El problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov
Archivos
Autores
Rippe Espinosa, Miguel Angel
Director
Rodríguez Blanco, Guillermo
Tipo de contenido
Trabajo de grado - Doctorado
Idioma del documento
EspañolFecha de publicación
2021-09-21
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
En el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios de Sobolev, espacios anisotrópicos con pesos y la existencia de ondas solitarias para el problema de valor inicial asociado a la ecuación: %En el presente trabajo, se estudia el buen planteamiento local en los espacios de Sobolev $H^s(\mathbb{R}^2)$ para $s>2$, del problema de valor inicial asociado a la ecuación: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ donde $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$. (Texto tomado de la fuente).
Abstract
The present work, deals with issues such as the local well-posedness in the Sobolev spaces, weighted anisotropic spaces and the existence of solitary waves, for the initial value problem associated to: %In this work, the local well-posedness in the Sobolev spaces $H^s(\mathbb{R}^2)$ for $s>2$ is studied, for the initial value problem associated to: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ where $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$.