Evaluación del polen apícola producido en Cundinamarca como fuente de componentes liposolubles de interés nutricional y antioxidante
dc.contributor.advisor | Diaz Moreno, Amanda Consuelo | |
dc.contributor.author | Prada Rodriguez, Diana Prada | |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.date.accessioned | 2023-02-20T14:19:26Z | |
dc.date.available | 2023-02-20T14:19:26Z | |
dc.date.issued | 2022-04-28 | |
dc.description | ilustraciones, fotografías (principalmente a color), mapas | spa |
dc.description.abstract | El trabajo presenta la evaluación de la fracción liposoluble del polen apícola y sus extractos de muestras provenientes de tres zonas del departamento de Cundinamarca en dos épocas del año. Se incluyo dentro de los análisis la caracterización palinológica, el análisis proximal, el perfil de ácidos grasos y contenido de vitamina E de las muestras de polen apícola y los extractos obtenidos por metodologías convencionales y no convencionales. A través de una metodología cromatográfica se realizó la determinación del perfil de carotenoides. Los resultados diversos en los análisis fisicoquímicos y palinológicos mostraron la influencia de las diferentes épocas (lluvia y de sequía) en la disponibilidad de las familias botánicas. En general, el análisis proximal arrojo que las muestras tienen unos contenidos de humedad de 9,1 ± 1,9%, cenizas 2,7 ± 0,3%, fibra 9,1 ± 1,9% y proteína bruta 27,1 ± 1,7%. Se determinaron las condiciones adecuadas para la extracción convencional (8 días de extracción) y por ultrasonido (34% de potencia por 14 minutos) empleando aceite comestible como solvente, las cuales junto con la extracción con fluidos supercríticos permitieron la obtención de extractos ricos en la fracción liposoluble del polen apícola. La técnica de cromatografía liquida de alta resolución (HPLC) empleo una fase reversa con columna C30 y una fase móvil polar con gradiente de metanol: agua: tert butil metil éter. Esta técnica permitió la separación e identificación de los carotenoides presentes en las muestras de polen y en los extractos oleosos, se pudo identificar que estos son fuentes potenciales de estos compuestos bioactivos, siendo el carotenoide más abundante la β-criptoxantina. (Texto tomado de la fuente) | spa |
dc.description.abstract | The work presents the evaluation of the fat-soluble fraction of bee pollen and its extracts from samples from three areas of the department of Cundinamarca at two times of the year. Included within the analyzes are the palynological characterization, the proximal analysis, the fatty acid profile and vitamin E content of the bee pollen samples, and the extracts obtained by conventional and unconventional methodologies. Through a chromatographic methodology, the carotenoid profile was determined. The diverse results in the physicochemical and palynological analyzes showed the influence of the different seasons (rainy and dry) on the availability of the botanical families. In general, the proximal analysis showed that the samples had moisture contents of 9.1 ± 1.9%, ashes 2.7 ± 0.3%, fiber 9.1 ± 1.9% and crude protein 27.1 ±1.7%. The appropriate conditions were determined for conventional extraction (8 days of extraction) and by ultrasound (34% power for 14 minutes) using an edible oil as solvent, which together with the extraction with supercritical fluids allowed obtaining extracts rich in the fat-soluble fraction of bee pollen. The high performance liquid chromatography (HPLC) technique uses a reverse phase with a C30 column and a polar mobile phase with a gradient of methanol: water: tert-butyl methyl ether. This technique allowed the separation and identification of the carotenoids present in the pollen samples and in the oily extracts, it was possible to identify that these are potential sources of these bioactive compounds, the most abundant carotenoid being β cryptoxanthin | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Calidad de Alimentos | spa |
dc.format.extent | xvii, 123 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83525 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.references | Abd-Alla, A., & Salem, R. (2020). Impact of storage period on different types of bee pollen pigments. Journal of Plant Protection and Pathology, 11(1), 9–13. https://doi.org/10.21608/jppp.2020.68178 | spa |
dc.relation.references | Abdel-Aal, E.-S., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients, 5(4), 1169–1185. https://doi.org/10.3390/nu5041169 | spa |
dc.relation.references | Al-Kahtani, S. N. (2017). Fatty acids and B vitamins contents in honey bee collected pollen in relation to botanical origin. Scientific Journal of King Faisal University, 18(2), 41–48 | spa |
dc.relation.references | Aličić, D., Flanjak, I., Ačkar, Đ., Jašić, M., Babić, J., & Šubarić, D. (2020). Physicochemical properties and antioxidant capacity of bee pollen collected in Tuzla Canton (B&H). Journal of Central European Agriculture, 21(1), 42–50. https://doi.org/10.5513/JCEA01/21.1.2533 | spa |
dc.relation.references | Altunatmaz, S. S., Tarhan, D., Aksu, F., Barutçu, U. B., & Or, M. E. (2017). Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology, 37(suppl 1), 136–141. https://doi.org/10.1590/1678-457x.36016 | spa |
dc.relation.references | Anjos, O., Paula, V., Delgado, T., & Estevinho, L. (2019). Influence of the storage conditions on the quality of bee pollen. Zemdirbyste-Agriculture, 106(1), 87–94. https://doi.org/10.13080/z-a.2019.106.012 | spa |
dc.relation.references | Arien, Y., Dag, A., Zarchin, S., Masci, T., & Shafir, S. (2015). Omega - 3 deficiency impairs honey bee learning. Proceedings of the National Academy of Sciences, 112(51), 15761–15766. https://doi.org/10.1073/pnas.1517375112 | spa |
dc.relation.references | Aylanc, V., Falcão, S. I., Ertosun, S., & Vilas-Boas, M. (2021). From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends in Food Science & Technology, 109(January), 464–481. https://doi.org/10.1016/j.tifs.2021.01.042 | spa |
dc.relation.references | Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702 | spa |
dc.relation.references | Barajas Gómez, J. J., Castañeda Ovando, A., Contreras López, E., Martinez Torres, E., Añorve Morga, J., González Olivares, L. G., & Jaimez Ordaz, J. (2016). Estudio de la degradación de ácidos grasos sometidos a estrés térmico. Investigación y Desarrollo En Ciencia y Tecnología de Alimentos, 1(1), 14–19. | spa |
dc.relation.references | BARAJAS, J., CORTES-RODRIGUEZ, M., & RODRÍGUEZ-SANDOVAL, E. (2012). Effect of temperature on the drying process of bee pollen from two zones of colombia. Journal of Food Process Engineering, 35(1), 134–148. https://doi.org/10.1111/j.1745-4530.2010.00577.x | spa |
dc.relation.references | Baran, M. T., Miziak, P., & Bonio, K. (2020). Characteristics of carotenoids and their use in the cosmetics industry. Journal of Education, Health and Sport, 10(7), 192–196. https://doi.org/10.12775/JEHS.2020.10.07.020 | spa |
dc.relation.references | Belina-Aldemita, M. D., Opper, C., Schreiner, M., & D’Amico, S. (2019). Nutritional composition of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. Journal of Food Composition and Analysis, 82, 103215. https://doi.org/10.1016/j.jfca.2019.04.003 | spa |
dc.relation.references | Campos, M. G. R., Bogdanov, S., de Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C., & Ferreira, F. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47(2), 154–161. https://doi.org/10.1080/00218839.2008.11101443 | spa |
dc.relation.references | Conte, G., Benelli, G., Serra, A., Signorini, F., Bientinesi, M., Nicolella, C., Mele, M., & Canale, A. (2017). Lipid characterization of chestnut and willow honeybee -Collected pollen: Impact of freeze - Drying and microwave-assisted drying. Journal of Food Composition and Analysis, 55, 12–19. https://doi.org/10.1016/j.jfca.2016.11.001 | spa |
dc.relation.references | De-Melo, A. A. M., Estevinho, L. M., Moreira, M. M., Delerue-Matos, C., Freitas, A. da S. de, Barth, O. M., & Almeida-Muradian, L. B. de. (2018). A multivariate approach based on physicochemical parameters and biological potential for the botanical and geographical discrimination of Brazilian bee pollen. Food Bioscience, 25(July), 91–110. https://doi.org/10.1016/j.fbio.2018.08.001 | spa |
dc.relation.references | Djuricic, I., & Calder, P. C. (2021). Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 13(7), 2421. https://doi.org/10.3390/nu13072421 | spa |
dc.relation.references | Dong, J., Yang, Y., Wang, X., & Zhang, H. (2015). Fatty acid profiles of 20 species of monofloral bee pollen from China. Journal of Apicultural Research, 54(5), 503–511. https://doi.org/10.1080/00218839.2016.1173427 | spa |
dc.relation.references | Duarte, A. W. F., Vasconcelos, M. R. dos S., Oda-Souza, M., Oliveira, F. F. de, & López, A. M. Q. (2018). Honey and bee pollen produced by Meliponini (Apidae) in Alagoas, Brazil: multivariate analysis of physicochemical and antioxidant profiles. Food Science and Technology, 38(3), 493–503. https://doi.org/10.1590/fst.09317 | spa |
dc.relation.references | Estevinho, L. M., Dias, T., & Anjos, O. (2019). Influence of the storage conditions (frozen vs. dried) in health - Related lipid indexes and antioxidants of bee pollen. European Journal of Lipid Science and Technology, 121(2), 1800393. https://doi.org/10.1002/ejlt.201800393 | spa |
dc.relation.references | FAO. (2010). Grasas y ácidos grasos en nutrición humana Consulta de expertos. In Estudio FAO alimentación y nutrición. https://doi.org/978-92-5-3067336 | spa |
dc.relation.references | Feás, X., Vázquez-Tato, M. P., Estevinho, L., Seijas, J. A., & Iglesias, A. (2012). Organic bee pollen: Botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359–8377. https://doi.org/10.3390/molecules17078359 | spa |
dc.relation.references | Fuenmayor B., C., Zuluaga D., C., Díaz M., C., Quicazán de C., M., Cosio, M., & Mannino, S. (2014). Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev.MVZ Córdoba, 19(1), 4003–4014. | spa |
dc.relation.references | Fuenmayor, C. A. (2009). Aplicación de bioprocesos en polen de abejas para el desarrollo de un suplemento nutricional proteico [Universidad Nacional de Colombia]. https://doi.org/10.1038/132817a0 | spa |
dc.relation.references | Gardana, C., Del Bo’, C., Quicazán, M. C., Corrrea, A. R., & Simonetti, P. (2018). Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis, 73, 29–38. https://doi.org/10.1016/j.jfca.2018.07.009 | spa |
dc.relation.references | Ghosh, S., & Jung, C. (2020). Changes in nutritional composition from bee pollen to pollen patty used in bumblebee rearing. Journal of Asia-Pacific Entomology, 23(3), 701–708. https://doi.org/10.1016/j.aspen.2020.04.008 | spa |
dc.relation.references | Giordano, E., & Visioli, F. (2014). Long-chain omega 3 fatty acids: Molecular bases of potential antioxidant actions. Prostaglandins, Leukotrienes and Essential Fatty Acids, 90, 1–4. https://doi.org/10.1016/j.plefa.2013.11.002 | spa |
dc.relation.references | Gómez Candela, C., Bermejo López, L. M., & Loria Kohen, V. (2011). Importancia del equilibrio del índice omega-6/omega-3 en el mantenimiento de un buen estado de salud. recomendaciones nutricionales. Nutricion Hospitalaria, 26(2), 323–329. https://doi.org/10.3305/nh.2011.26.2.5117 | spa |
dc.relation.references | Irwin, J. W., & Hedges, N. (2004). Measuring lipid oxidation. In Understanding and Measuring the Shelf-Life of Food (pp. 289–316). Elsevier. https://doi.org/10.1533/9781855739024.2.289 | spa |
dc.relation.references | Isik, A., Ozdemir, M., & Doymaz, I. (2019). Effect of hot air drying on quality characteristics and physicochemical properties of bee pollen. Food Science and Technology, 39(1), 224–231. https://doi.org/10.1590/fst.02818 | spa |
dc.relation.references | Jarukas, L., Kuraite, G., Baranauskaite, J., Marksa, M., Bezruk, I., & Ivanauskas, L. (2020). Optimization and validation of the GC/FID method for the quantification of fatty acids in bee products. Applied Sciences, 11(1), 83. https://doi.org/10.3390/app11010083 | spa |
dc.relation.references | Kanar, Y., & Mazı, B. G. (2019). Effect of different drying methods on antioxidant characteristics of bee - Pollen. Journal of Food Measurement and Characterization, 13(4), 3376–3386. https://doi.org/10.1007/s11694-019-00283-5 | spa |
dc.relation.references | Karkar, B., Şahin, S., & Güneş, M. E. (2021). Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. Journal of Apicultural Research, 60(5), 765–774. https://doi.org/10.1080/00218839.2020.1844462 | spa |
dc.relation.references | Kaškonienė, V., Adaškevičiūtė, V., Kaškonas, P., Mickienė, R., & Maruška, A. (2020). Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Bioscience, 34, 100532. https://doi.org/10.1016/j.fbio.2020.100532 | spa |
dc.relation.references | Keskin, M., & Özkök, A. (2020). Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech Journal of Food Sciences, 38(No. 4), 203–208. https://doi.org/10.17221/79/2020-CJFS | spa |
dc.relation.references | Kostić, A. Ž., Pešić, M. B., Trbović, D., Petronijević, R., Dramićanin, A. M. Milojković-Opsenica, D. M., & Tešić, Ž. L. (2017). The fatty acid profile of Serbian bee - Collected pollen – A chemotaxonomic and nutritional approach. Journal of Apicultural Research, 56(5), 533–542. https://doi.org/10.1080/00218839.2017.1356206 | spa |
dc.relation.references | Kraus, S., Monchanin, C., Gomez-Moracho, T., & Lihoreau, M. (2019). Insect Diet. In Encyclopedia of Animal Cognition and Behavior (pp. 1–9). Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_1137-1 | spa |
dc.relation.references | Leger, T., Azarnoush, K., Traoré, A., Cassagnes, L., Rigaudière, J.-P., Jouve, C., Pagès, G., Bouvier, D., Sapin, V., Pereira, B., Bonny, J.-M., & Demaison, L. (2019). Antioxidant and cardioprotective effects of EPA on early low - Severity sepsis through UCP3 and SIRT3 upholding of the mitochondrial redox potential. Oxidative Medicine and Cellular Longevity, 2019, 1–21. https://doi.org/10.1155/2019/9710352 | spa |
dc.relation.references | Li, Q., Liang, X., Zhao, L., Zhang, Z., Xue, X., Wang, K., & Wu, L. (2017). UPLC -Q - Exactive orbitrap/MS - Based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti - Inflammatory properties. Journal of Agricultural and Food Chemistry, 65(32), 6848–6860. https://doi.org/10.1021/acs.jafc.7b02285 | spa |
dc.relation.references | Liolios, V., Tananaki, C., Papaioannou, A., Kanelis, D., Rodopoulou, M.-A., & Argena, N. (2019). Mineral content in monofloral bee pollen: Investigation of the effect of the botanical and geographical origin. Journal of Food Measurement and Characterization, 13(3), 1674–1682. https://doi.org/10.1007/s11694-019-00084-w | spa |
dc.relation.references | López-Casero, I. (2019). Determinación de carotenoides en suero mediante hplc. Universidad Complutense. | spa |
dc.relation.references | Mărgăoan, R., Mărghitaş, L. A., Dezmirean, D. S., Dulf, F. V., Bunea, A., Socaci, S. A., & Bobiş, O. (2014). Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee - Collected pollen. Journal of Agricultural and Food Chemistry, 62(27), 6306–6316. https://doi.org/10.1021/jf5020318 | spa |
dc.relation.references | Mărgăoan, R., Özkök, A., Keskin, Ş., Mayda, N., Urcan, A. C., & Cornea-Cipcigan, M. (2021). Bee collected pollen as a value-added product rich in bioactive compounds and unsaturated fatty acids: A comparative study from Turkey and Romania. LWT, 149(June), 111925. https://doi.org/10.1016/j.lwt.2021.111925 | spa |
dc.relation.references | Mayda, N., Özkök, A., Ecem Bayram, N., Gerçek, Y. C., & Sorkun, K. (2020). Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement and Characterization, 14(4), 1795–1809. https://doi.org/10.1007/s11694-020-00427-y | spa |
dc.relation.references | Meléndez-Martínez, A. J. (2017). Carotenoides en agroalimentación y salud (P. Tapia (ed.); 1st ed.). Terracota, SA | spa |
dc.relation.references | Mesa, A. (2015). Caracterización fisicoquímica y funcional del polen de abejas ( Apis mellifera ) como estrategia para generar valor agregado y parámetros de calidad al producto apícola. Universidad Nacional de Colombia | spa |
dc.relation.references | Montenegro, G., Pizarro, R., Mejias, E., & Rodríguez, S. (2013). Biological evaluation of bee pollen from native Chilean plants. Phyton, 82(1), 7–14. https://doi.org/10.32604/phyton.2013.82.007 | spa |
dc.relation.references | Mozaffarieh, M., Sacu, S., & Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutrition Journal, 2(1), 20. https://doi.org/10.1186/1475-2891-2-20 | spa |
dc.relation.references | Nogueira, C., Iglesias, A., Feás, X., & Estevinho, L. M. (2012). Commercial bee pollen with different geographical origins: A comprehensive approach. International Journal of Molecular Sciences, 13(9), 11173–11187. https://doi.org/10.3390/ijms130911173 | spa |
dc.relation.references | Oliveira, D. de J., Rodrigues dos Santos, D., Andrade, B. R., Nascimento, A. S. do, Oliveira da Silva, M., da Cruz Mercês, C., Lucas, C. I. S., Cavalcante da Silva, S. M. P., Dib de Carvalho, P., Silva, F. de L., Estevinho, L. M., & Carvalho, C. A. L. de. (2021). Botanical origin, microbiological quality and physicochemical composition of the Melipona scutellaris pot - Pollen (“samburá”) from Bahia (Brazil) Region. Journal of Apicultural Research, 60(3), 457–469. https://doi.org/10.1080/00218839.2020.1797271 | spa |
dc.relation.references | Ramírez Botero, C. M., Gómez Ramírez, B. D., Martínez Galán, J. P., Martínez Galán, J. P., & Cardona Zuleta, L. M. (2014). Perfil de ácidos grasos en aceites de cocina de mayor venta en Medellín-Colombia. Perspectivas En Nutrición Humana, 16(2), 175–185. https://doi.org/10.17533/udea.penh.v16n2a05 | spa |
dc.relation.references | Ramkumar, D. (2005). ¿Qué es la HPLC y Cómo Funciona? trabajar. Educación Continuada En El Laboratorio Clínico, 8(Unidad de Inmunología, Facultad de Medicina, Universidad de Granada, Granada), 49–62 | spa |
dc.relation.references | Rodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus Handbook for Carotenoid Analysis. In HarvestPlus Technical Monographs (Vol. 1, Issue 1). https://doi.org/10.3141/2068-08 | spa |
dc.relation.references | Saenz de Viteri, M., Hernandez, M., Bilbao-Malavé, V., Fernandez-Robredo, P., González-Zamora, J., Garcia-Garcia, L., Ispizua, N., Recalde, S., & Garcia Layana, A. (2020). A higher proportion of eicosapentaenoic acid (EPA) when combined with docosahexaenoic acid (DHA) in omega-3 dietary supplements provides higher antioxidant effects in human retinal cells. Antioxidants, 9(9), 828. https://doi.org/10.3390/antiox9090828 | spa |
dc.relation.references | Sagona, S., Pozzo, L., Peiretti, P. G., Biondi, C., Giusti, M., Gabriele, M., Pucci, L., & Felicioli, A. (2017). Palynological origin, chemical composition, lipid peroxidation and fatty acid profile of organic Tuscanian bee - Pollen. Journal of Apicultural Research, 56(2), 136–143. https://doi.org/10.1080/00218839.2017.1287995 | spa |
dc.relation.references | Şahin, S., & Karkar, B. (2019). The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. Journal of Food Biochemistry, 43(7), 1–8. https://doi.org/10.1111/jfbc.12888 | spa |
dc.relation.references | Salazar-González, C. Y., Rodríguez-Pulido, F. J., Stinco, C. M., Terrab, A., Díaz Moreno, C., Fuenmayor, C., & Heredia, F. J. (2020). Carotenoid profile determination of bee pollen by advanced digital image analysis. Computers and Electronics in Agriculture, 175(May), 105601. https://doi.org/10.1016/j.compag.2020.105601 | spa |
dc.relation.references | Salazar-González, C. Y., Rodríguez-Pulido, F. J., Terrab, A., Díaz-Moreno, C., Fuenmayor, C. A., & Heredia, F. J. (2018). Analysis of multifloral bee pollen pellets by advanced digital imaging applied to functional food ingredients. Plant Foods for Human Nutrition, 73(4), 328–335. https://doi.org/10.1007/s11130-018-0695-9 | spa |
dc.relation.references | Salazar, C., Céspedes, C., & Díaz, C. (2013). Propiedades bioactivas y antioxidantes de polen apícola proveniente del bosque alto-andino. Encuentro Nacional de Investigación y Desarrollo - ENID, 1–3 | spa |
dc.relation.references | Sattler, J. A. G., de Melo, I. L. P., Granato, D., Araújo, E., da Silva de Freitas, A., Barth, O. M., Sattler, A., & de Almeida-Muradian, L. B. (2015). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.013 | spa |
dc.relation.references | Simopoulos, A. P. (2010). The omega-6/omega-3 fatty acid ratio: Health implications. OCL - Oleagineux Corps Gras Lipides, 17(5), 267–275. https://doi.org/10.1684/ocl.2010.0325 | spa |
dc.relation.references | Soares de Arruda, V. A., Santos Pereira, A. A., Silva de Freitas, A., Barth, O. M., & de Almeida-Muradian, L. B. (2013). Dried bee pollen: B complex vitamins, physicochemical and botanical composition. Journal of Food Composition and Analysis, 29(2), 100–105. https://doi.org/10.1016/j.jfca.2012.11.004 | spa |
dc.relation.references | Stanley, J. C., Elsom, R. L., Calder, P. C., Griffin, B. A., Harris, W. S., Jebb, S. A., Lovegrove, J. A., Moore, C. S., Riemersma, R. A., & Sanders, T. A. B. (2007). UK Food Standards Agency Workshop Report: The effects of the dietary. British Journal of Nutrition, 98(6), 1305–1310. https://doi.org/10.1017/S000711450784284X | spa |
dc.relation.references | Stinco, C. M., Benítez-González, A. M., Meléndez-Martínez, A. J., Hernanz, D., & Vicario, I. M. (2019). Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by rapid resolution liquid chromatography. Journal of Chromatography A, 1583, 63–72. https://doi.org/10.1016/j.chroma.2018.11.010 | spa |
dc.relation.references | Suárez Heredia, M. A., Morillo Reinoso, Y. M., Rosero, J. A., Haro Morales, G. J., & Ichau Espinoza, M. A. (2019). Eficiencia de encapsulación de carotenoides extraidos de Capsicum annuum en nanopartículas de zeina. FIGEMPA: Investigación y Desarrollo, 1(1), 47–52. https://doi.org/10.29166/revfig.v1i1.1017 | spa |
dc.relation.references | Thakur, M., & Nanda, V. (2018). Assessment of physico-chemical properties, fatty acid, amino acid and mineral profile of bee pollen from India with a multivariate perspective. Journal of Food and Nutrition Research, 57(4), 328–340. | spa |
dc.relation.references | Xu, X., Dong, J., Mu, X., & Sun, L. (2011). Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food and Bioproducts Processing, 89(1), 47–52. https://doi.org/10.1016/j.fbp.2010.03.003 | spa |
dc.relation.references | Yang, K., Wu, D., Ye, X., Liu, D., Chen, J., & Sun, P. (2013). Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry, 61(3), 708–718. https://doi.org/10.1021/jf304056b | spa |
dc.relation.references | Yang, Y., Zhang, J., Zhou, Q., Wang, L., Huang, W., & Wang, R. (2019). Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose ( Rosa rugosa ) bee pollen, and identification of bioactive components. Journal of the Science of Food and Agriculture, 99(12), 5350–5357. https://doi.org/10.1002/jsfa.9774 | spa |
dc.relation.references | Zuluaga-Domínguez, C., Castro-Mercado, L., & Cecilia-Quicazán, M. (2019). Effect of enzymatic hydrolysis on structural characteristics and bioactive composition of bee - Pollen. Journal of Food Processing and Preservation, 43(7), 1–11. https://doi.org/10.1111/jfpp.13983 | spa |
dc.relation.references | Zuluaga, C. M. (2015). Valorización de polen apícola como alimento mediante el desarrollo de un proceso físico o biotecnológico. Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines | spa |
dc.subject.lemb | Bee pollen | eng |
dc.subject.lemb | Polen de abeja | spa |
dc.subject.lemb | Palinología | spa |
dc.subject.lemb | Palynology | eng |
dc.subject.proposal | Polen apicola | spa |
dc.subject.proposal | Vitamina E | spa |
dc.subject.proposal | Perfil de ácidos grasos | spa |
dc.subject.proposal | perfil de carotenoides | spa |
dc.subject.proposal | HPLC | spa |
dc.title | Evaluación del polen apícola producido en Cundinamarca como fuente de componentes liposolubles de interés nutricional y antioxidante | spa |
dc.title.translated | Evaluation of bee pollen produced in Cundinamarca as a source of fat-soluble components of nutritional and antioxidant interest. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030648307.2022.pdf
- Tamaño:
- 12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: