Uso de células dendríticas en la generación de respuesta inmune inducida por péptidos sintéticos derivados de mycobacterium tuberculosis

dc.contributor.advisorOcampo Cifuentes, Marisol
dc.contributor.authorSánchez Barinas, Christian David
dc.contributor.researchgroupFIDICspa
dc.contributor.researchgroupGrupo Funcional Tuberculosisspa
dc.date.accessioned2021-09-24T22:49:48Z
dc.date.available2021-09-24T22:49:48Z
dc.date.issued2021-09-24
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractMycobacterium tuberculosis (Mtb) es uno de los patógenos más exitosos de la humanidad, siendo el principal causante de tuberculosis, responsable del mayor número de muertes a nivel mundial por un agente infeccioso, estimándose que un tercio de la población mundial es portadora del bacilo. La adaptación evolutiva de este patógeno se debe principalmente a su habilidad para evadir el sistema inmune del hospedero, evitando que éste despliegue una respuesta inmune efectiva en casos donde se desarrolla tuberculosis activa. Es así como se hace necesario mejorar el reconocimiento del patógeno por actores del sistema inmune para lo cual se pueden emplear células dendríticas (CDs) derivadas por métodos estándares con 1,25 ng/mL IL-4 y 2,5 ng/mL GM-CSF fueron pulsados con péptidos sintéticos (n=114) provenientes de proteínas (n=16) involucradas en la interacción micobacteria-hospedero, los cuales han sido modificados en la secuencia de aminoácidos; los cambios estratégicos permiten una mayor interacción con el CMH-II del hospedero y de esta manera hacen que los péptidos sean más inmunogénicos que las secuencias nativas. Esta interacción permite entrar en contacto con linfocitos TCD4+ lo que se evaluó mediante la expansión clonal de células de memoria; además estos linfocitos permitieron el control del crecimiento intracelular de Mtb en macrófagos infectados. Este trabajo contribuye así a que empleando péptidos modificados considerados como candidatos vacunales contra tuberculosis y presentados por CDs, se pueda aumentar la respuesta inmunológica del individuo y llegar a contribuir en el control de la infección por Mtb mediante la presentación antigénica a linfocitos TCD4+ conocidos como los mayores efectores en la inmunidad contra tuberculosis.(Texto tomado de la fuente)spa
dc.description.abstractMycobacterium tuberculosis (Mtb) is one of the most successful pathogens of humanity, being the main cause of tuberculosis, responsible for the highest number of deaths worldwide by an infectious agent that estimates a third of the world's population is a carrier of the bacillus. The evolutionary adaptation of this pathogen is mainly due to its ability to evade the host's immune system, preventing it from displaying an effective immune response in cases where active tuberculosis develops. This is how it is necessary to improve the recognition of the pathogen by actors of the immune system for which dendritic cells (DC). That was how, DC’s were derived by standard methods with 1,25 ng/mL IL-4 and 2,5 ng/mL GM-CSF were pulsed with synthetic peptides (n=114) from proteins (n=16) involved in the mycobacterial-host interaction, which have been modified in the amino acid sequence; the strategic changes allow greater interaction with the host MHC-II and thus make the peptides more immunogenic than the native sequences. This interaction allows contact with TCD4+ lymphocytes, which is evaluated by clonal expansion of memory; in addition, these lymphocytes allowed the control of the intracellular growth of Mtb in infected macrophages. This work thus contributes to the fact that using peptides modified specifically as vaccine candidates against tuberculosis and pulsed by CD, can increase the individual's immune response, and contribute to the control of Mtb infection by antigenic presentation to TCD4+ lymphocytes known as major effectors in immunity against tuberculosis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Bioquímicaspa
dc.description.researchareaTuberculosisspa
dc.format.extent155 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80306
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ciencias Fisiológicasspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Bioquímicaspa
dc.relation.referencesAbebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin Exp Immunol. 2009;157(2):235-43.spa
dc.relation.referencesGagneux S, P. S. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. . Lancet Infect Dis. 2007;7(5):328-37.spa
dc.relation.referencesCoscolla M, S. G. Consequences of genomic diversity in Mycobacterium tuberculosis. Seminars in Immunology 2014;26(6):431-44.spa
dc.relation.referencesWHO. Global Tuberculosis Report 2020. 2020.spa
dc.relation.referencesMashael Al-Saeedi., Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist. 2017;10:333-42.spa
dc.relation.referencesPalomino JC, Martin A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3:317-40.spa
dc.relation.referencesDockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 Years? Frontiers in Immunology. 2017;8:1134.spa
dc.relation.referencesMoliva J, Turner J, Torrelles J. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine. 2015;33(39):5035-41.spa
dc.relation.referencesHatherill M, Tait D, McSha H. Clinical Testing of Tuberculosis Vaccine Candidates. Microbiology Spectrum. 2016;4(5).spa
dc.relation.referencesAERAS. Global Clinical Portfolio of TB Vaccine Candidates. 2020.spa
dc.relation.referencesOcampo M, Patarroyo M, Vanegas M, Alba M, Patarroyo M. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology. 2014;40(2):117-45.spa
dc.relation.referencesRodríguez DC, Ocampo M, Reyes C, Arévalo-Pinzón G, Munoz M, Patarroyo MA, et al. Cell-Peptide Specific Interaction Can Inhibit Mycobacterium tuberculosis H37Rv Infection. Journal of Cellular Biochemistry. 2015;117:946-58.spa
dc.relation.referencesDíaz D, Ocampo M, Varela Y, Curtidor H, Patarroyo M, Patarroyo M. Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion. Molecular and Cellular Biochemistry. 2017;430(1-2):149-60.spa
dc.relation.referencesOcampo M, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Specific Interaction between Mycobacterium tuberculosis Lipoprotein-derived Peptides and Target Cells Inhibits Mycobacterial Entry In Vitro. Chemical biology & drug design. 2014;84(6):626-41.spa
dc.relation.referencesCarabali-Isajar M, Ocampo M, Rodriguez D, Vanegas M, Curtidor H, Patarroyo M, et al. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic & Medicinal Chemistry. 2018;36(9):2401-9.spa
dc.relation.referencesPatarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi epitope, subunit-based, chemically synthesized anti-malarial vaccines. Molecular Immunology. 2008;12:1915-35.spa
dc.relation.referencesCurtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. molecules. 2017;22:2199.spa
dc.relation.referencesPatarroyo M, Bermúdez A, Alba M, Vanegas M, Moreno-Vranich A, Poloche L, et al. IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS ONE. 2015;10(4):e0123249.spa
dc.relation.referencesAhsan M. Recent advances in the development of vaccines for tuberculosis. Therapeutic Advances in Vaccines. 2015;3(3):66-75.spa
dc.relation.referencesDalmia N, Ramsay AJ. Prime–boost approaches to tuberculosis vaccine development. Expert Rev Vaccines. 2012;11(10):1221-33.spa
dc.relation.referencesGoldberg M, Saini N, Porcelli S. Evasion of Innate and Adaptive Immunity by Mycobacterium tuberculosis. American Society for Microbiology. 2014;2(5).spa
dc.relation.referencesPatarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chemical Reviews. 2011;111:3459-507.spa
dc.relation.referencesPatarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. ACCOUNTS OF CHEMICAL RESEARCH. 2008;41(3):377-236.spa
dc.relation.referencesStewart G, Robertson B, Young D. Tuberculosis: a problem with persistence. Nat Rev Microbiol. 2003;1(2):97-105.spa
dc.relation.referencesErnst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12:581-91.spa
dc.relation.referencesBaena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens. 2009;74(3):189-204.spa
dc.relation.referencesvan Crevel R, Ottenhoff T, van der Meer J. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15(2):294-309.spa
dc.relation.referencesMantilla Galindo A, Ocampo M, Patarroyo M. Experimental models used in evaluating anti tuberculosis vaccines: the latest advances in the field. Expert Review of Vaccines. 2019;18(4):365-377. 144spa
dc.relation.referencesOrr M, Ireton G, Beebe E, Huang PW, Reese V, Argilla D, et al. Immune subdominant antigens as vaccine candidates against Mycobacterium tuberculosis. Journal Immunology. 2014;193(6):2911-8.spa
dc.relation.referencesTameris M, Hatherill M, Landry B, Scriba T, Snowden M, Lockhart S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381(9871):1021-8.spa
dc.relation.referencesDoherty T, Olsen A, Weischenfeldt J, Huygen K, D'Souza S, Kondratieva T, et al. Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis. J Infect Dis. 2004;190(12):2146-53.spa
dc.relation.referencesDemangel C, Bean A, Martin E, Feng C, Kamath A, Britton W. Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guérin infected dendritic cells. Eur J Immunol. 1999;29(6):1972-9.spa
dc.relation.referencesRubakova E, Petrovskaya S, Pichugin A, Khlebnikov V, McMurray D, Kondratieva E, et al. Specificity and efficacy of dendritic cell-based vaccination against tuberculosis with complex mycobacterial antigens in a mouse model. Tuberculosis. 2007;87(2):134-44.spa
dc.relation.referencesGarcía J, Puentes A, Rodríguez L, Ocampo M, Curtidor H, Vera R, et al. Mycobacterium tuberculosis Rv2536 protein implicated in specific binding to human cell lines. Protein Science. 2005;14(9):2236-45.spa
dc.relation.referencesForero M, Puentes A, Cortés J, Castillo F, Vera R, Rodríguez L, et al. Identifying putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Science. 2005;14(11):2767-80.spa
dc.relation.referencesVera-Bravo R, Torres E, Valbuena J, Ocampo M, Rodriguez L, Puentes A, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochemical and biophysical research communications. 2005;332(3):771-81.spa
dc.relation.referencesChapeton-Montes J, Plaza D, Curtidor H, Forero M, Vanegas M, Patarroyo M, et al. Characterizing the Mycobacterium tuberculosis Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Science. 2008;17(2):342-51.spa
dc.relation.referencesPlaza D, Curtidor H, Patarroyo M, Chapeton-Montes J, Reyes C, Barreto J, et al. The Mycobacterium tuberculosis membrane protein Rv2560--biochemical and functional studies. The FEBS journal. 2007;274(24):6352-64.spa
dc.relation.referencesPatarroyo M, Curtidor H, Plaza D, Ocampo M, Reyes C, Saboya O, et al. Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine candidates? Vaccine. 2008;26(34):4387-95.spa
dc.relation.referencesPatarroyo M, Plaza D, Ocampo M, Curtidor H, Forero M, Rodriguez L, et al. Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochemical and biophysical research communications. 2008;372(4):935-40.spa
dc.relation.referencesCifuentes D, Ocampo M, Curtidor H, Vanegas M, Forero M, Patarroyo M, et al. Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: potential TB vaccine candidate antigen. BMC Microbiology. 2010.spa
dc.relation.referencesCáceres S, Ocampo M, Arévalo-Pinzón G, Jimenez R, Patarroyo M, Patarroyo M. The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides. 2011;32(1):1-10.spa
dc.relation.referencesOcampo M, Aristizábal-Ramírez D, Rodríguez D, Muñoz M, Curtidor H, Vanegas M, et al. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein engineering. 2012;25(5):235-42.spa
dc.relation.referencesOcampo M, Rodríguez D, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids. 2012;42(6):2067-77.spa
dc.relation.referencesRodríguez D, Ocampo M, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides. 2012;38(2):208-16.spa
dc.relation.referencesOPS-OMS. Situación del control de la Tuberculosis en las Américas; 2021.spa
dc.relation.referencesMaltempe FG, Caleffi-Ferracioli KR, Ribeirodo RC, de Oliveira D, F.,, Dias Siqueira VL, Regiane LS, et al. Activity of rifampicin and linezolid combination in Mycobacterium tuberculosis. Tuberculosis. 2017;104:24-9.spa
dc.relation.referencesBertholet S, Ireton G, Ordway D, Windish H, Pine S, Kahn M, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med. 2010;2(53):53ra74.spa
dc.relation.referencesINS. Boletín informativo semanal. Semana 16. 2021.spa
dc.relation.referencesForrellad MA. KL, Gioffré A. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1): 3–66.spa
dc.relation.referencesMaitra A. MT, HealyCell J. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019;43(5): 548–575.spa
dc.relation.referencesKaur I. GM, Skovierová H. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol. 2009;69:23-78spa
dc.relation.referencesKieser KJ, Rubin EJ. How sisters grow apart: mycobacterial growth and division. Nature Reviews Microbiology. 2014;12:550-62spa
dc.relation.referencesSH K. How can immunology contribute to the control of tuberculosis? Nature reviews Immunology. Nat Rev Immunol 2001;1(1):20-30.spa
dc.relation.referencesKrutzik SR, Modlin RL. The role of Toll-like receptors in combating mycobacteria. Seminars in Immunology. 2004;16(1):35-41.spa
dc.relation.referencesHarding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010;8(4):296-307.spa
dc.relation.referencesFerwerda G, Girardin SE, Kullberg B, Bourhis LL, de Jong DJ, Langenberg DML, et al. NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(3):e34.spa
dc.relation.referencesPandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, et al. NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathog. 2009;5(7):e1000500.spa
dc.relation.referencesCoulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL, Yang Y, et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. journal of Experimental Medicine. 2009.spa
dc.relation.referencesAwuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cellular and molecular life sciences. 2016;74(9):1625-48.spa
dc.relation.referencesMogues T, Goodrich M, Ryan L, LaCourse R, North R. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2001;193(3):271-80.spa
dc.relation.referencesPai M, Behr M, Dowdy D, Dheda K, Divangahi M, Boehme C et al. Tuberculosis. Nature Reviews Disease Primers. 2016;2(1).spa
dc.relation.referencesRamakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology. 2012;12(5):352-366.spa
dc.relation.referencesScanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, et al. Depletion of Cd4+ T Cells Causes Reactivation of Murine Persistent Tuberculosis despite Continued Expression of Interferon γ and Nitric Oxide Synthase 2. J Exp Med. 2000;192(3):347-58.spa
dc.relation.referencesRepique C, Li A, Brickey W, Ting J, Collins F, Morris S. Susceptibility of mice deficient in the MHC class II transactivator to infection with Mycobacterium tuberculosis. Scand J Immunol. 2003;58(1):15-22.spa
dc.relation.referencesBürdek M, Spranger S, Wilde S, Frankenberger B, Schendel DJ, Geiger C. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation. J Transl Med. 2010;8:90.spa
dc.relation.referencesHajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLoS ONE. 2015;10(12):e0144397.spa
dc.relation.referencesGriffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nature communications. 2016.spa
dc.relation.referencesLucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. 2007;26(4):503-17.spa
dc.relation.referencesDauer M, Schad K, Herten J, Junkmann J, Bauer C, Kiefl R, et al. FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells. J Immunol Methods. 2005;302(1-2):145-55.spa
dc.relation.referencesMailliard R, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens C, Kapsenberg M, et al. alpha type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004;64(17):5934-7.spa
dc.relation.referencesBernal-Estevez DA, Tovar-Murillo DR, Parra- Lopez CA. Functional and Phenotypic Analysis of Two-Day Monocyte-Derived Dendritic Cells Suitable for Immunotherapy Purposes. SOJ Immunology. 2016;4(21):1-18.spa
dc.relation.referencesWegner J, Hackenberg S, Scholz C, Chuvpilo S, Tyrsin D, Matskevich A, et al. High density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood. 2015;126(2):185-94.spa
dc.relation.referencesMartinuzzi E, Afonso G, Gagnerault M-C, Naselli G, Mittag D, Combadière B, et al. Accelerated co-cultured dendritic cells (acDCs) enhance human antigen-specific T-cell responses. Blood. 2011;118(8):2128-37.spa
dc.relation.referencesVerdijk P, van Veelen PA, de Ru. AH, Hensbergen PJ, Mizuno K, Koerten HK, et al. Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. Eur J Immunol. 2004;34(1):156-64.spa
dc.relation.referencesSherman M, Weber D, Spotts E, Moore J, Jensen P. Inefficient peptide binding by cell surface class II MHC molecules. Cell Immunol. 1997;182(1):1-11.spa
dc.relation.referencesWinzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med. 1997;185(2):317.28.spa
dc.relation.referencesCella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997;9(1):10-6.spa
dc.relation.referencesRutella S, Danese S, G. L. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435-40.spa
dc.relation.referencesShinde P, Fernandes S, Melinkeri S, Kale V, Limaye L. Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Nature. 2018;8:5705.spa
dc.relation.referencesForrellad MA. KL, Gioffré A. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1): 3–66.spa
dc.relation.referencesBarratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano III S, et al. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. . J Immunol. 2000;164(5):2487-95.spa
dc.relation.referencesZimmer M, Larregina A, Castillo C, Capuano S, Falo LJ, Murphey-Corb M, et al. Disrupted homeostasis of Langerhans cells and interdigitating dendritic cells in monkeys with AIDS. Blood. 2002;99(8):2859-68.spa
dc.relation.referencesSallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182(2):389-400.spa
dc.relation.referencesMajlessi L, Benoit C, Albrecht I, García JE, Nouze C, Pieters J, et al. Inhibition of Phagosome Maturation by Mycobacteria Does Not Interfere with Presentation of Mycobacterial Antigens by MHC Molecules. Journal Immunology. 2007;179(3):1825-33.spa
dc.relation.referencesSteinman RM, Turley S, Mellman I, K. I. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191(3):411-6.spa
dc.relation.referencesSantambrogio L, Sato AK, Carven GJ, Belyanskaya SL, Strominger JL, Stern LJ. Extracellular antigen processing and presentation by immature dendritic cells. PNAS. 1999;96(26):15056-61.spa
dc.relation.referencesRosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M., Drijfhout JW, et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol. 2013;43:2554-65.spa
dc.relation.referencesSallusto F, Geginat J, A. L. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745-63.spa
dc.relation.referencesMoser JM, Sassano ER, Leistritz del C, Eatrides JM, Phogat S, Koff W, et al. Optimization of a dendritic cell-based assay for the in vitro priming of naïve human CD4+ T cells. J Immunol Methods. 2010;353(1-2):8-19.spa
dc.relation.referencesMackey MF, Barth RJ Jr, RJ. N. The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 1998;63(4):418- 28.spa
dc.relation.referencesKrowka JF, Cuevas B, Maron DC, Steimer KS, Ascher MS, . SH. Expresión de CD69 después de la estimulación in vitro: un método rápido para cuantificar las respuestas de linfocitos alterados en individuos infectados por el VIH. J Adquirir inmunodeficiencia Syndr Hum Retrovirol. 1996;11(1):95-104.spa
dc.relation.referencesGonzález-Amaro R., Cortés JR, Sánchez-Madrid F, P. M. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625-32.spa
dc.relation.referencesBernal-Estévez DA. Evaluación de la capacidad inmuno-estimulante de la terapia neo adyuvante con Doxorrubicina Ciclofosfamida en pacientes con cáncer de mama: Universidad Nacional de Colombia; 2017.spa
dc.relation.referencesQuah B. PC. The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation. J Vis Exp. 2010;(44): 2259.spa
dc.relation.referencesParish CR. GM, Quah B. Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation. . Curr Protoc Immunol. 2009;Chapter 4:Unit4.9.spa
dc.relation.referencesZhou Juhua, Nagarkatii P, Zhong Y, Nagarkatti M. Characterization of T-Cell Memory Phenotype after In Vitro Expansion of Tumor-infiltrating Lymphocytes from Melanoma Patients. Anticancer Res. 2011;31(12):4099-109.spa
dc.relation.referencesGeginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. Pathol Biol (Paris). 2003;51(2):64-6.spa
dc.relation.referencesSallusto F, Lenig D, Förster R, Lipp M, A. L. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6574):708-12.spa
dc.relation.referencesGattinoni L. RN. Moving T memory stem cells to the clinic. Blood. 2013;121(4):567.spa
dc.relation.referencesJenkins MK, JJ. M. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J Immunol. 2012;188(9):4135-40.spa
dc.relation.referencesZhu J, Yamane H, WE. P. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445-89.spa
dc.relation.referencesMuranski P, Restifo N. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121(13):2402-14.spa
dc.relation.referencesLeung S, Liu X, Fang L, Chen X, Guo T, Zhang J. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol. 2010;7(3):182-9.spa
dc.relation.referencesZhu J, WE. P. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557-69.spa
dc.relation.referencesFuertes Marraco SA, Neubert NJ, Verdeil G, DE. S. Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol. 2015;6:310.spa
dc.relation.referencesL.S.K. W. PD-1 and CTLA4: Two checkpoints, one pathway? Europe PMC Funders Group. 2017;2(11).spa
dc.relation.referencesWalker LS, DM. S. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852-63.spa
dc.relation.referencesKopf, M., Coyle, A. J., Schmitz, N., Barner, M., Oxenius, A., Gallimore, A., et al. (2000). Inducible costimulator protein controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192, 53–61.spa
dc.relation.referencesHerman, A. E., Freeman, G. J., Mathis, D., and Benoist, C. (2004). CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489.spa
dc.relation.referencesRottman, J. B., Smith, T., Tonra, J. R., Ganley, K., Bloom, T., Silva, R., et al. (2001). The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2, 605–611.spa
dc.relation.referencesHubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory Molecules on Immunogenic Versus Tolerogenic Human Dendritic Cells. Frontiers in Immunology. 2013;4.spa
dc.relation.referencesFillatreau S, Gray D. T Cell Accumulation in B Cell Follicles Is Regulated by Dendritic Cells and Is Independent of B Cell Activation. Journal of Experimental Medicine. 2003;197(2):195-206.spa
dc.relation.referencesB Wagner, L Fattorini, M Wagner, S H Jin, R Stracke, G Amicosante, et al. Antigenic properties and immunoelectron microscopic localization of Mycobacterium fortuitum beta lactamase. Antimicrobial Agents and Chemotherapy. 1995;39:3739-45.spa
dc.relation.referencesBoggiano C, Eichelberg K, Ramachandra L, Shea J, Ramakrishnan L, Behar S, et al. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design"- Meeting report. Vaccine. 2017;35.spa
dc.relation.referencesUsman MM. IS, Teoh TC. Vaccine research and development: tuberculosis as a global health threat. Central-European journal of immunology. Cent Eur J Immunol. 2017;42(29): 196– 204.spa
dc.relation.referencesPoyntz HC. SE, Griffiths KL. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis. 2014;94:226–237.spa
dc.relation.referencesMoliva JI. TJ, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine. 2015;22; 33 (39):5035-41.spa
dc.relation.referencesVizcaíno C, Restrepo-Montoya D, Rodríguez D, Niño LF, Ocampo M, e. a. Computational Prediction and Experimental Assessment of Secreted/ Surface Proteins from Mycobacterium tuberculosis H37Rv. PLoS Comput Biol. 2010;6(6).spa
dc.relation.referencesRestrepo-Montoya D, Vizcaino C, Nino LF, Ocampo M, Patarroyo ME, MA. P. Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinformatics. 2009;10:134.spa
dc.relation.referencesLi W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(W1):W580- 4.spa
dc.relation.referencesBairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2005;33.spa
dc.relation.referencesGardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics. 2005;21(5):617-23.spa
dc.relation.referencesKuo-Chen Chou, &., Hong-Bin Shen. "Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms". Nature Protocols. 2008;3:153-62.spa
dc.relation.referencesHong-Bin Shen, &, Kuo-Chen Chou. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Engineering, Design and Selection. 2007;20:39-46.spa
dc.relation.referencesRashid M, Saha S, R G. Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics. 2007;8:337.spa
dc.relation.referencesJannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne, Brunak. S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783-95.spa
dc.relation.referencesJannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer, Brunak. S. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:167.spa
dc.relation.referencesAgnieszka S.Juncker, Hanni Willenbrock, Gunnar von Heijne, Søren Brunak, Henrik Nielsen, Anders Krogh. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12(8):1652-62.spa
dc.relation.referencesBendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58.spa
dc.relation.referencesSonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology. 1998;6:175-82.spa
dc.relation.referencesKäll L, Krogh A, Sonnhammer. ELL. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Research. 2007;35:429-32.spa
dc.relation.referencesJulenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15(2):153-64.spa
dc.relation.referencesYubin Xie, Yueyuan Zheng, Hongyu Li, Xiaotong Luo, Zhihao He, Shuo Cao, et al. GPS Lipid: a robust tool for the prediction of multiple lipid modification sites. Scientific Reports. 2016;6.spa
dc.relation.referencesLarsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Research. 2006;2(2).spa
dc.relation.referencesJones D. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.spa
dc.relation.referencesLawrence A Kelley, Stefans Mezulis, Christopher M Yates, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10:845- 58.spa
dc.relation.referencesBienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, et al. The SWISS MODEL Repository - new features and functionality. Nucleic Acids Research. 2017;45:313-19.spa
dc.relation.referencesBiasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. 2014;42:252-58.spa
dc.relation.referencesSalomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3:198-210.spa
dc.relation.referencesDamian Szklarczyk, John H Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Milan Simonovic ea. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362-D8.spa
dc.relation.referencesOcampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology. 2012;40(2):117-45.spa
dc.relation.referencesMerrifield R. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.spa
dc.relation.referencesSreerama N., RW. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry. 2000;15:252-60.spa
dc.relation.referencesOcampo M, Patarroyo MA, Vanegas M, Alba MP, ME. P. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology 2013;40(2).spa
dc.relation.referencesBermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infection and Immunity. 1996;64(4):1400-06.spa
dc.relation.referencesLuiz E. Bermudez, Felix J. Sangari, Peter Kolonoski, Mary Petrofsky, Goodman. J. The Efficiency of the Translocation of Mycobacterium tuberculosis across a Bilayer of Epithelial and Endothelial Cells as a Model of the Alveolar Wall Is a Consequence of Transport within Mononuclear Phagocytes and Invasion of Alveolar Epithelial Cells. Infection and Immunity. 2002;70(1):140-46.spa
dc.relation.referencesReynisson B, Barra C, Kaabinejadian S, Hildebrand W, Peters B, Nielsen M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. Journal of Proteome Research. 2020;19(6):2304-2315.spa
dc.relation.referencesCoscolla M, Gagneuxa aS. Consequences of genomic diversity in Mycobacterium tuberculosis. Seminars in Immunology. 2014;26:431-44.spa
dc.relation.referencesGasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., et al. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. Human Press. 2007:571-607.spa
dc.relation.referencesJackKyte F, Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 1982;157(1):105-32.spa
dc.relation.referencesShen HB, KC. C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. . Protein and peptide letters. 2009;16(12):1478-84.spa
dc.relation.referencesChen J., Liu H., Yang J., Chou K-C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. AminoAcids. 2007;33:423-8.spa
dc.relation.referencesAndreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen. M. Accurate pan specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(0):641-50.spa
dc.relation.referencesKelly SM, Jess TJ, NC. P. How to study proteins by circular dichroism. . Biochimica et Biophysica Acta. 2005;10:119-39.spa
dc.relation.referencesHajam I, Dar P, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLOS ONE. 2015;10(12):e0144397.spa
dc.relation.referencesSánchez-Barinas C, Ocampo M, Vanegas M, Castañeda-Ramirez J, Patarroyo M, Patarroyo M. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules. 2018;23(3):526.spa
dc.relation.referencesSánchez-Barinas C, Ocampo M, Tabares L, Bermúdez M, Patarroyo M, Patarroyo M. Specific Binding Peptides from Rv3632: A Strategy for BlockingMycobacterium tuberculosisEntry to Target Cells?. BioMed Research International. 2019;2019:1-13.spa
dc.relation.referencesH. Škovierová, G. Larrouy-Maumus, H. Pham et al., “Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis,” The Journal of Biological Chemistry, vol. 285, no. 53, pp. 41348–41355, 2010.spa
dc.relation.referencesJacobs AJ, Juthathip Mongkolsapaya, Gavin R. Screaton, Helen McShane, aRJ. W. Antibodies and tuberculosis. Tuberculosis (Edinb). 2016;101:102-3.spa
dc.relation.referencesPatarroyo ME, Bermúdez A, MA. P. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chemical Reviews 2011.spa
dc.relation.referencesCurtidor H, Patarroyo M, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 40(29):117-45.spa
dc.relation.referencesCarabali-Isajar M, Ocampo M, Varela Y, Díaz-Arévalo D, Patarroyo M, Patarroyo M. Antibodies targeting Mycobacterium tuberculosis peptides inhibit mycobacterial entry to infection target cells. International Journal of Biological Macromolecules. 2020;161:712-720.spa
dc.relation.referencesBürdek M, Spranger S, Wilde S, Frankenberger B, Schendel D, Geiger C. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation. Journal of Translational Medicine. 2010;8(1):90.spa
dc.relation.referencesDelgado G, Granados D. Células Dendríticas (CDs) diferenciadas a partir de Monocitos humanos como herramienta para el estudio de agentes antileishmaniales. Nova. 2008;6(10):162.spa
dc.relation.referencesLubong Sabado R, Kavanagh D, Kaufmann D, Fru K, Babcock E, Rosenberg E et al. In Vitro Priming Recapitulates In Vivo HIV-1 Specific T Cell Responses, Revealing Rapid Loss of Virus Reactive CD4+ T Cells in Acute HIV-1 Infection. PLoS ONE. 2009;4(1):e4256.spa
dc.relation.referencesParra D, Rieger A, Li J, Zhang Y, Randall L, Hunter C et al. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. Journal of Leukocyte Biology. 2011;91(4):525-536.spa
dc.relation.referencesLucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic Cells Prime Natural Killer Cells by trans-Presenting Interleukin 15. Immunity. 2007;26(4):503-517.spa
dc.relation.referencesSchlienger K, Craighead N, Lee K, Levine B, June C. Efficient priming of protein antigen– specific human CD4+ T cells by monocyte-derived dendritic cells. Blood. 2000;96(10):3490-3498.spa
dc.relation.referencesLópez C, Yepes-Pérez Y, Díaz-Arévalo D, Patarroyo M, Patarroyo M. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile. Frontiers in Cellular and Infection Microbiology. 2018;8.spa
dc.relation.referencesRosalia R, Quakkelaar E, Redeker A, Khan S, Camps M, Drijfhout J et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T cell activation. European Journal of Immunology. 2013;43(10):2554-2565.spa
dc.relation.referencesDavoust J, Banchereau J. Naked antigen-presenting molecules on dendritic cells. Nature Cell Biology. 2000;2(3):E46-E48.spa
dc.relation.referencesSantambrogio L, Sato A, Carven G, Belyanskaya S, Strominger J, Stern L. Extracellular antigen processing and presentation by immature dendritic cells. Proceedings of the National Academy of Sciences. 1999;96(26):15056-15061.spa
dc.relation.referencesBrinke A, Trzonkowska N, Mansilla MJ, Turksma AW, Piekarska K, et al. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front Immunol 2017.spa
dc.relation.referencesKaufmann SH . Libro de Abbas Lancet 2010; 375:2110-19.spa
dc.relation.referencesYoon H, Kim TS, Braciale TJ. The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus. PLoS One 2010; 5(11): e15423.spa
dc.relation.referencesDavoust J, Banchereau J. Naked antigen-presenting molecules on dendritic cells. Nature Cell Biology. 2000;2(3):E46-E48.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalTuberculosisspa
dc.subject.proposalpéptidos sintéticosspa
dc.subject.proposalcélulas dendríticasspa
dc.subject.proposallinfocito T multifuncionalesspa
dc.subject.proposalinhibición de crecimientospa
dc.titleUso de células dendríticas en la generación de respuesta inmune inducida por péptidos sintéticos derivados de mycobacterium tuberculosisspa
dc.title.translatedUse of dendritic cells in the generation of immune response induced by synthetic peptides derived from mycobacterium tuberculosiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación Instituto de Inmunología de Colombia- FIDICspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032415463.2021.pdf
Tamaño:
6.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: