Evaluación del polen apícola producido en Cundinamarca como fuente de componentes liposolubles de interés nutricional y antioxidante

dc.contributor.advisorDiaz Moreno, Amanda Consuelo
dc.contributor.authorPrada Rodriguez, Diana Prada
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.date.accessioned2023-02-20T14:19:26Z
dc.date.available2023-02-20T14:19:26Z
dc.date.issued2022-04-28
dc.descriptionilustraciones, fotografías (principalmente a color), mapasspa
dc.description.abstractEl trabajo presenta la evaluación de la fracción liposoluble del polen apícola y sus extractos de muestras provenientes de tres zonas del departamento de Cundinamarca en dos épocas del año. Se incluyo dentro de los análisis la caracterización palinológica, el análisis proximal, el perfil de ácidos grasos y contenido de vitamina E de las muestras de polen apícola y los extractos obtenidos por metodologías convencionales y no convencionales. A través de una metodología cromatográfica se realizó la determinación del perfil de carotenoides. Los resultados diversos en los análisis fisicoquímicos y palinológicos mostraron la influencia de las diferentes épocas (lluvia y de sequía) en la disponibilidad de las familias botánicas. En general, el análisis proximal arrojo que las muestras tienen unos contenidos de humedad de 9,1 ± 1,9%, cenizas 2,7 ± 0,3%, fibra 9,1 ± 1,9% y proteína bruta 27,1 ± 1,7%. Se determinaron las condiciones adecuadas para la extracción convencional (8 días de extracción) y por ultrasonido (34% de potencia por 14 minutos) empleando aceite comestible como solvente, las cuales junto con la extracción con fluidos supercríticos permitieron la obtención de extractos ricos en la fracción liposoluble del polen apícola. La técnica de cromatografía liquida de alta resolución (HPLC) empleo una fase reversa con columna C30 y una fase móvil polar con gradiente de metanol: agua: tert butil metil éter. Esta técnica permitió la separación e identificación de los carotenoides presentes en las muestras de polen y en los extractos oleosos, se pudo identificar que estos son fuentes potenciales de estos compuestos bioactivos, siendo el carotenoide más abundante la β-criptoxantina. (Texto tomado de la fuente)spa
dc.description.abstractThe work presents the evaluation of the fat-soluble fraction of bee pollen and its extracts from samples from three areas of the department of Cundinamarca at two times of the year. Included within the analyzes are the palynological characterization, the proximal analysis, the fatty acid profile and vitamin E content of the bee pollen samples, and the extracts obtained by conventional and unconventional methodologies. Through a chromatographic methodology, the carotenoid profile was determined. The diverse results in the physicochemical and palynological analyzes showed the influence of the different seasons (rainy and dry) on the availability of the botanical families. In general, the proximal analysis showed that the samples had moisture contents of 9.1 ± 1.9%, ashes 2.7 ± 0.3%, fiber 9.1 ± 1.9% and crude protein 27.1 ±1.7%. The appropriate conditions were determined for conventional extraction (8 days of extraction) and by ultrasound (34% power for 14 minutes) using an edible oil as solvent, which together with the extraction with supercritical fluids allowed obtaining extracts rich in the fat-soluble fraction of bee pollen. The high performance liquid chromatography (HPLC) technique uses a reverse phase with a C30 column and a polar mobile phase with a gradient of methanol: water: tert-butyl methyl ether. This technique allowed the separation and identification of the carotenoids present in the pollen samples and in the oily extracts, it was possible to identify that these are potential sources of these bioactive compounds, the most abundant carotenoid being β cryptoxanthineng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCalidad de Alimentosspa
dc.format.extentxvii, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83525
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAbd-Alla, A., & Salem, R. (2020). Impact of storage period on different types of bee pollen pigments. Journal of Plant Protection and Pathology, 11(1), 9–13. https://doi.org/10.21608/jppp.2020.68178spa
dc.relation.referencesAbdel-Aal, E.-S., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients, 5(4), 1169–1185. https://doi.org/10.3390/nu5041169spa
dc.relation.referencesAl-Kahtani, S. N. (2017). Fatty acids and B vitamins contents in honey bee collected pollen in relation to botanical origin. Scientific Journal of King Faisal University, 18(2), 41–48spa
dc.relation.referencesAličić, D., Flanjak, I., Ačkar, Đ., Jašić, M., Babić, J., & Šubarić, D. (2020). Physicochemical properties and antioxidant capacity of bee pollen collected in Tuzla Canton (B&H). Journal of Central European Agriculture, 21(1), 42–50. https://doi.org/10.5513/JCEA01/21.1.2533spa
dc.relation.referencesAltunatmaz, S. S., Tarhan, D., Aksu, F., Barutçu, U. B., & Or, M. E. (2017). Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology, 37(suppl 1), 136–141. https://doi.org/10.1590/1678-457x.36016spa
dc.relation.referencesAnjos, O., Paula, V., Delgado, T., & Estevinho, L. (2019). Influence of the storage conditions on the quality of bee pollen. Zemdirbyste-Agriculture, 106(1), 87–94. https://doi.org/10.13080/z-a.2019.106.012spa
dc.relation.referencesArien, Y., Dag, A., Zarchin, S., Masci, T., & Shafir, S. (2015). Omega - 3 deficiency impairs honey bee learning. Proceedings of the National Academy of Sciences, 112(51), 15761–15766. https://doi.org/10.1073/pnas.1517375112spa
dc.relation.referencesAylanc, V., Falcão, S. I., Ertosun, S., & Vilas-Boas, M. (2021). From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends in Food Science & Technology, 109(January), 464–481. https://doi.org/10.1016/j.tifs.2021.01.042spa
dc.relation.referencesBabu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702spa
dc.relation.referencesBarajas Gómez, J. J., Castañeda Ovando, A., Contreras López, E., Martinez Torres, E., Añorve Morga, J., González Olivares, L. G., & Jaimez Ordaz, J. (2016). Estudio de la degradación de ácidos grasos sometidos a estrés térmico. Investigación y Desarrollo En Ciencia y Tecnología de Alimentos, 1(1), 14–19.spa
dc.relation.referencesBARAJAS, J., CORTES-RODRIGUEZ, M., & RODRÍGUEZ-SANDOVAL, E. (2012). Effect of temperature on the drying process of bee pollen from two zones of colombia. Journal of Food Process Engineering, 35(1), 134–148. https://doi.org/10.1111/j.1745-4530.2010.00577.xspa
dc.relation.referencesBaran, M. T., Miziak, P., & Bonio, K. (2020). Characteristics of carotenoids and their use in the cosmetics industry. Journal of Education, Health and Sport, 10(7), 192–196. https://doi.org/10.12775/JEHS.2020.10.07.020spa
dc.relation.referencesBelina-Aldemita, M. D., Opper, C., Schreiner, M., & D’Amico, S. (2019). Nutritional composition of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. Journal of Food Composition and Analysis, 82, 103215. https://doi.org/10.1016/j.jfca.2019.04.003spa
dc.relation.referencesCampos, M. G. R., Bogdanov, S., de Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C., & Ferreira, F. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47(2), 154–161. https://doi.org/10.1080/00218839.2008.11101443spa
dc.relation.referencesConte, G., Benelli, G., Serra, A., Signorini, F., Bientinesi, M., Nicolella, C., Mele, M., & Canale, A. (2017). Lipid characterization of chestnut and willow honeybee -Collected pollen: Impact of freeze - Drying and microwave-assisted drying. Journal of Food Composition and Analysis, 55, 12–19. https://doi.org/10.1016/j.jfca.2016.11.001spa
dc.relation.referencesDe-Melo, A. A. M., Estevinho, L. M., Moreira, M. M., Delerue-Matos, C., Freitas, A. da S. de, Barth, O. M., & Almeida-Muradian, L. B. de. (2018). A multivariate approach based on physicochemical parameters and biological potential for the botanical and geographical discrimination of Brazilian bee pollen. Food Bioscience, 25(July), 91–110. https://doi.org/10.1016/j.fbio.2018.08.001spa
dc.relation.referencesDjuricic, I., & Calder, P. C. (2021). Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 13(7), 2421. https://doi.org/10.3390/nu13072421spa
dc.relation.referencesDong, J., Yang, Y., Wang, X., & Zhang, H. (2015). Fatty acid profiles of 20 species of monofloral bee pollen from China. Journal of Apicultural Research, 54(5), 503–511. https://doi.org/10.1080/00218839.2016.1173427spa
dc.relation.referencesDuarte, A. W. F., Vasconcelos, M. R. dos S., Oda-Souza, M., Oliveira, F. F. de, & López, A. M. Q. (2018). Honey and bee pollen produced by Meliponini (Apidae) in Alagoas, Brazil: multivariate analysis of physicochemical and antioxidant profiles. Food Science and Technology, 38(3), 493–503. https://doi.org/10.1590/fst.09317spa
dc.relation.referencesEstevinho, L. M., Dias, T., & Anjos, O. (2019). Influence of the storage conditions (frozen vs. dried) in health - Related lipid indexes and antioxidants of bee pollen. European Journal of Lipid Science and Technology, 121(2), 1800393. https://doi.org/10.1002/ejlt.201800393spa
dc.relation.referencesFAO. (2010). Grasas y ácidos grasos en nutrición humana Consulta de expertos. In Estudio FAO alimentación y nutrición. https://doi.org/978-92-5-3067336spa
dc.relation.referencesFeás, X., Vázquez-Tato, M. P., Estevinho, L., Seijas, J. A., & Iglesias, A. (2012). Organic bee pollen: Botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359–8377. https://doi.org/10.3390/molecules17078359spa
dc.relation.referencesFuenmayor B., C., Zuluaga D., C., Díaz M., C., Quicazán de C., M., Cosio, M., & Mannino, S. (2014). Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev.MVZ Córdoba, 19(1), 4003–4014.spa
dc.relation.referencesFuenmayor, C. A. (2009). Aplicación de bioprocesos en polen de abejas para el desarrollo de un suplemento nutricional proteico [Universidad Nacional de Colombia]. https://doi.org/10.1038/132817a0spa
dc.relation.referencesGardana, C., Del Bo’, C., Quicazán, M. C., Corrrea, A. R., & Simonetti, P. (2018). Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis, 73, 29–38. https://doi.org/10.1016/j.jfca.2018.07.009spa
dc.relation.referencesGhosh, S., & Jung, C. (2020). Changes in nutritional composition from bee pollen to pollen patty used in bumblebee rearing. Journal of Asia-Pacific Entomology, 23(3), 701–708. https://doi.org/10.1016/j.aspen.2020.04.008spa
dc.relation.referencesGiordano, E., & Visioli, F. (2014). Long-chain omega 3 fatty acids: Molecular bases of potential antioxidant actions. Prostaglandins, Leukotrienes and Essential Fatty Acids, 90, 1–4. https://doi.org/10.1016/j.plefa.2013.11.002spa
dc.relation.referencesGómez Candela, C., Bermejo López, L. M., & Loria Kohen, V. (2011). Importancia del equilibrio del índice omega-6/omega-3 en el mantenimiento de un buen estado de salud. recomendaciones nutricionales. Nutricion Hospitalaria, 26(2), 323–329. https://doi.org/10.3305/nh.2011.26.2.5117spa
dc.relation.referencesIrwin, J. W., & Hedges, N. (2004). Measuring lipid oxidation. In Understanding and Measuring the Shelf-Life of Food (pp. 289–316). Elsevier. https://doi.org/10.1533/9781855739024.2.289spa
dc.relation.referencesIsik, A., Ozdemir, M., & Doymaz, I. (2019). Effect of hot air drying on quality characteristics and physicochemical properties of bee pollen. Food Science and Technology, 39(1), 224–231. https://doi.org/10.1590/fst.02818spa
dc.relation.referencesJarukas, L., Kuraite, G., Baranauskaite, J., Marksa, M., Bezruk, I., & Ivanauskas, L. (2020). Optimization and validation of the GC/FID method for the quantification of fatty acids in bee products. Applied Sciences, 11(1), 83. https://doi.org/10.3390/app11010083spa
dc.relation.referencesKanar, Y., & Mazı, B. G. (2019). Effect of different drying methods on antioxidant characteristics of bee - Pollen. Journal of Food Measurement and Characterization, 13(4), 3376–3386. https://doi.org/10.1007/s11694-019-00283-5spa
dc.relation.referencesKarkar, B., Şahin, S., & Güneş, M. E. (2021). Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. Journal of Apicultural Research, 60(5), 765–774. https://doi.org/10.1080/00218839.2020.1844462spa
dc.relation.referencesKaškonienė, V., Adaškevičiūtė, V., Kaškonas, P., Mickienė, R., & Maruška, A. (2020). Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Bioscience, 34, 100532. https://doi.org/10.1016/j.fbio.2020.100532spa
dc.relation.referencesKeskin, M., & Özkök, A. (2020). Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech Journal of Food Sciences, 38(No. 4), 203–208. https://doi.org/10.17221/79/2020-CJFSspa
dc.relation.referencesKostić, A. Ž., Pešić, M. B., Trbović, D., Petronijević, R., Dramićanin, A. M. Milojković-Opsenica, D. M., & Tešić, Ž. L. (2017). The fatty acid profile of Serbian bee - Collected pollen – A chemotaxonomic and nutritional approach. Journal of Apicultural Research, 56(5), 533–542. https://doi.org/10.1080/00218839.2017.1356206spa
dc.relation.referencesKraus, S., Monchanin, C., Gomez-Moracho, T., & Lihoreau, M. (2019). Insect Diet. In Encyclopedia of Animal Cognition and Behavior (pp. 1–9). Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_1137-1spa
dc.relation.referencesLeger, T., Azarnoush, K., Traoré, A., Cassagnes, L., Rigaudière, J.-P., Jouve, C., Pagès, G., Bouvier, D., Sapin, V., Pereira, B., Bonny, J.-M., & Demaison, L. (2019). Antioxidant and cardioprotective effects of EPA on early low - Severity sepsis through UCP3 and SIRT3 upholding of the mitochondrial redox potential. Oxidative Medicine and Cellular Longevity, 2019, 1–21. https://doi.org/10.1155/2019/9710352spa
dc.relation.referencesLi, Q., Liang, X., Zhao, L., Zhang, Z., Xue, X., Wang, K., & Wu, L. (2017). UPLC -Q - Exactive orbitrap/MS - Based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti - Inflammatory properties. Journal of Agricultural and Food Chemistry, 65(32), 6848–6860. https://doi.org/10.1021/acs.jafc.7b02285spa
dc.relation.referencesLiolios, V., Tananaki, C., Papaioannou, A., Kanelis, D., Rodopoulou, M.-A., & Argena, N. (2019). Mineral content in monofloral bee pollen: Investigation of the effect of the botanical and geographical origin. Journal of Food Measurement and Characterization, 13(3), 1674–1682. https://doi.org/10.1007/s11694-019-00084-wspa
dc.relation.referencesLópez-Casero, I. (2019). Determinación de carotenoides en suero mediante hplc. Universidad Complutense.spa
dc.relation.referencesMărgăoan, R., Mărghitaş, L. A., Dezmirean, D. S., Dulf, F. V., Bunea, A., Socaci, S. A., & Bobiş, O. (2014). Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee - Collected pollen. Journal of Agricultural and Food Chemistry, 62(27), 6306–6316. https://doi.org/10.1021/jf5020318spa
dc.relation.referencesMărgăoan, R., Özkök, A., Keskin, Ş., Mayda, N., Urcan, A. C., & Cornea-Cipcigan, M. (2021). Bee collected pollen as a value-added product rich in bioactive compounds and unsaturated fatty acids: A comparative study from Turkey and Romania. LWT, 149(June), 111925. https://doi.org/10.1016/j.lwt.2021.111925spa
dc.relation.referencesMayda, N., Özkök, A., Ecem Bayram, N., Gerçek, Y. C., & Sorkun, K. (2020). Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement and Characterization, 14(4), 1795–1809. https://doi.org/10.1007/s11694-020-00427-yspa
dc.relation.referencesMeléndez-Martínez, A. J. (2017). Carotenoides en agroalimentación y salud (P. Tapia (ed.); 1st ed.). Terracota, SAspa
dc.relation.referencesMesa, A. (2015). Caracterización fisicoquímica y funcional del polen de abejas ( Apis mellifera ) como estrategia para generar valor agregado y parámetros de calidad al producto apícola. Universidad Nacional de Colombiaspa
dc.relation.referencesMontenegro, G., Pizarro, R., Mejias, E., & Rodríguez, S. (2013). Biological evaluation of bee pollen from native Chilean plants. Phyton, 82(1), 7–14. https://doi.org/10.32604/phyton.2013.82.007spa
dc.relation.referencesMozaffarieh, M., Sacu, S., & Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutrition Journal, 2(1), 20. https://doi.org/10.1186/1475-2891-2-20spa
dc.relation.referencesNogueira, C., Iglesias, A., Feás, X., & Estevinho, L. M. (2012). Commercial bee pollen with different geographical origins: A comprehensive approach. International Journal of Molecular Sciences, 13(9), 11173–11187. https://doi.org/10.3390/ijms130911173spa
dc.relation.referencesOliveira, D. de J., Rodrigues dos Santos, D., Andrade, B. R., Nascimento, A. S. do, Oliveira da Silva, M., da Cruz Mercês, C., Lucas, C. I. S., Cavalcante da Silva, S. M. P., Dib de Carvalho, P., Silva, F. de L., Estevinho, L. M., & Carvalho, C. A. L. de. (2021). Botanical origin, microbiological quality and physicochemical composition of the Melipona scutellaris pot - Pollen (“samburá”) from Bahia (Brazil) Region. Journal of Apicultural Research, 60(3), 457–469. https://doi.org/10.1080/00218839.2020.1797271spa
dc.relation.referencesRamírez Botero, C. M., Gómez Ramírez, B. D., Martínez Galán, J. P., Martínez Galán, J. P., & Cardona Zuleta, L. M. (2014). Perfil de ácidos grasos en aceites de cocina de mayor venta en Medellín-Colombia. Perspectivas En Nutrición Humana, 16(2), 175–185. https://doi.org/10.17533/udea.penh.v16n2a05spa
dc.relation.referencesRamkumar, D. (2005). ¿Qué es la HPLC y Cómo Funciona? trabajar. Educación Continuada En El Laboratorio Clínico, 8(Unidad de Inmunología, Facultad de Medicina, Universidad de Granada, Granada), 49–62spa
dc.relation.referencesRodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus Handbook for Carotenoid Analysis. In HarvestPlus Technical Monographs (Vol. 1, Issue 1). https://doi.org/10.3141/2068-08spa
dc.relation.referencesSaenz de Viteri, M., Hernandez, M., Bilbao-Malavé, V., Fernandez-Robredo, P., González-Zamora, J., Garcia-Garcia, L., Ispizua, N., Recalde, S., & Garcia Layana, A. (2020). A higher proportion of eicosapentaenoic acid (EPA) when combined with docosahexaenoic acid (DHA) in omega-3 dietary supplements provides higher antioxidant effects in human retinal cells. Antioxidants, 9(9), 828. https://doi.org/10.3390/antiox9090828spa
dc.relation.referencesSagona, S., Pozzo, L., Peiretti, P. G., Biondi, C., Giusti, M., Gabriele, M., Pucci, L., & Felicioli, A. (2017). Palynological origin, chemical composition, lipid peroxidation and fatty acid profile of organic Tuscanian bee - Pollen. Journal of Apicultural Research, 56(2), 136–143. https://doi.org/10.1080/00218839.2017.1287995spa
dc.relation.referencesŞahin, S., & Karkar, B. (2019). The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. Journal of Food Biochemistry, 43(7), 1–8. https://doi.org/10.1111/jfbc.12888spa
dc.relation.referencesSalazar-González, C. Y., Rodríguez-Pulido, F. J., Stinco, C. M., Terrab, A., Díaz Moreno, C., Fuenmayor, C., & Heredia, F. J. (2020). Carotenoid profile determination of bee pollen by advanced digital image analysis. Computers and Electronics in Agriculture, 175(May), 105601. https://doi.org/10.1016/j.compag.2020.105601spa
dc.relation.referencesSalazar-González, C. Y., Rodríguez-Pulido, F. J., Terrab, A., Díaz-Moreno, C., Fuenmayor, C. A., & Heredia, F. J. (2018). Analysis of multifloral bee pollen pellets by advanced digital imaging applied to functional food ingredients. Plant Foods for Human Nutrition, 73(4), 328–335. https://doi.org/10.1007/s11130-018-0695-9spa
dc.relation.referencesSalazar, C., Céspedes, C., & Díaz, C. (2013). Propiedades bioactivas y antioxidantes de polen apícola proveniente del bosque alto-andino. Encuentro Nacional de Investigación y Desarrollo - ENID, 1–3spa
dc.relation.referencesSattler, J. A. G., de Melo, I. L. P., Granato, D., Araújo, E., da Silva de Freitas, A., Barth, O. M., Sattler, A., & de Almeida-Muradian, L. B. (2015). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.013spa
dc.relation.referencesSimopoulos, A. P. (2010). The omega-6/omega-3 fatty acid ratio: Health implications. OCL - Oleagineux Corps Gras Lipides, 17(5), 267–275. https://doi.org/10.1684/ocl.2010.0325spa
dc.relation.referencesSoares de Arruda, V. A., Santos Pereira, A. A., Silva de Freitas, A., Barth, O. M., & de Almeida-Muradian, L. B. (2013). Dried bee pollen: B complex vitamins, physicochemical and botanical composition. Journal of Food Composition and Analysis, 29(2), 100–105. https://doi.org/10.1016/j.jfca.2012.11.004spa
dc.relation.referencesStanley, J. C., Elsom, R. L., Calder, P. C., Griffin, B. A., Harris, W. S., Jebb, S. A., Lovegrove, J. A., Moore, C. S., Riemersma, R. A., & Sanders, T. A. B. (2007). UK Food Standards Agency Workshop Report: The effects of the dietary. British Journal of Nutrition, 98(6), 1305–1310. https://doi.org/10.1017/S000711450784284Xspa
dc.relation.referencesStinco, C. M., Benítez-González, A. M., Meléndez-Martínez, A. J., Hernanz, D., & Vicario, I. M. (2019). Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by rapid resolution liquid chromatography. Journal of Chromatography A, 1583, 63–72. https://doi.org/10.1016/j.chroma.2018.11.010spa
dc.relation.referencesSuárez Heredia, M. A., Morillo Reinoso, Y. M., Rosero, J. A., Haro Morales, G. J., & Ichau Espinoza, M. A. (2019). Eficiencia de encapsulación de carotenoides extraidos de Capsicum annuum en nanopartículas de zeina. FIGEMPA: Investigación y Desarrollo, 1(1), 47–52. https://doi.org/10.29166/revfig.v1i1.1017spa
dc.relation.referencesThakur, M., & Nanda, V. (2018). Assessment of physico-chemical properties, fatty acid, amino acid and mineral profile of bee pollen from India with a multivariate perspective. Journal of Food and Nutrition Research, 57(4), 328–340.spa
dc.relation.referencesXu, X., Dong, J., Mu, X., & Sun, L. (2011). Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food and Bioproducts Processing, 89(1), 47–52. https://doi.org/10.1016/j.fbp.2010.03.003spa
dc.relation.referencesYang, K., Wu, D., Ye, X., Liu, D., Chen, J., & Sun, P. (2013). Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry, 61(3), 708–718. https://doi.org/10.1021/jf304056bspa
dc.relation.referencesYang, Y., Zhang, J., Zhou, Q., Wang, L., Huang, W., & Wang, R. (2019). Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose ( Rosa rugosa ) bee pollen, and identification of bioactive components. Journal of the Science of Food and Agriculture, 99(12), 5350–5357. https://doi.org/10.1002/jsfa.9774spa
dc.relation.referencesZuluaga-Domínguez, C., Castro-Mercado, L., & Cecilia-Quicazán, M. (2019). Effect of enzymatic hydrolysis on structural characteristics and bioactive composition of bee - Pollen. Journal of Food Processing and Preservation, 43(7), 1–11. https://doi.org/10.1111/jfpp.13983spa
dc.relation.referencesZuluaga, C. M. (2015). Valorización de polen apícola como alimento mediante el desarrollo de un proceso físico o biotecnológico. Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembBee polleneng
dc.subject.lembPolen de abejaspa
dc.subject.lembPalinologíaspa
dc.subject.lembPalynologyeng
dc.subject.proposalPolen apicolaspa
dc.subject.proposalVitamina Espa
dc.subject.proposalPerfil de ácidos grasosspa
dc.subject.proposalperfil de carotenoidesspa
dc.subject.proposalHPLCspa
dc.titleEvaluación del polen apícola producido en Cundinamarca como fuente de componentes liposolubles de interés nutricional y antioxidantespa
dc.title.translatedEvaluation of bee pollen produced in Cundinamarca as a source of fat-soluble components of nutritional and antioxidant interest.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030648307.2022.pdf
Tamaño:
12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: