Patología digital en la era de la inteligencia artificial y su impacto sobre el diagnóstico y pronóstico del mastocitoma cutáneo canino
dc.contributor.advisor | Montoya Flórez, Luis Mauricio | |
dc.contributor.author | Alfaro Campo, Ronaldo Edu | |
dc.date.accessioned | 2025-09-11T12:50:41Z | |
dc.date.available | 2025-09-11T12:50:41Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, gráficos | spa |
dc.description.abstract | La patología digital y la inteligencia artificial (IA) han revolucionado el diagnóstico de enfermedades en medicina veterinaria, permitiendo análisis más precisos y reproducibles. En el caso del mastocitoma cutáneo canino (cMCT), una de las neoplasias más comunes en perros, la aplicación de modelos de IA ha demostrado mejorar la detección y clasificación de estos tumores. Sin embargo, persisten desafíos en la implementación clínica de estas herramientas, como la estandarización de métodos y la variabilidad interobservador. Este estudio realiza una revisión sistemática y metaanálisis sobre la eficacia de la IA en la patología digital aplicada al cMCT. Se analizaron estudios publicados entre 2018 y 2024, evaluando sensibilidad, especificidad, concordancia diagnóstica y sesgos de publicación. Los resultados indicaron que los modelos de IA mejoran significativamente la precisión diagnóstica en comparación con la evaluación histopatológica tradicional. A pesar de la heterogeneidad entre estudios, la evidencia sugiere que la IA tiene un alto potencial para optimizar la identificación y clasificación de mastocitomas cutáneos. Se requieren más investigaciones para mejorar la generalización de los modelos y su implementación en la práctica clínica (Texto tomado de la fuente) | spa |
dc.description.abstract | Digital pathology in the era of artificial intelligence and its impact on the diagnosis and prognosis of canine cutaneous mast cell tumor. Digital pathology and artificial intelligence (AI) have revolutionized disease diagnosis inveterinary medicine, enabling more precise and reproducible analyses. In the case of canine cutaneous mast cell tumor, one of the most common neoplasms in dogs, AI models have demonstrated improved detection and classification capabilities. However, challenges remain in the clinical implementation of these tools, including standardization of methods and interobserver variability. This study presents a systematic review and meta-analysis on the effectiveness of AI in digital pathology applied to canine cutaneous mast cell tumors. Studies published between 2018 and 2024 were analyzed, evaluating sensitivity, specificity, diagnostic agreement, and publication bias. The results indicated that AI models significantly improve diagnostic accuracy compared to traditional histopathological evaluation. Despite heterogeneity among studies, the evidence suggests that AI holds great potential for optimizing the identification and classification of cutaneous mast cell tumors. Further research is needed to enhance model generalization and its implementation in clinical practice. | eng |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Anatomopatología Veterinaria | spa |
dc.description.methods | Este estudio se realizó siguiendo la metodología PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) para garantizar la transparencia y rigor en la revisión sistemática y el metaanálisis. Para ello, el protocolo detallado establecido en PRISMA incluyó la definición de la pregunta de investigación, la búsqueda de literatura, los criterios de inclusión y exclusión, y el uso de listas de verificación para la selección, caracterización, evaluación metodológica y extracción de datos (Page et al., 2021). | spa |
dc.description.researcharea | Patología Veterinaria | spa |
dc.format.extent | xiv, 18 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88711 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá | |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Especialidad en Anatomopatología Veterinaria | spa |
dc.relation.references | Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical Image Analysis using Convolutional Neural Networks: A Review. Journal of Medical Systems, 42(11), 226. https://doi.org/10.1007/s10916-018-1088-1 | |
dc.relation.references | Aubreville, M., Bertram, C. A., Marzahl, C., Gurtner, C., Dettwiler, M., Schmidt, A., Bartenschlager, F., Merz, S., Fragoso, M., Kershaw, O., Klopfleisch, R., & Maier, A. (2020a). Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Scientific Reports, 10(1), 16447. https://doi.org/10.1038/s41598-020-73246-2 | |
dc.relation.references | Aubreville, M., Bertram, C. A., Marzahl, C., Gurtner, C., Dettwiler, M., Schmidt, A., Bartenschlager, F., Merz, S., Fragoso, M., Kershaw, O., Klopfleisch, R., & Maier, A. (2020b). Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73246-2 | |
dc.relation.references | Banerji, S., & Mitra, S. (2022). Deep learning in histopathology: A review. WIREs Data Mining and Knowledge Discovery, 12(1). https://doi.org/10.1002/widm.1439 | |
dc.relation.references | Bellamy, E., & Berlato, D. (2022). Canine cutaneous and subcutaneous mast cell tumours: a narrative review. En Journal of Small Animal Practice. https://doi.org/10.1111/jsap.13444 | |
dc.relation.references | Bertram, C. A., Aubreville, M., Gurtner, C., Bartel, A., Corner, S. M., Dettwiler, M., Kershaw, O., Noland, E. L., Schmidt, A., Sledge, D. G., Smedley, R. C., Thaiwong, T., Kiupel, M., Maier, A., & Klopfleisch, R. (2020). Computerized Calculation of Mitotic Count Distribution in Canine Cutaneous Mast Cell Tumor Sections: Mitotic Count Is Area Dependent. Veterinary Pathology. https://doi.org/10.1177/0300985819890686 | |
dc.relation.references | Bertram, C. A., Donovan, T. A., & Bartel, A. (2024). Mitotic activity: A systematic literature review of the assessment methodology and prognostic value in canine tumors. Veterinary Pathology. https://doi.org/10.1177/03009858241239565 | |
dc.relation.references | Bertram, C. A., Gurtner, C., Dettwiler, M., Kershaw, O., Dietert, K., Pieper, L., Pischon, H., Gruber, A. D., & Klopfleisch, R. (2018). Validation of Digital Microscopy Compared With Light Microscopy for the Diagnosis of Canine Cutaneous Tumors. Veterinary Pathology, 55(4), 490–500. https://doi.org/10.1177/0300985818755254 | |
dc.relation.references | Bertram, C. A., & Klopfleisch, R. (2017). The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine. En Veterinary Pathology. https://doi.org/10.1177/0300985817709888 | |
dc.relation.references | Blackwood, L., Murphy, S., Buracco, P., De Vos, J. P., De Fornel‐Thibaud, P., Hirschberger, J., Kessler, M., Pastor, J., Ponce, F., Savary-Bataille, K., & Argyle, D. J. (2012). European consensus document on mast cell tumours in dogs and cats. Veterinary and Comparative Oncology, 10(3). https://doi.org/10.1111/j.1476-5829.2012.00341.x | |
dc.relation.references | Bonsembiante, F., Bonfanti, U., Cian, F., Cavicchioli, L., Zattoni, B., & Gelain, M. E. (2019). Diagnostic Validation of a Whole-Slide Imaging Scanner in Cytological Samples: Diagnostic Accuracy and Comparison With Light Microscopy. Veterinary Pathology, 56(3), 429–434. https://doi.org/10.1177/0300985818825128 | |
dc.relation.references | Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta‐Analysis. Wiley. https://doi.org/10.1002/9780470743386 | |
dc.relation.references | Camus, M. S., Priest, H. L., Koehler, J. W., Driskell, E. A., Rakich, P. M., Ilha, M. R., & Krimer, P. M. (2016). Cytologic Criteria for Mast Cell Tumor Grading in Dogs With Evaluation of Clinical Outcome. Veterinary Pathology, 53(6), 1117–1123. https://doi.org/10.1177/0300985816638721 | |
dc.relation.references | Conrad, D., Kehl, A., Müller, T., Klopfleisch, R., & Aupperle-Lellbach, H. (2023). Immunohistochemical and Molecular Genetic Analysis of Canine Digital Mast Cell Tumours. Animals. https://doi.org/10.3390/ani13101694 | |
dc.relation.references | de Nardi, A. B., dos Santos Horta, R., Fonseca-Alves, C. E., de Paiva, F. N., Linhares, L. C. M., Firmo, B. F., Ruiz Sueiro, F. A., de Oliveira, K. D., Lourenço, S. V., De Francisco Strefezzi, R., Brunner, C. H. M., Rangel, M. M. M., Jark, P. C., Castro, J. L. C., Ubukata, R., Batschinski, K., Sobral, R. A., da Cruz, N. O., Nishiya, A. T., … Dagli, M. L. Z. (2022). Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors. Cells, 11(4), 618. https://doi.org/10.3390/cells11040618 | |
dc.relation.references | Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629 | |
dc.relation.references | Fajardo, R., Alpízar, A., Pérez, L. S., Martínez, J. S., & Córdova, E. (2013). Prevalence of tumors in dogs from the municipality of Toluca, México, from 2002 to 2008. Archivos de Medicina Veterinaria, 45(3), 305–309. https://doi.org/10.4067/S0301-732X2013000300011 | |
dc.relation.references | Fitzke, M., Whitley, D., Yau, W., Rodrigues, F., Fadeev, V., Bacmeister, C., Carter, C., Edwards, J., Lungren, M. P., & Parkinson, M. (2021). OncoPetNet: A Deep Learning based AI system for mitotic figure counting on H&E stained whole slide digital images in a large veterinary diagnostic lab setting. http://arxiv.org/abs/2108.07856 | |
dc.relation.references | Ganz, J., Marzahl, C., Ammeling, J., Rosbach, E., Richter, B., Puget, C., Denk, D., Demeter, E. A., Tăbăran, F. A., Wasinger, G., Lipnik, K., Tecilla, M., Valentine, M. J., Dark, M. J., Abele, N., Bolfa, P., Erber, R., Klopfleisch, R., Merz, S., … Aubreville, M. (2024). Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis. Scientific reports, 14(1), 26273. https://doi.org/10.1038/s41598-024-77244-6 | |
dc.relation.references | Haghofer, A., Parlak, E., Bartel, A., Donovan, T. A., Assenmacher, C. A., Bolfa, P., Dark, M. J., Fuchs-Baumgartinger, A., Klang, A., Jäger, K., Klopfleisch, R., Merz, S., Richter, B., Schulman, F. Y., Janout, H., Ganz, J., Scharinger, J., Aubreville, M., Winkler, S. M., … Bertram, C. A. (2024). Nuclear pleomorphism in canine cutaneous mast cell tumors: Comparison of reproducibility and prognostic relevance between estimates, manual morphometry, and algorithmic morphometry. Veterinary Pathology. https://doi.org/10.1177/03009858241295399 | |
dc.relation.references | Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186 | |
dc.relation.references | Jahn, S. W., Plass, M., & Moinfar, F. (2020). Digital Pathology: Advantages, Limitations and Emerging Perspectives. Journal of Clinical Medicine, 9(11), 3697. https://doi.org/10.3390/jcm9113697 | |
dc.relation.references | Kim, S., & Matsuyama, A. (2022). Canine mast cell tumors: When to worry about aggressive behavior pre-surgically. The Canadian veterinary journal = La revue veterinaire canadienne, 63(12), 1261–1263.Kiupel, M., & Camus, M. (2019). Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. En Veterinary Clinics of North America - Small Animal Practice. https://doi.org/10.1016/j.cvsm.2019.04.002Kiupel, M., Webster, J. D., Bailey, K. L., Best, S., DeLay, J., Detrisac, C. J., Fitzgerald, S. D., Gamble, D., Ginn, P. E., Goldschmidt, M. H., Hendrick, M. J., Howerth, E. W., Janovitz, E. B., Langohr, I., Lenz, S. D., Lipscomb, T. P., Miller, M. A., Misdorp, W., Moroff, S., … Miller, R. (2011). Proposal of a 2-Tier Histologic Grading System for Canine Cutaneous Mast Cell Tumors to More Accurately Predict Biological Behavior. Veterinary Pathology, 48(1), 147–155. https://doi.org/10.1177/0300985810386469Kok, M. K., Chambers, J. K., Tsuboi, M., Nishimura, R., Tsujimoto, H., Uchida, K., & Nakayama, H. (2019). Retrospective study of canine cutaneous tumors in Japan, 2008–2017. Journal of Veterinary Medical Science, 81(8), 1133–1143. https://doi.org/10.1292/jvms.19-0248Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005Marconato, L., Bettini, G., Giacoboni, C., Romanelli, G., Cesari, A., Zatelli, A., & Zini, E. (2008). Clinicopathological Features and Outcome for Dogs with Mast Cell Tumors and Bone Marrow Involvement. Journal of Veterinary Internal Medicine, 22(4), 1001–1007. https://doi.org/10.1111/j.1939-1676.2008.0128.xMeuten, D. J. (2016). Tumors in Domestic Animals. En Tumors in Domestic Animals. John Wiley & Sons. https://doi.org/10.1002/9781119181200Northrup, N. C., Howerth, E. W., Harmon, B. G., Brown, C. A., Carmicheal, K. P., Garcia, A. P., Latimer, K. S., Munday, J. S., Rakich, P. M., Richey, L. J., Stedman, N. L., & Gieger, T. L. (2005). Variation among pathologists in the histologic grading of canine cutaneous mast cell tumors with uniform use of a single grading reference. Journal of Veterinary Diagnostic Investigation. https://doi.org/10.1177/104063870501700606Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. En The BMJ. https://doi.org/10.1136/bmj.n71Patnaik, A. K., Ehler, W. J., & MacEwen, E. G. (1984). Canine Cutaneous Mast Cell Tumor: Morphologic Grading and Survival Time in 83 Dogs. Veterinary Pathology, 21(5), 469–474. https://doi.org/10.1177/030098588402100503Porwit, A., McCullough, J., & Erber, W. E. (2011). Blood and Bone Marrow Pathology. Elsevier. https://doi.org/10.1016/C2009-0-52942-XPuget, C., Ganz, J., Ostermaier, J., Konrad, T., Parlak, E., Bertram, C. A., Kiupel, M., Breininger, K., Aubreville, M., & Klopfleisch, R. (2024). Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides. https://doi.org/https://doi.org/10.1177/03009858241286806Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 2374289519873088. https://doi.org/10.1177/2374289519873088Reynolds, B. D., Thomson, M. J., O’Connell, K., Morgan, E. J., & Gummow, B. (2019). Patient and tumour factors influencing canine mast cell tumour histological grade and mitotic index. Veterinary and Comparative Oncology, 17(3), 338–344. https://doi.org/10.1111/vco.12477Salvi, M., Molinari, F., Iussich, S., Muscatello, L. V., Pazzini, L., Benali, S., Banco, B., Abramo, F., De Maria, R., & Aresu, L. (2021). Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2021.640944Shoop, S. J., Marlow, S., Church, D. B., English, K., McGreevy, P. D., Stell, A. J., Thomson, P. C., O’Neill, D. G., & Brodbelt, D. C. (2015). Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genetics and Epidemiology, 2(1), 1. https://doi.org/10.1186/2052-6687-2-1Sledge, D. G., Webster, J., & Kiupel, M. (2016). Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. The Veterinary Journal, 215, 43–54. https://doi.org/10.1016/j.tvjl.2016.06.003Śmiech, A., Ślaska, B., Łopuszyński, W., Jasik, A., Bochyńska, D., & Dąbrowski, R. (2018). Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Veterinaria Scandinavica, 60(1), 70. https://doi.org/10.1186/s13028-018-0424-2Snead, D. R. J., Tsang, Y., Meskiri, A., Kimani, P. K., Crossman, R., Rajpoot, N. M., Blessing, E., Chen, K., Gopalakrishnan, K., Matthews, P., Momtahan, N., Read‐Jones, S., Sah, S., Simmons, E., Sinha, B., Suortamo, S., Yeo, Y., El Daly, H., & Cree, I. A. (2016). Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology, 68(7), 1063–1072. https://doi.org/10.1111/his.12879Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095Tian, F., Liu, D., Wei, N., Fu, Q., Sun, L., Liu, W., Sui, X., Tian, K., Nemeth, G., Feng, J., Xu, J., Xiao, L., Han, J., Fu, J., Shi, Y., Yang, Y., Liu, J., Hu, C., Feng, B., … Li, X. (2024). Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nature Medicine. https://doi.org/10.1038/s41591-024-02915-wWebster, J. D., & Dunstan, R. W. (2014). Whole-Slide Imaging and Automated Image Analysis. Veterinary Pathology, 51(1), 211–223. https://doi.org/10.1177/0300985813503570Webster, J. D., Yuzbasiyan-Gurkan, V., Miller, R. A., Kaneene, J. B., & Kiupel, M. (2007). Cellular proliferation in canine cutaneous mast cell tumors: Associations with c-KIT and its role in prognostication. Veterinary Pathology. https://doi.org/10.1354/vp.44-3-298Williams, B., Hanby, A., Millican‐Slater, R., Verghese, E., Nijhawan, A., Wilson, I., Besusparis, J., Clark, D., Snead, D., Rakha, E., & Treanor, D. (2020). Digital pathology for primary diagnosis of screen‐detected breast lesions – experimental data, validation and experience from four centres. Histopathology, 76(7), 968–975. https://doi.org/10.1111/his.14079Willmann, M., Yuzbasiyan-Gurkan, V., Marconato, L., Dacasto, M., Hadzijusufovic, E., Hermine, O., Sadovnik, I., Gamperl, S., Schneeweiss-Gleixner, M., Gleixner, K. V., Böhm, T., Peter, B., Eisenwort, G., Moriggl, R., Li, Z., Jawhar, M., Sotlar, K., Jensen-Jarolim, E., Sexl, V., … Valent, P. (2021). Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.755258Wilm, F., Fragoso, M., Marzahl, C., Qiu, J., Puget, C., Diehl, L., Bertram, C. A., Klopfleisch, R., Maier, A., Breininger, K., & Aubreville, M. (2022). Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01692-wZuraw, A., & Aeffner, F. (2022). Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. En Veterinary Pathology. https://doi.org/10.1177/03009858211040484 | |
dc.relation.references | Kiupel, M., & Camus, M. (2019). Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. En Veterinary Clinics of North America - Small Animal Practice. https://doi.org/10.1016/j.cvsm.2019.04.002 | |
dc.relation.references | Kiupel, M., Webster, J. D., Bailey, K. L., Best, S., DeLay, J., Detrisac, C. J., Fitzgerald, S. D., Gamble, D., Ginn, P. E., Goldschmidt, M. H., Hendrick, M. J., Howerth, E. W., Janovitz, E. B., Langohr, I., Lenz, S. D., Lipscomb, T. P., Miller, M. A., Misdorp, W., Moroff, S., … Miller, R. (2011). Proposal of a 2-Tier Histologic Grading System for Canine Cutaneous Mast Cell Tumors to More Accurately Predict Biological Behavior. Veterinary Pathology, 48(1), 147–155. https://doi.org/10.1177/0300985810386469 | |
dc.relation.references | Kok, M. K., Chambers, J. K., Tsuboi, M., Nishimura, R., Tsujimoto, H., Uchida, K., & Nakayama, H. (2019). Retrospective study of canine cutaneous tumors in Japan, 2008–2017. Journal of Veterinary Medical Science, 81(8), 1133–1143. https://doi.org/10.1292/jvms.19-0248 | |
dc.relation.references | Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005 | |
dc.relation.references | Marconato, L., Bettini, G., Giacoboni, C., Romanelli, G., Cesari, A., Zatelli, A., & Zini, E. (2008). Clinicopathological Features and Outcome for Dogs with Mast Cell Tumors and Bone Marrow Involvement. Journal of Veterinary Internal Medicine, 22(4), 1001–1007. https://doi.org/10.1111/j.1939-1676.2008.0128.x | |
dc.relation.references | Meuten, D. J. (2016). Tumors in Domestic Animals. En Tumors in Domestic Animals. John Wiley & Sons. https://doi.org/10.1002/9781119181200 | |
dc.relation.references | Northrup, N. C., Howerth, E. W., Harmon, B. G., Brown, C. A., Carmicheal, K. P., Garcia, A. P., Latimer, K. S., Munday, J. S., Rakich, P. M., Richey, L. J., Stedman, N. L., & Gieger, T. L. (2005). Variation among pathologists in the histologic grading of canine cutaneous mast cell tumors with uniform use of a single grading reference. Journal of Veterinary Diagnostic Investigation. https://doi.org/10.1177/104063870501700606 | |
dc.relation.references | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. En The BMJ. https://doi.org/10.1136/bmj.n71 | |
dc.relation.references | Patnaik, A. K., Ehler, W. J., & MacEwen, E. G. (1984). Canine Cutaneous Mast Cell Tumor: Morphologic Grading and Survival Time in 83 Dogs. Veterinary Pathology, 21(5), 469–474. https://doi.org/10.1177/030098588402100503 | |
dc.relation.references | Porwit, A., McCullough, J., & Erber, W. E. (2011). Blood and Bone Marrow Pathology. Elsevier. https://doi.org/10.1016/C2009-0-52942-X | |
dc.relation.references | Puget, C., Ganz, J., Ostermaier, J., Konrad, T., Parlak, E., Bertram, C. A., Kiupel, M., Breininger, K., Aubreville, M., & Klopfleisch, R. (2024). Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides. https://doi.org/https://doi.org/10.1177/03009858241286806 | |
dc.relation.references | Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 2374289519873088. https://doi.org/10.1177/2374289519873088 | |
dc.relation.references | Reynolds, B. D., Thomson, M. J., O’Connell, K., Morgan, E. J., & Gummow, B. (2019). Patient and tumour factors influencing canine mast cell tumour histological grade and mitotic index. Veterinary and Comparative Oncology, 17(3), 338–344. https://doi.org/10.1111/vco.12477 | |
dc.relation.references | Salvi, M., Molinari, F., Iussich, S., Muscatello, L. V., Pazzini, L., Benali, S., Banco, B., Abramo, F., De Maria, R., & Aresu, L. (2021). Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2021.640944 | |
dc.relation.references | Shoop, S. J., Marlow, S., Church, D. B., English, K., McGreevy, P. D., Stell, A. J., Thomson, P. C., O’Neill, D. G., & Brodbelt, D. C. (2015). Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genetics and Epidemiology, 2(1), 1. https://doi.org/10.1186/2052-6687-2-1 | |
dc.relation.references | Sledge, D. G., Webster, J., & Kiupel, M. (2016). Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. The Veterinary Journal, 215, 43–54. https://doi.org/10.1016/j.tvjl.2016.06.003 | |
dc.relation.references | Śmiech, A., Ślaska, B., Łopuszyński, W., Jasik, A., Bochyńska, D., & Dąbrowski, R. (2018). Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Veterinaria Scandinavica, 60(1), 70. https://doi.org/10.1186/s13028-018-0424-2 | |
dc.relation.references | Snead, D. R. J., Tsang, Y., Meskiri, A., Kimani, P. K., Crossman, R., Rajpoot, N. M., Blessing, E., Chen, K., Gopalakrishnan, K., Matthews, P., Momtahan, N., Read‐Jones, S., Sah, S., Simmons, E., Sinha, B., Suortamo, S., Yeo, Y., El Daly, H., & Cree, I. A. (2016). Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology, 68(7), 1063–1072. https://doi.org/10.1111/his.12879 | |
dc.relation.references | Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095 | |
dc.relation.references | Tian, F., Liu, D., Wei, N., Fu, Q., Sun, L., Liu, W., Sui, X., Tian, K., Nemeth, G., Feng, J., Xu, J., Xiao, L., Han, J., Fu, J., Shi, Y., Yang, Y., Liu, J., Hu, C., Feng, B., … Li, X. (2024). Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nature Medicine. https://doi.org/10.1038/s41591-024-02915-w | |
dc.relation.references | Webster, J. D., & Dunstan, R. W. (2014). Whole-Slide Imaging and Automated Image Analysis. Veterinary Pathology, 51(1), 211–223. https://doi.org/10.1177/0300985813503570 | |
dc.relation.references | Webster, J. D., Yuzbasiyan-Gurkan, V., Miller, R. A., Kaneene, J. B., & Kiupel, M. (2007). Cellular proliferation in canine cutaneous mast cell tumors: Associations with c-KIT and its role in prognostication. Veterinary Pathology. https://doi.org/10.1354/vp.44-3-298 | |
dc.relation.references | Williams, B., Hanby, A., Millican‐Slater, R., Verghese, E., Nijhawan, A., Wilson, I., Besusparis, J., Clark, D., Snead, D., Rakha, E., & Treanor, D. (2020). Digital pathology for primary diagnosis of screen‐detected breast lesions – experimental data, validation and experience from four centres. Histopathology, 76(7), 968–975. https://doi.org/10.1111/his.14079 | |
dc.relation.references | Willmann, M., Yuzbasiyan-Gurkan, V., Marconato, L., Dacasto, M., Hadzijusufovic, E., Hermine, O., Sadovnik, I., Gamperl, S., Schneeweiss-Gleixner, M., Gleixner, K. V., Böhm, T., Peter, B., Eisenwort, G., Moriggl, R., Li, Z., Jawhar, M., Sotlar, K., Jensen-Jarolim, E., Sexl, V., … Valent, P. (2021). Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.755258 | |
dc.relation.references | Wilm, F., Fragoso, M., Marzahl, C., Qiu, J., Puget, C., Diehl, L., Bertram, C. A., Klopfleisch, R., Maier, A., Breininger, K., & Aubreville, M. (2022). Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01692-w | |
dc.relation.references | Zuraw, A., & Aeffner, F. (2022). Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. En Veterinary Pathology. https://doi.org/10.1177/03009858211040484 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.lemb | Patología veterinaria | spa |
dc.subject.lemb | Veterinary pathology | eng |
dc.subject.lemb | Medicina veterinaria | spa |
dc.subject.lemb | Veterinary Medicine | eng |
dc.subject.lemb | Telepatología | spa |
dc.subject.lemb | Telepathology | eng |
dc.subject.proposal | Cáncer | spa |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Mastocitoma | spa |
dc.subject.proposal | WSI | |
dc.subject.proposal | Cancer | eng |
dc.subject.proposal | Artificial intelligence | eng |
dc.subject.proposal | Mast cell tumor | eng |
dc.title | Patología digital en la era de la inteligencia artificial y su impacto sobre el diagnóstico y pronóstico del mastocitoma cutáneo canino | spa |
dc.title.translated | Digital pathology in the era of artificial intelligence and its impact on the diagnosis and prognosis of canine cutaneous mast cell tumor | eng |
dc.type | Trabajo de grado - Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |