El problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov

dc.contributor.advisorRodríguez Blanco, Guillermo
dc.contributor.authorRippe Espinosa, Miguel Angel
dc.date.accessioned2021-09-28T15:00:34Z
dc.date.available2021-09-28T15:00:34Z
dc.date.issued2021-09-21
dc.description.abstractEn el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios de Sobolev, espacios anisotrópicos con pesos y la existencia de ondas solitarias para el problema de valor inicial asociado a la ecuación: %En el presente trabajo, se estudia el buen planteamiento local en los espacios de Sobolev $H^s(\mathbb{R}^2)$ para $s>2$, del problema de valor inicial asociado a la ecuación: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ donde $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$. (Texto tomado de la fuente).spa
dc.description.abstractThe present work, deals with issues such as the local well-posedness in the Sobolev spaces, weighted anisotropic spaces and the existence of solitary waves, for the initial value problem associated to: %In this work, the local well-posedness in the Sobolev spaces $H^s(\mathbb{R}^2)$ for $s>2$ is studied, for the initial value problem associated to: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ where $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.notesIncluye índice alfabéticospa
dc.format.extentvii, 137 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80322
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesG. P. Agrawal. Fiber-optic communication systems, volume 222. John Wiley & Sons, 2012.spa
dc.relation.referencesJ. P. Albert. Concentration compactness and the stability of solitary-wave solutions to nonlocal equations. Contemporary Mathematics, 221:1–30, 1999.spa
dc.relation.referencesT. B. Benjamin. Internal waves of permanent form in fluids of great depth. Journal of Fluid Mechanics, 29(3):559–592, 1967.spa
dc.relation.referencesT. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London A: Mathematical, physical and Engineering Sciences, 272(1220):47–78, 1972.spa
dc.relation.referencesH. A. Biagioni and F. Linares. Well-posedness Results for the Modified Zakharov-Kuznetsov Equation, pages 181–189. Birkhäuser Basel, Basel, 2003.spa
dc.relation.referencesJ. F. Bolaños Méndez. El problema de Cauchy asociado a una generalización de la ecuación ZK-BBM. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2018.spa
dc.relation.referencesJ. L. Bona and R. L. Sachs. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Communications in mathematical physics, 118(1):15–29, 1988.spa
dc.relation.referencesJ. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278(1287):555–601, 1975.spa
dc.relation.referencesJ. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de mathématiques pures et appliquées, pages 55–108, 1872.spa
dc.relation.referencesE. Bustamante, J. J. Urrea, and J. Mejia. The Zakharov–Kuznetsov equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 433(1):149–175, 2016.spa
dc.relation.referencesA. Cunha and A. Pastor. The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 417(2):660–693, 2014.spa
dc.relation.referencesA. Cunha and A. Pastor. The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in low regularity Sobolev spaces. Journal of Differential Equations, 261(3):2041–2067, 2016.spa
dc.relation.referencesA. Cunha and A. Pastor. Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. Journal of Differential Equations, 274:1067–1114, 2021.spa
dc.relation.referencesL. Dawson, H. McGahagan, and G. Ponce. On the decay properties of solutions to a class of Schrödinger equations. Proceedings of the American Mathematical Society, 136(6):2081–2090, 2008.spa
dc.relation.referencesA. De Bouard. Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 126(1):89–112, 1996.spa
dc.relation.referencesS. S. Dragomir. Some Gronwall type inequalities and applications. Nova Science, 2003.spa
dc.relation.referencesO. Duque. Sobre una versión bidimensional de la ecuación Benjamin-Ono generalizada. Tesis doctoral, Universidad Nacional de Colombia, Bogotá, 2014.spa
dc.relation.referencesA. Esfahani and A. Pastor. Instability of solitary wave solutions for the generalized BO–ZK equation. Journal of Differential equations, 247(12):3181–3201, 2009.spa
dc.relation.referencesA. Esfahani, A. Pastor, and J. L. Bona. Stability and decay properties of solitary-wave solutions to the generalized BO–ZK equation. Advances in Differential Equations, 20(9/10):801–834, 2015.spa
dc.relation.referencesA. V. Faminskii. The Cauchy problem for the Zakharov–Kuznetsov equation. Differentsial’nye Uravneniya, 31(6):1070–1081, 1995.spa
dc.relation.referencesL. Farah and M. Scialom. On the periodic “good” Boussinesq equation. Proceedings of the American Mathematical Society, 138(3):953–964, 2010.spa
dc.relation.referencesL. G. Farah. Global rough solutions to the critical generalized KdV equation. Journal of Differential Equations, 249(8):1968–1985, 2010.spa
dc.relation.referencesL. G. Farah, F. Linares, and A. Pastor. Global well-posedness for the k-dispersion generalized Benjamin-Ono equation. Differential and Integral Equations, 27(7/8):601–612, 2014.spa
dc.relation.referencesL. G. Farah and H. Wang. Global solutions in lower order Sobolev spaces for the generalized Boussinesq equation. Electronic Journal of Differential Equations, 2012(41):1–13, 2012.spa
dc.relation.referencesG. Fonseca, F. Linares, and G. Ponce. The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 30, pages 763–790. Elsevier, 2013.spa
dc.relation.referencesG. Fonseca and M. Pachón. Well-posedness for the two dimensional generalized Zakharov–Kuznetsov equation in anisotropic weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 443(1):566–584, 2016.spa
dc.relation.referencesG. Fonseca and G. Ponce. The IVP for the Benjamin–Ono equation in weighted Sobolev spaces. Journal of Functional Analysis, 260(2):436–459, 2011.spa
dc.relation.referencesA. Grünrock and S. Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 34(5):2061–2068, 2014.spa
dc.relation.referencesA. Halanay. Differential equations stability, oscillations, time lags. Academic Press inc., Londres, 23 edition, 1966.spa
dc.relation.referencesA. D. Ionescu and C. E. Kenig. Local and global wellposedness of periodic KP-I equations. In Mathematical Aspects of Nonlinear Dispersive Equations (AM-163), pages 181–212. Princeton University Press, 2009.spa
dc.relation.referencesR. J. Iório. KdV, BO and friends in weighted Sobolev spaces. In Functional-analytic methods for partial differential equations, pages 104–121. Springer, 1990.spa
dc.relation.referencesJ. R. J. Iório and V. de Magalhães Iório. Fourier Analysis and Partial Differential Equations. Cambridge University Press, Cambridge, 2001.spa
dc.relation.referencesM. Jorge, G. Cruz-Pacheco, L. Mier-y Teran-Romero, and N. F. Smyth. Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(3):037104, 2005.spa
dc.relation.referencesR. José Iório, Jr. On the Cauchy problem for the Benjamin-Ono equation. Communications in partial differential equations, 11(10):1031–1081, 1986.spa
dc.relation.referencesT. Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 8:93–128, 1983.spa
dc.relation.referencesT. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations. Communications on Pure and Applied Mathematics, 41(7):891–907, 1988.spa
dc.relation.referencesG. Keiser. Optical fiber communications. Wiley Online Library, 2003.spa
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. On the (generalized) Korteweg-de Vries equation. Duke Mathematical Journal, 59(3):585–610, 1989.spa
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized korteweg de vries equation via the contraction principle. Communications on Pure and Applied Mathematics, 46(4):527–620, 1993.spa
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. A bilinear estimate with applications to the KdV equation. Journal of the American Mathematical Society, 9(2):573–603, 1996.spa
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. On the unique continuation of solutions to the generalized KdV equation. Mathematical Research Letters, 10(5/6):833–846, 2003.spa
dc.relation.referencesS. Kinoshita. Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 38:451–505, 2021.spa
dc.relation.referencesN. Kishimoto. Sharp local well-posedness for the “good” Boussinesq equation. Journal of Differential Equations, 254(6):2393–2433, 2013.spa
dc.relation.referencesH. Koch and N. Tzvetkov. On the local well-posedness of the Benjamin-Ono equation in Hs(R). International Mathematics Research Notices, 2003(26):1449–1464, 2003.spa
dc.relation.referencesD. Korteweg and G. de Vries. On the change of long waves advancing in a rectangular canal and a new type of long stationary wave. Philosophical Magazine, 39:422–443, 1895.spa
dc.relation.referencesE. W. Laedke and K.-H. Spatschek. Nonlinear ion-acoustic waves in weak magnetic fields. The Physics of Fluids, 25(6):985–989, 1982.spa
dc.relation.referencesD. Lannes, F. Linares, and J.-C. Saut. The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation. In Studies in phase space analysis with applications to PDEs, pages 181–213. Springer, 2013.spa
dc.relation.referencesJ. C. Latorre, A. Minzoni, C. Vargas, and N. F. Smyth. Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kutznetsov lateral dispersion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(4):043103, 2006.spa
dc.relation.referencesF. Linares, M. Panthee, T. Robert, and N. Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 39(6):3521–3533, 2019.spa
dc.relation.referencesF. Linares and A. Pastor. Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation. SIAM Journal on Mathematical Analysis, 41(4):1323–1339, 2009.spa
dc.relation.referencesF. Linares and A. Pastor. Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation. Journal of Functional Analysis, 260(4):1060–1085, 2011.spa
dc.relation.referencesF. Linares, A. Pastor, and J.-C. Saut. Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton. Communications in Partial Differential Equations, 35(9):1674–1689, 2010.spa
dc.relation.referencesF. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Springer, 2 edition, 2014.spa
dc.relation.referencesF. Linares and J.-C. Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems-A, 24(2):547, 2009.spa
dc.relation.referencesP.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Annales de l’I.H.P. Analyse non linéaire, 1(2):109–145, 1984.spa
dc.relation.referencesP.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l’I.H.P. Analyse non linéaire, 1(4):223–283, 1984.spa
dc.relation.referencesP.-L. Lions. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, volume 2. Oxford University Press on Demand, 1996.spa
dc.relation.referencesJ. d. C. Lizarazo Osorio. El problema de Cauchy de la clase de ecuaciones de dispersión generalizada de Benjamin-Ono bidimensionales. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2018.spa
dc.relation.referencesL. Molinet and D. Pilod. Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 32(2):347–371, 2015.spa
dc.relation.referencesA. Moliton. Solid-State physics for electronics. John Wiley & Sons, 2013.spa
dc.relation.referencesJ. Nahas and G. Ponce. On the persistent properties of solutions to semi-linear Schrödinger equation. Communications in Partial Differential Equations, 34(10):1208–1227, 2009.spa
dc.relation.referencesA. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure & Applied Analysis, 19(9):4285, 2020.spa
dc.relation.referencesL. Nirenberg. On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa 3, 13:115–162, 1959.spa
dc.relation.referencesH. Ono. Algebraic solitary waves in stratified fluids. Journal of the Physical Society of Japan, 39(4):1082–1091, 1975.spa
dc.relation.referencesM. A. Pachón Higuera. Sobre el estudio del buen planteamiento de ecuaciones dispersivas en espacios con peso. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2016.spa
dc.relation.referencesM. Panthee. A note on the unique continuation property for Zakharov–Kuznetsov equation. Nonlinear Analysis: Theory, Methods & Applications, 59(3):425–438, 2004.spa
dc.relation.referencesJ. A. Pava. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions. American Mathematical Soc., 2009.spa
dc.relation.referencesO. G. Riaño. The IVP for a higher dimensional version of the Benjamin-Ono equation in weighted Sobolev spaces. Journal of Functional Analysis, 279(8):108707, 2020.spa
dc.relation.referencesF. Ribaud and S. Vento. A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations. Comptes Rendus Mathématique, 350(9-10):499–503, 2012.spa
dc.relation.referencesF. Ribaud and S. Vento. Well-Posedness Results for the Three-Dimensional Zakharov–Kuznetsov Equation. SIAM Journal on Mathematical Analysis, 44(4):2289–2304, 2012.spa
dc.relation.referencesF. Ribaud and S. Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 37(1):449, 2017.spa
dc.relation.referencesW. Rudin. Functional analysis. McGraw-Hill Science, Engineering & Mathematics, 2 edition, 1991.spa
dc.relation.referencesF. S. Salazar. El problema de Cauchy asociado a una ecuación del tipo rBO-ZK. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2015.spa
dc.relation.referencesR. Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete & Continuous Dynamical Systems, 40(9):5189–5215, 2020.spa
dc.relation.referencesE. M. Stein. The characterization of functions arising as potentials. Bulletin of the American Mathematical Society, 67(1):102–104, 1961.spa
dc.relation.referencesT. Tao. Global well-posedness of the Benjamin–Ono equation inH1(R). Journal of Hyperbolic Differential Equations, 1(01):27–49, 2004.spa
dc.relation.referencesV. Zakharov and E. Kuznetsov. On threedimensional solitons. Zhurnal Eksp. Teoret. Fiz, 66:594–597, 1974.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembCauchy problemeng
dc.subject.lembProblema de Cauchyspa
dc.subject.lembEspacios funcionalesspa
dc.subject.lembFunction spaceseng
dc.subject.lembAnálisis funcionalspa
dc.subject.lembFunctional analysiseng
dc.subject.proposalEcuación Z-Kspa
dc.subject.proposalEspacios de Sobolevspa
dc.subject.proposalEspacios de Sobolev con pesosspa
dc.subject.proposalBuen planteamiento localspa
dc.subject.proposalZ-K equationeng
dc.subject.proposalSobolev’s spaceseng
dc.subject.proposalWeighted Sobolev spaceseng
dc.subject.proposalLocal well-posednesseng
dc.titleEl problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsovspa
dc.title.translatedThe Cauchy problem associated to a generalization of the Zakharov-Kuznetsov equationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023903173.2021.pdf
Tamaño:
667.51 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: