la Atención en Salud (IAAS), La Organización Mundial de la Salud (WHO) ha publicado una lista de microorganismos de prioridad clínica (WHO, 2017), entre los cuales a nivel crítico están todas las Enterobacterias que presentan resistencia a antibióticos carbapenémicos como Klebsiella pneumoniae que suele contar con múltiples mecanismos de resistencia frente a dichos antibióticos (Schroeder, Brooks, & Brooks, 2017). El desarrollo de tecnologías de secuenciación de nueva generación (NGS) ha permitido el estudio del “comportamiento” y /o “composición” de los genomas de microorganismos de interés clínico; así mismo también se han diseñado y desarrollado algoritmos y flujos de trabajo bioinformáticos para el almacenamiento, anotación y análisis de estos datos, que han facilitado identificar y caracterizar, un gran número de elementos genómicos involucrados en los mecanismos de resistencia. En este trabajo se propone una herramienta de clasificación de contigs pertenecientes a plásmidos, obtenidos por secuenciación de genoma completo (WGS), que implementa varias de las herramientas, que a través de un método experimental iterativo fueron configuradas para obtener un rendimiento maximizado para las cepas de trabajo de K. pneumoniae. (Texto tomado de la fuente)spa
dc.description.abstractOne of the frequent problems in public health is the Infections Associated with Health Care (IAAS). The World Health Organization (WHO) published a list of microorganisms of clinical priority (WHO, 2017), among which at the critical level are all Entero-bacteria with resistance to carbapenems like Klebsiella pneumoniae, which usually has several mechanisms of resistance (González Rocha et al., 2017), frequently associated with the genetic information (Schroeder et al., 2017). The development of New Generation Sequencing technologies (NGS) allows the study of the "behavior" and/or "composition" of the microorganism genomes of clinical interest. Likewise, algorithms and bioinformatics workflows have been designed and developed for the storage, annotation, and analysis of these data, to the point of identifying and characterizing a large number of genomic elements involved in resistance mechanisms. This work shows the implementation of a contig classification pipeline designed to choose which of them are part of a plasmid. It uses contigs obtained by NGS technologies and implements several programs to carry out this task, which, thanks to an iterative experimental method, were configured to obtain a maximized yield for the working strains of K. pneumoniae. (text taken of the source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Bioinformáticaspa
dc.description.researchareaDiagnóstico molecularspa
dc.description.sponsorshipcolcienciasspa
dc.description.technicalinfoEl diseño de la herramienta esta basado en la teoria de Multiclasificador, implementando metodos de inteligencia artificial.spa
dc.format.extentxx, 83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81811
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y Ensamble de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132.spa
dc.relation.referencesAlimolaei, M., & Golchin, M. (2017). A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals, 45, 47–51. https://doi.org/10.1016/j.biologicals.2016.10.001spa
dc.relation.referencesAntipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016a). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493spa
dc.relation.referencesAntipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016b). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493spa
dc.relation.referencesAntipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). HybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009–1015. https://doi.org/10.1093/bioinformatics/btv688spa
dc.relation.referencesArgemi, X., Martin, V., Loux, V., Dahyot, S., Lebeurre, J., Guffroy, A., … Prevost, G. (2017). Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biology and Evolution, 9(5), 1183–1189. https://doi.org/10.1093/gbe/evx077spa
dc.relation.referencesBenchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2. (n.d.). Retrieved from https://cge.cbs.dtu.dk/services/cge/spa
dc.relation.referencesBlair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380spa
dc.relation.referencesBootsma, H. J., & Schouls, L. M. (2015, March 1). Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: A key tool for surveillance and infection control. Future Microbiology, 10(3), 299–302.spa
dc.relation.referencesBousquet, A., Henquet, S., Compain, F., Genel, N., Arlet, G., & Decré, D. (2015). SC. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2015.01.019spa
dc.relation.referencesBryson, K., Loux, V., Bossy, R., Nicolas, P., Chaillou, S., Guchte, M. Van De, … Lactique, F. (2006). AGMIAL : implementing an annotation strategy for prokaryote genomes as a distributed system. 34(12), 3533–3545. https://doi.org/10.1093/nar/gkl471spa
dc.relation.referencesC., L., N., G., S., L., C., G., & G., M. M. (2017). Multi-clasificador para predecir interacción de proteínas usando optimización basada en colonia de hormigas. Revista Cubana de Ciencias Informáticas, 11, 195–210. Retrieved from https://www.redalyc.org/articulo.oa?id=378349711014spa
dc.relation.referencesCabrera-Hernández, L., Morales-Hernández, A., & Casas-Cardoso, G. M. (2016). Medidas de diversidad para la construcción de sistemas multi-clasificadores usando algoritmos genéticos. Computacion y Sistemas, 20(4), 729–747. https://doi.org/10.13053/CyS-20-4-2513spa
dc.relation.referencesCarattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., … Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14spa
dc.relation.referencesChaisson, M., Pevzner, P., & Tang, H. (2004). Fragment assembly with short reads. Bioinformatics, 20(13), 2067–2074. https://doi.org/10.1093/bioinformatics/bth205spa
dc.relation.referencesChikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310spa
dc.relation.referencesDurai, D. A., & Schulz, M. H. (2016). Informed kmer selection for de novo transcriptome assembly. Bioinformatics, 32(11), 1670–1677. https://doi.org/10.1093/bioinformatics/btw217spa
dc.relation.referencesFang, Z. C., Tan, J., Wu, S. F., Li, M., Xu, C. M., Xie, Z. J., & Zhu, H. Q. (2019). PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience, 8(6). https://doi.org/10.1093/gigascience/giz066spa
dc.relation.referencesFounou, R. C., Founou, L. L., & Essack, S. Y. (2018). Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrobial Resistance and Infection Control, 7. https://doi.org/10.1186/s13756-018-0423-0spa
dc.relation.referencesKim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116spa
dc.relation.referencesKotsianti, S. B., & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4693 LNAI(PART 2), 493–500. https://doi.org/10.1007/978-3-540-74827-4_62spa
dc.relation.referencesKrawczyk, P S, Lipinski, L., & Dziembowski, A. (2018a). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321spa
dc.relation.referencesKrawczyk, P S, Lipinski, L., & Dziembowski, A. (2018b). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321spa
dc.relation.referencesKrawczyk, Pawel S, Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35–e35. https://doi.org/10.1093/nar/gkx1321spa
dc.relation.referencesLe Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., … Deslandes, L. (2015). A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 161(5), 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025spa
dc.relation.referencesLi, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033spa
dc.relation.referencesLi, X. Z., Plesiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14spa
dc.relation.referencesLiu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., … Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7spa
dc.relation.referencesLowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5), 955–964. https://doi.org/10.1093/nar/25.5.955spa
dc.relation.referencesMarçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011spa
dc.relation.referencesMartinez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399spa
dc.relation.referencesNishida, H. (2012). Comparative Analyses of Base Compositions, DNA Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and Plasmids. International Journal of Evolutionary Biology, 2012, 1–5. https://doi.org/10.1155/2012/342482spa
dc.relation.referencesOlsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886. https://doi.org/10.1007/s10096-015-2323-zspa
dc.relation.referencesOtzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037spa
dc.relation.referencesRen, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5spa
dc.relation.referencesRoss, D. L., & Schultz, R. K. (1996). Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 9(2), 215–226. https://doi.org/10.1089/jam.1996.9.215spa
dc.relation.referencesRoyer, G., Decousser, J. W., Branger, C., Dubois, M., Médigue, C., Denamur, E., & Vallenet, D. (2018). PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial Genomics, 4(9), 1–8. https://doi.org/10.1099/mgen.0.000211spa
dc.relation.referencesRubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/javeriana.umed61-2.sngsspa
dc.relation.referencesSchroeder, M., Brooks, B. D., & Brooks, A. E. (2017, January 18). The complex relationship between virulence and antibiotic resistance. Genes, Vol. 8. https://doi.org/10.3390/genes8010039spa
dc.relation.referencesTorres Manno, M. A., Pizarro, M. D., Prunello, M., Magni, C., Daurelio, L. D., & Espariz, M. (2019). GeM-Pro: a tool for genome functional mining and microbial profiling. Applied Microbiology and Biotechnology, 103(7), 3123–3134. https://doi.org/10.1007/s00253-019-09648-8spa
dc.relation.referencesVan Horn, C., Wu, F. N., Zheng, Z., Dai, Z. H., & Chen, J. C. (2019). Detection of a Single-Copy Plasmid, pXFSL21, in Xylella fastidiosa Strain Stag’s Leap with Two Toxin-Antitoxin Systems Using Next-Generation Sequencing. Phytopathology, 109(2), 240–247. https://doi.org/10.1094/phyto-07-18-0249-fispa
dc.relation.referencesWHO. (2017). Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Who, 7. Retrieved from https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededspa
dc.relation.referencesWootton, J. C. (1994). Non-globular domains in protein sequences: Automated segmentation using complexity measures. Computers and Chemistry, 18(3), 269–285. https://doi.org/10.1016/0097-8485(94)85023-2spa
dc.relation.referencesXavier, B. B., Sabirova, J., Pieter, M., Hernalsteens, J. P., De Greve, H., Goossens, H., & Malhotra-Kumar, S. (2014). Employing whole genome mapping for optimal de novo assembly of bacterial genomes. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-484spa
dc.relation.referencesZhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.proposalPipeLinespa
dc.subject.proposalAlgoritmo de Clasificacióneng
dc.subject.proposalKlebsiella pneumoniaespa
dc.subject.proposalPlásmidosspa
dc.subject.proposalSecuenciación de Nueva Generaciónspa
dc.titleIdentificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniaespa
dc.title.translatedIdentification of plasmid-associated contigs obtained from whole genome sequencing of Klebsiella pneumoniae isolateseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Diagnóstico molecular de resistencia y virulencia, y seguimiento epidemiológico de bacterias Gram negativas multirresistentes causantes de IAAS, basado en secuenciación de genoma completo (WGS) y datos sociodemográficos y clínicosspa
oaire.fundernamecolcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019105900.2022.pdf
Tamaño:
2.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: