Patología digital en la era de la inteligencia artificial y su impacto sobre el diagnóstico y pronóstico del mastocitoma cutáneo canino

dc.contributor.advisorMontoya Flórez, Luis Mauricio
dc.contributor.authorAlfaro Campo, Ronaldo Edu
dc.date.accessioned2025-09-11T12:50:41Z
dc.date.available2025-09-11T12:50:41Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficosspa
dc.description.abstractLa patología digital y la inteligencia artificial (IA) han revolucionado el diagnóstico de enfermedades en medicina veterinaria, permitiendo análisis más precisos y reproducibles. En el caso del mastocitoma cutáneo canino (cMCT), una de las neoplasias más comunes en perros, la aplicación de modelos de IA ha demostrado mejorar la detección y clasificación de estos tumores. Sin embargo, persisten desafíos en la implementación clínica de estas herramientas, como la estandarización de métodos y la variabilidad interobservador. Este estudio realiza una revisión sistemática y metaanálisis sobre la eficacia de la IA en la patología digital aplicada al cMCT. Se analizaron estudios publicados entre 2018 y 2024, evaluando sensibilidad, especificidad, concordancia diagnóstica y sesgos de publicación. Los resultados indicaron que los modelos de IA mejoran significativamente la precisión diagnóstica en comparación con la evaluación histopatológica tradicional. A pesar de la heterogeneidad entre estudios, la evidencia sugiere que la IA tiene un alto potencial para optimizar la identificación y clasificación de mastocitomas cutáneos. Se requieren más investigaciones para mejorar la generalización de los modelos y su implementación en la práctica clínica (Texto tomado de la fuente)spa
dc.description.abstractDigital pathology in the era of artificial intelligence and its impact on the diagnosis and prognosis of canine cutaneous mast cell tumor. Digital pathology and artificial intelligence (AI) have revolutionized disease diagnosis inveterinary medicine, enabling more precise and reproducible analyses. In the case of canine cutaneous mast cell tumor, one of the most common neoplasms in dogs, AI models have demonstrated improved detection and classification capabilities. However, challenges remain in the clinical implementation of these tools, including standardization of methods and interobserver variability. This study presents a systematic review and meta-analysis on the effectiveness of AI in digital pathology applied to canine cutaneous mast cell tumors. Studies published between 2018 and 2024 were analyzed, evaluating sensitivity, specificity, diagnostic agreement, and publication bias. The results indicated that AI models significantly improve diagnostic accuracy compared to traditional histopathological evaluation. Despite heterogeneity among studies, the evidence suggests that AI holds great potential for optimizing the identification and classification of cutaneous mast cell tumors. Further research is needed to enhance model generalization and its implementation in clinical practice.eng
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Anatomopatología Veterinariaspa
dc.description.methodsEste estudio se realizó siguiendo la metodología PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) para garantizar la transparencia y rigor en la revisión sistemática y el metaanálisis. Para ello, el protocolo detallado establecido en PRISMA incluyó la definición de la pregunta de investigación, la búsqueda de literatura, los criterios de inclusión y exclusión, y el uso de listas de verificación para la selección, caracterización, evaluación metodológica y extracción de datos (Page et al., 2021).spa
dc.description.researchareaPatología Veterinariaspa
dc.format.extentxiv, 18 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88711
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Especialidad en Anatomopatología Veterinariaspa
dc.relation.referencesAnwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical Image Analysis using Convolutional Neural Networks: A Review. Journal of Medical Systems, 42(11), 226. https://doi.org/10.1007/s10916-018-1088-1
dc.relation.referencesAubreville, M., Bertram, C. A., Marzahl, C., Gurtner, C., Dettwiler, M., Schmidt, A., Bartenschlager, F., Merz, S., Fragoso, M., Kershaw, O., Klopfleisch, R., & Maier, A. (2020a). Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Scientific Reports, 10(1), 16447. https://doi.org/10.1038/s41598-020-73246-2
dc.relation.referencesAubreville, M., Bertram, C. A., Marzahl, C., Gurtner, C., Dettwiler, M., Schmidt, A., Bartenschlager, F., Merz, S., Fragoso, M., Kershaw, O., Klopfleisch, R., & Maier, A. (2020b). Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73246-2
dc.relation.referencesBanerji, S., & Mitra, S. (2022). Deep learning in histopathology: A review. WIREs Data Mining and Knowledge Discovery, 12(1). https://doi.org/10.1002/widm.1439
dc.relation.referencesBellamy, E., & Berlato, D. (2022). Canine cutaneous and subcutaneous mast cell tumours: a narrative review. En Journal of Small Animal Practice. https://doi.org/10.1111/jsap.13444
dc.relation.referencesBertram, C. A., Aubreville, M., Gurtner, C., Bartel, A., Corner, S. M., Dettwiler, M., Kershaw, O., Noland, E. L., Schmidt, A., Sledge, D. G., Smedley, R. C., Thaiwong, T., Kiupel, M., Maier, A., & Klopfleisch, R. (2020). Computerized Calculation of Mitotic Count Distribution in Canine Cutaneous Mast Cell Tumor Sections: Mitotic Count Is Area Dependent. Veterinary Pathology. https://doi.org/10.1177/0300985819890686
dc.relation.referencesBertram, C. A., Donovan, T. A., & Bartel, A. (2024). Mitotic activity: A systematic literature review of the assessment methodology and prognostic value in canine tumors. Veterinary Pathology. https://doi.org/10.1177/03009858241239565
dc.relation.referencesBertram, C. A., Gurtner, C., Dettwiler, M., Kershaw, O., Dietert, K., Pieper, L., Pischon, H., Gruber, A. D., & Klopfleisch, R. (2018). Validation of Digital Microscopy Compared With Light Microscopy for the Diagnosis of Canine Cutaneous Tumors. Veterinary Pathology, 55(4), 490–500. https://doi.org/10.1177/0300985818755254
dc.relation.referencesBertram, C. A., & Klopfleisch, R. (2017). The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine. En Veterinary Pathology. https://doi.org/10.1177/0300985817709888
dc.relation.referencesBlackwood, L., Murphy, S., Buracco, P., De Vos, J. P., De Fornel‐Thibaud, P., Hirschberger, J., Kessler, M., Pastor, J., Ponce, F., Savary-Bataille, K., & Argyle, D. J. (2012). European consensus document on mast cell tumours in dogs and cats. Veterinary and Comparative Oncology, 10(3). https://doi.org/10.1111/j.1476-5829.2012.00341.x
dc.relation.referencesBonsembiante, F., Bonfanti, U., Cian, F., Cavicchioli, L., Zattoni, B., & Gelain, M. E. (2019). Diagnostic Validation of a Whole-Slide Imaging Scanner in Cytological Samples: Diagnostic Accuracy and Comparison With Light Microscopy. Veterinary Pathology, 56(3), 429–434. https://doi.org/10.1177/0300985818825128
dc.relation.referencesBorenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta‐Analysis. Wiley. https://doi.org/10.1002/9780470743386
dc.relation.referencesCamus, M. S., Priest, H. L., Koehler, J. W., Driskell, E. A., Rakich, P. M., Ilha, M. R., & Krimer, P. M. (2016). Cytologic Criteria for Mast Cell Tumor Grading in Dogs With Evaluation of Clinical Outcome. Veterinary Pathology, 53(6), 1117–1123. https://doi.org/10.1177/0300985816638721
dc.relation.referencesConrad, D., Kehl, A., Müller, T., Klopfleisch, R., & Aupperle-Lellbach, H. (2023). Immunohistochemical and Molecular Genetic Analysis of Canine Digital Mast Cell Tumours. Animals. https://doi.org/10.3390/ani13101694
dc.relation.referencesde Nardi, A. B., dos Santos Horta, R., Fonseca-Alves, C. E., de Paiva, F. N., Linhares, L. C. M., Firmo, B. F., Ruiz Sueiro, F. A., de Oliveira, K. D., Lourenço, S. V., De Francisco Strefezzi, R., Brunner, C. H. M., Rangel, M. M. M., Jark, P. C., Castro, J. L. C., Ubukata, R., Batschinski, K., Sobral, R. A., da Cruz, N. O., Nishiya, A. T., … Dagli, M. L. Z. (2022). Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors. Cells, 11(4), 618. https://doi.org/10.3390/cells11040618
dc.relation.referencesEgger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
dc.relation.referencesFajardo, R., Alpízar, A., Pérez, L. S., Martínez, J. S., & Córdova, E. (2013). Prevalence of tumors in dogs from the municipality of Toluca, México, from 2002 to 2008. Archivos de Medicina Veterinaria, 45(3), 305–309. https://doi.org/10.4067/S0301-732X2013000300011
dc.relation.referencesFitzke, M., Whitley, D., Yau, W., Rodrigues, F., Fadeev, V., Bacmeister, C., Carter, C., Edwards, J., Lungren, M. P., & Parkinson, M. (2021). OncoPetNet: A Deep Learning based AI system for mitotic figure counting on H&E stained whole slide digital images in a large veterinary diagnostic lab setting. http://arxiv.org/abs/2108.07856
dc.relation.referencesGanz, J., Marzahl, C., Ammeling, J., Rosbach, E., Richter, B., Puget, C., Denk, D., Demeter, E. A., Tăbăran, F. A., Wasinger, G., Lipnik, K., Tecilla, M., Valentine, M. J., Dark, M. J., Abele, N., Bolfa, P., Erber, R., Klopfleisch, R., Merz, S., … Aubreville, M. (2024). Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis. Scientific reports, 14(1), 26273. https://doi.org/10.1038/s41598-024-77244-6
dc.relation.referencesHaghofer, A., Parlak, E., Bartel, A., Donovan, T. A., Assenmacher, C. A., Bolfa, P., Dark, M. J., Fuchs-Baumgartinger, A., Klang, A., Jäger, K., Klopfleisch, R., Merz, S., Richter, B., Schulman, F. Y., Janout, H., Ganz, J., Scharinger, J., Aubreville, M., Winkler, S. M., … Bertram, C. A. (2024). Nuclear pleomorphism in canine cutaneous mast cell tumors: Comparison of reproducibility and prognostic relevance between estimates, manual morphometry, and algorithmic morphometry. Veterinary Pathology. https://doi.org/10.1177/03009858241295399
dc.relation.referencesHiggins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186
dc.relation.referencesJahn, S. W., Plass, M., & Moinfar, F. (2020). Digital Pathology: Advantages, Limitations and Emerging Perspectives. Journal of Clinical Medicine, 9(11), 3697. https://doi.org/10.3390/jcm9113697
dc.relation.referencesKim, S., & Matsuyama, A. (2022). Canine mast cell tumors: When to worry about aggressive behavior pre-surgically. The Canadian veterinary journal = La revue veterinaire canadienne, 63(12), 1261–1263.Kiupel, M., & Camus, M. (2019). Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. En Veterinary Clinics of North America - Small Animal Practice. https://doi.org/10.1016/j.cvsm.2019.04.002Kiupel, M., Webster, J. D., Bailey, K. L., Best, S., DeLay, J., Detrisac, C. J., Fitzgerald, S. D., Gamble, D., Ginn, P. E., Goldschmidt, M. H., Hendrick, M. J., Howerth, E. W., Janovitz, E. B., Langohr, I., Lenz, S. D., Lipscomb, T. P., Miller, M. A., Misdorp, W., Moroff, S., … Miller, R. (2011). Proposal of a 2-Tier Histologic Grading System for Canine Cutaneous Mast Cell Tumors to More Accurately Predict Biological Behavior. Veterinary Pathology, 48(1), 147–155. https://doi.org/10.1177/0300985810386469Kok, M. K., Chambers, J. K., Tsuboi, M., Nishimura, R., Tsujimoto, H., Uchida, K., & Nakayama, H. (2019). Retrospective study of canine cutaneous tumors in Japan, 2008–2017. Journal of Veterinary Medical Science, 81(8), 1133–1143. https://doi.org/10.1292/jvms.19-0248Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005Marconato, L., Bettini, G., Giacoboni, C., Romanelli, G., Cesari, A., Zatelli, A., & Zini, E. (2008). Clinicopathological Features and Outcome for Dogs with Mast Cell Tumors and Bone Marrow Involvement. Journal of Veterinary Internal Medicine, 22(4), 1001–1007. https://doi.org/10.1111/j.1939-1676.2008.0128.xMeuten, D. J. (2016). Tumors in Domestic Animals. En Tumors in Domestic Animals. John Wiley & Sons. https://doi.org/10.1002/9781119181200Northrup, N. C., Howerth, E. W., Harmon, B. G., Brown, C. A., Carmicheal, K. P., Garcia, A. P., Latimer, K. S., Munday, J. S., Rakich, P. M., Richey, L. J., Stedman, N. L., & Gieger, T. L. (2005). Variation among pathologists in the histologic grading of canine cutaneous mast cell tumors with uniform use of a single grading reference. Journal of Veterinary Diagnostic Investigation. https://doi.org/10.1177/104063870501700606Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. En The BMJ. https://doi.org/10.1136/bmj.n71Patnaik, A. K., Ehler, W. J., & MacEwen, E. G. (1984). Canine Cutaneous Mast Cell Tumor: Morphologic Grading and Survival Time in 83 Dogs. Veterinary Pathology, 21(5), 469–474. https://doi.org/10.1177/030098588402100503Porwit, A., McCullough, J., & Erber, W. E. (2011). Blood and Bone Marrow Pathology. Elsevier. https://doi.org/10.1016/C2009-0-52942-XPuget, C., Ganz, J., Ostermaier, J., Konrad, T., Parlak, E., Bertram, C. A., Kiupel, M., Breininger, K., Aubreville, M., & Klopfleisch, R. (2024). Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides. https://doi.org/https://doi.org/10.1177/03009858241286806Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 2374289519873088. https://doi.org/10.1177/2374289519873088Reynolds, B. D., Thomson, M. J., O’Connell, K., Morgan, E. J., & Gummow, B. (2019). Patient and tumour factors influencing canine mast cell tumour histological grade and mitotic index. Veterinary and Comparative Oncology, 17(3), 338–344. https://doi.org/10.1111/vco.12477Salvi, M., Molinari, F., Iussich, S., Muscatello, L. V., Pazzini, L., Benali, S., Banco, B., Abramo, F., De Maria, R., & Aresu, L. (2021). Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2021.640944Shoop, S. J., Marlow, S., Church, D. B., English, K., McGreevy, P. D., Stell, A. J., Thomson, P. C., O’Neill, D. G., & Brodbelt, D. C. (2015). Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genetics and Epidemiology, 2(1), 1. https://doi.org/10.1186/2052-6687-2-1Sledge, D. G., Webster, J., & Kiupel, M. (2016). Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. The Veterinary Journal, 215, 43–54. https://doi.org/10.1016/j.tvjl.2016.06.003Śmiech, A., Ślaska, B., Łopuszyński, W., Jasik, A., Bochyńska, D., & Dąbrowski, R. (2018). Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Veterinaria Scandinavica, 60(1), 70. https://doi.org/10.1186/s13028-018-0424-2Snead, D. R. J., Tsang, Y., Meskiri, A., Kimani, P. K., Crossman, R., Rajpoot, N. M., Blessing, E., Chen, K., Gopalakrishnan, K., Matthews, P., Momtahan, N., Read‐Jones, S., Sah, S., Simmons, E., Sinha, B., Suortamo, S., Yeo, Y., El Daly, H., & Cree, I. A. (2016). Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology, 68(7), 1063–1072. https://doi.org/10.1111/his.12879Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095Tian, F., Liu, D., Wei, N., Fu, Q., Sun, L., Liu, W., Sui, X., Tian, K., Nemeth, G., Feng, J., Xu, J., Xiao, L., Han, J., Fu, J., Shi, Y., Yang, Y., Liu, J., Hu, C., Feng, B., … Li, X. (2024). Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nature Medicine. https://doi.org/10.1038/s41591-024-02915-wWebster, J. D., & Dunstan, R. W. (2014). Whole-Slide Imaging and Automated Image Analysis. Veterinary Pathology, 51(1), 211–223. https://doi.org/10.1177/0300985813503570Webster, J. D., Yuzbasiyan-Gurkan, V., Miller, R. A., Kaneene, J. B., & Kiupel, M. (2007). Cellular proliferation in canine cutaneous mast cell tumors: Associations with c-KIT and its role in prognostication. Veterinary Pathology. https://doi.org/10.1354/vp.44-3-298Williams, B., Hanby, A., Millican‐Slater, R., Verghese, E., Nijhawan, A., Wilson, I., Besusparis, J., Clark, D., Snead, D., Rakha, E., & Treanor, D. (2020). Digital pathology for primary diagnosis of screen‐detected breast lesions – experimental data, validation and experience from four centres. Histopathology, 76(7), 968–975. https://doi.org/10.1111/his.14079Willmann, M., Yuzbasiyan-Gurkan, V., Marconato, L., Dacasto, M., Hadzijusufovic, E., Hermine, O., Sadovnik, I., Gamperl, S., Schneeweiss-Gleixner, M., Gleixner, K. V., Böhm, T., Peter, B., Eisenwort, G., Moriggl, R., Li, Z., Jawhar, M., Sotlar, K., Jensen-Jarolim, E., Sexl, V., … Valent, P. (2021). Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.755258Wilm, F., Fragoso, M., Marzahl, C., Qiu, J., Puget, C., Diehl, L., Bertram, C. A., Klopfleisch, R., Maier, A., Breininger, K., & Aubreville, M. (2022). Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01692-wZuraw, A., & Aeffner, F. (2022). Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. En Veterinary Pathology. https://doi.org/10.1177/03009858211040484
dc.relation.referencesKiupel, M., & Camus, M. (2019). Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. En Veterinary Clinics of North America - Small Animal Practice. https://doi.org/10.1016/j.cvsm.2019.04.002
dc.relation.referencesKiupel, M., Webster, J. D., Bailey, K. L., Best, S., DeLay, J., Detrisac, C. J., Fitzgerald, S. D., Gamble, D., Ginn, P. E., Goldschmidt, M. H., Hendrick, M. J., Howerth, E. W., Janovitz, E. B., Langohr, I., Lenz, S. D., Lipscomb, T. P., Miller, M. A., Misdorp, W., Moroff, S., … Miller, R. (2011). Proposal of a 2-Tier Histologic Grading System for Canine Cutaneous Mast Cell Tumors to More Accurately Predict Biological Behavior. Veterinary Pathology, 48(1), 147–155. https://doi.org/10.1177/0300985810386469
dc.relation.referencesKok, M. K., Chambers, J. K., Tsuboi, M., Nishimura, R., Tsujimoto, H., Uchida, K., & Nakayama, H. (2019). Retrospective study of canine cutaneous tumors in Japan, 2008–2017. Journal of Veterinary Medical Science, 81(8), 1133–1143. https://doi.org/10.1292/jvms.19-0248
dc.relation.referencesLitjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
dc.relation.referencesMarconato, L., Bettini, G., Giacoboni, C., Romanelli, G., Cesari, A., Zatelli, A., & Zini, E. (2008). Clinicopathological Features and Outcome for Dogs with Mast Cell Tumors and Bone Marrow Involvement. Journal of Veterinary Internal Medicine, 22(4), 1001–1007. https://doi.org/10.1111/j.1939-1676.2008.0128.x
dc.relation.referencesMeuten, D. J. (2016). Tumors in Domestic Animals. En Tumors in Domestic Animals. John Wiley & Sons. https://doi.org/10.1002/9781119181200
dc.relation.referencesNorthrup, N. C., Howerth, E. W., Harmon, B. G., Brown, C. A., Carmicheal, K. P., Garcia, A. P., Latimer, K. S., Munday, J. S., Rakich, P. M., Richey, L. J., Stedman, N. L., & Gieger, T. L. (2005). Variation among pathologists in the histologic grading of canine cutaneous mast cell tumors with uniform use of a single grading reference. Journal of Veterinary Diagnostic Investigation. https://doi.org/10.1177/104063870501700606
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. En The BMJ. https://doi.org/10.1136/bmj.n71
dc.relation.referencesPatnaik, A. K., Ehler, W. J., & MacEwen, E. G. (1984). Canine Cutaneous Mast Cell Tumor: Morphologic Grading and Survival Time in 83 Dogs. Veterinary Pathology, 21(5), 469–474. https://doi.org/10.1177/030098588402100503
dc.relation.referencesPorwit, A., McCullough, J., & Erber, W. E. (2011). Blood and Bone Marrow Pathology. Elsevier. https://doi.org/10.1016/C2009-0-52942-X
dc.relation.referencesPuget, C., Ganz, J., Ostermaier, J., Konrad, T., Parlak, E., Bertram, C. A., Kiupel, M., Breininger, K., Aubreville, M., & Klopfleisch, R. (2024). Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides. https://doi.org/https://doi.org/10.1177/03009858241286806
dc.relation.referencesRashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 2374289519873088. https://doi.org/10.1177/2374289519873088
dc.relation.referencesReynolds, B. D., Thomson, M. J., O’Connell, K., Morgan, E. J., & Gummow, B. (2019). Patient and tumour factors influencing canine mast cell tumour histological grade and mitotic index. Veterinary and Comparative Oncology, 17(3), 338–344. https://doi.org/10.1111/vco.12477
dc.relation.referencesSalvi, M., Molinari, F., Iussich, S., Muscatello, L. V., Pazzini, L., Benali, S., Banco, B., Abramo, F., De Maria, R., & Aresu, L. (2021). Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2021.640944
dc.relation.referencesShoop, S. J., Marlow, S., Church, D. B., English, K., McGreevy, P. D., Stell, A. J., Thomson, P. C., O’Neill, D. G., & Brodbelt, D. C. (2015). Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genetics and Epidemiology, 2(1), 1. https://doi.org/10.1186/2052-6687-2-1
dc.relation.referencesSledge, D. G., Webster, J., & Kiupel, M. (2016). Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. The Veterinary Journal, 215, 43–54. https://doi.org/10.1016/j.tvjl.2016.06.003
dc.relation.referencesŚmiech, A., Ślaska, B., Łopuszyński, W., Jasik, A., Bochyńska, D., & Dąbrowski, R. (2018). Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Veterinaria Scandinavica, 60(1), 70. https://doi.org/10.1186/s13028-018-0424-2
dc.relation.referencesSnead, D. R. J., Tsang, Y., Meskiri, A., Kimani, P. K., Crossman, R., Rajpoot, N. M., Blessing, E., Chen, K., Gopalakrishnan, K., Matthews, P., Momtahan, N., Read‐Jones, S., Sah, S., Simmons, E., Sinha, B., Suortamo, S., Yeo, Y., El Daly, H., & Cree, I. A. (2016). Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology, 68(7), 1063–1072. https://doi.org/10.1111/his.12879
dc.relation.referencesStanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095
dc.relation.referencesTian, F., Liu, D., Wei, N., Fu, Q., Sun, L., Liu, W., Sui, X., Tian, K., Nemeth, G., Feng, J., Xu, J., Xiao, L., Han, J., Fu, J., Shi, Y., Yang, Y., Liu, J., Hu, C., Feng, B., … Li, X. (2024). Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nature Medicine. https://doi.org/10.1038/s41591-024-02915-w
dc.relation.referencesWebster, J. D., & Dunstan, R. W. (2014). Whole-Slide Imaging and Automated Image Analysis. Veterinary Pathology, 51(1), 211–223. https://doi.org/10.1177/0300985813503570
dc.relation.referencesWebster, J. D., Yuzbasiyan-Gurkan, V., Miller, R. A., Kaneene, J. B., & Kiupel, M. (2007). Cellular proliferation in canine cutaneous mast cell tumors: Associations with c-KIT and its role in prognostication. Veterinary Pathology. https://doi.org/10.1354/vp.44-3-298
dc.relation.referencesWilliams, B., Hanby, A., Millican‐Slater, R., Verghese, E., Nijhawan, A., Wilson, I., Besusparis, J., Clark, D., Snead, D., Rakha, E., & Treanor, D. (2020). Digital pathology for primary diagnosis of screen‐detected breast lesions – experimental data, validation and experience from four centres. Histopathology, 76(7), 968–975. https://doi.org/10.1111/his.14079
dc.relation.referencesWillmann, M., Yuzbasiyan-Gurkan, V., Marconato, L., Dacasto, M., Hadzijusufovic, E., Hermine, O., Sadovnik, I., Gamperl, S., Schneeweiss-Gleixner, M., Gleixner, K. V., Böhm, T., Peter, B., Eisenwort, G., Moriggl, R., Li, Z., Jawhar, M., Sotlar, K., Jensen-Jarolim, E., Sexl, V., … Valent, P. (2021). Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.755258
dc.relation.referencesWilm, F., Fragoso, M., Marzahl, C., Qiu, J., Puget, C., Diehl, L., Bertram, C. A., Klopfleisch, R., Maier, A., Breininger, K., & Aubreville, M. (2022). Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01692-w
dc.relation.referencesZuraw, A., & Aeffner, F. (2022). Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. En Veterinary Pathology. https://doi.org/10.1177/03009858211040484
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.lembPatología veterinariaspa
dc.subject.lembVeterinary pathologyeng
dc.subject.lembMedicina veterinariaspa
dc.subject.lembVeterinary Medicineeng
dc.subject.lembTelepatologíaspa
dc.subject.lembTelepathologyeng
dc.subject.proposalCáncerspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalMastocitomaspa
dc.subject.proposalWSI
dc.subject.proposalCancereng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalMast cell tumoreng
dc.titlePatología digital en la era de la inteligencia artificial y su impacto sobre el diagnóstico y pronóstico del mastocitoma cutáneo caninospa
dc.title.translatedDigital pathology in the era of artificial intelligence and its impact on the diagnosis and prognosis of canine cutaneous mast cell tumoreng
dc.typeTrabajo de grado - Especializaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
449002_2025.pdf
Tamaño:
669.04 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: