Pretratamiento de un mineral de oro refractario asociado con telururos de oro y plata

dc.contributor.advisorRestrepo Baena, Oscar Jaime
dc.contributor.authorArgumedo Jiménez, Carlos Enrique
dc.contributor.orcidArgumedo-Jimenez, Carlos Enrique [0000-0002-6238-7349]spa
dc.date.accessioned2024-06-12T02:15:33Z
dc.date.available2024-06-12T02:15:33Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractEl agotamiento de los minerales auríferos fáciles de tratar está haciendo crecer la necesidad de procesar depósitos de oro no convencionales que se caracterizan por la presencia de oro asociado a ciertos elementos que no permiten obtener buenas recuperaciones del metal precioso usando la cianuración convencional. Entre todos los tipos de minerales de oro refractarios, los telururos de oro-plata son bien conocidos como refractarios, pero es limitada la información sobre opciones para procesarlos. En este trabajo se presenta la investigación de un pretratamiento propuesto para el tratamiento de un mineral de oro asociado a telururos de oro y plata. El pretratamiento propuesto se basa en el uso de ácido nítrico para oxidar los minerales que generan la refractariedad en una muestra de mineral de oro asociado a telururos proveniente de la región del Bajo Cauca. Durante esta investigación se realizó una caracterización física y química del mineral para después proponer un tratamiento adecuado y capaz de potenciar la recuperación de oro y plata desde la muestra recibida. El tratamiento propuesto consistió en tres etapas: (i) acidificación del mineral para descomponer cualquier especie importante consumidora de ácido presente en el mineral, (ii) lixiviación atmosférica del mineral con una solución diluida de ácido nítrico (pretratamiento) para eliminar la refractariedad, y (iii) cianuración del residuo sólido del pretratamiento para recuperar el oro y la plata contenidos en el mineral. Para estudiar el efecto de las variables del pretratamiento sobre la recuperación de oro en la cianuración post pretratamiento se estableció un diseño experimental factorial 2^k y se realizó un análisis ANOVA de los resultados. Los resultados del diseño experimental mostraron que después del pretratamiento la recuperación de oro mediante cianuración convencional aumenta hasta un 30% en comparación con las cianuraciones base. Se encontró que las tres variables estudiadas del pretratamiento estaban correlacionadas positivamente con la recuperación de oro durante la cianuración del residuo sólido del pretratamiento. Para la plata se encontró la correlación opuesta ya que el pretratamiento no mejoró la recuperación de la plata y las tres variables del pretratamiento resultaron estar correlacionadas negativamente con su recuperación. Como se esperaba, se encontró que el aumento de la recuperación de oro durante la cianuración estaba asociado con la descomposición de los telururos durante el pretratamiento. (Tomado de la fuente)spa
dc.description.abstractDepletion of easy-to-treat ores is heightening the necessity for processing non-conventional gold deposits characterized by the presence of gold associated with certain elements that impede efficient recovery of the precious metals through the conventional cyanidation process. Among all types of refractory gold ores, gold-silver tellurides are well known as refractory, but limited information is available on processing options to treat them. This work presents an investigation into a proposed pretreatment designed for the processing of a gold ore associated with gold and gold-silver tellurides. The proposed pretreatment is based in use of nitric acid to oxidize the minerals responsible of the refractoriness of a gold ore sample associated with tellurides from the Bajo Cauca region. Physical and chemical characterization of the ore was carried out to then propose a suitable treatment capable of enhancing the gold and silver recovery from the received ore. The proposed treatment consisted of three stages: (i) acidification of the ore to decompose any major acid consumer specie present in the ore, (ii) atmospheric leaching of the ore with diluted solution of nitric acid (pretreatment) to eliminate the refractoriness, and (iii) cyanidation of the pretreatment solid residues to recover the ore’s gold and silver content. To study the effect of the pretreatment variables on the gold recovery during the post pretreatment cyanidation, a 2^k factorial experimental design was established, and an ANOVA analysis of the results was carried out. The results of the 2^k factorial experimental design showed that after the pretreatment gold recovery by conventional cyanidation increase up to 30% comparted with base cyanidations. The three studied pretreatment variables were found to be positively correlated with gold recovery during cyanidation of the solid residue of the pretreatment. For silver, the opposite correlation was found since the pretreatment did not improve the silver recovery and the three pretreatment variables turned out to be negatively correlated with its recovery. As expected, the increase of the gold recovery during the cyanidation was found to be associated with the decomposition of the tellurides during the pretreatment.eng
dc.description.curricularareaRecursos Minerales.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Mineralesspa
dc.description.researchareaMetalurgia Extractivaspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86227
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdams, Mike D. 2005. Advances in Gold Ore Processing. Editado por B. A. wills.spa
dc.relation.references———. 2016. Gold Ore Processing Project Development and Operations. Editado por Mike D. Adams. 2a ed. Vol. 15. Elsevier.spa
dc.relation.referencesAhmad, M, M Solomon, y J L Walshe. 1987. “Mineralogical and Geochemical Studies of the Emperor Gold Telluride Deposit, Fiji”. Economic Geology 82:345–70.spa
dc.relation.referencesAnderson, Corby G. 2013. “The optimization, design and economics of Industrial NSC oxidative pressure leaching of complex sulfide concentrates”. The International Journal of Engineering and Science (The IJES) 2 (11). www.theijes.com.spa
dc.relation.referencesAvraamides, J., K. Jones, W. P. Staunton, y B. Sceresini. 1992. “Gold hydrometallurgy research at the mineral processing laboratory of the Department of Mines , Western Australia”. Hydrometallurgy 30:163–75.spa
dc.relation.referencesBas, Ahmet Deniz, Edward Ghali, y Yeonuk Choi. 2017. “A Review on electrochemical dissolution and passivation of gold guring cyanidation in presence of sulphides and oxides”. Hydrometallurgy 172 (septiembre):30–44. https://doi.org/10.1016/j.hydromet.2017.06.021.spa
dc.relation.referencesBeattie, M. J. V, y R. Raudsepp. 1988. “The Arseno process–an update.” En 90th Annual Meeting of Canadian Institute of Mining, Metallurgy and Petroleum. Edmonton.spa
dc.relation.referencesBeattie, M. J. V., y R. Raudsepp. 1989. “Application of Arseno (Redox) process technology to refractory ores and concentrates”. En Precious Metals, 327–33. Montreal.spa
dc.relation.referencesBeattie, M. J. V., R. Raudsepp, y A. Ismay. 1989. “Arseno/Redox process for refractory gold ores”. En Processing of Complex Ores, Proceedings of the International Symposium, CIM, 431–39. Halifax.spa
dc.relation.referencesBrooy, S R La, H G Linge, y G S Walker. 1994. “Review of Gold Extraction from Ores”. Minerals Engineering 7 (10): 1213–41.spa
dc.relation.referencesCelep, Oktay, Ersin Y Yazici, y Haci Deveci. 2017. “A preliminary study on nitric acid pre-treatment of refractory gold/silver ores”. En IMET 2017 - Proceedings of 25th International Mining Congress of Turkey, 463–68. https://www.researchgate.net/publication/316169344.spa
dc.relation.referencesClimo, M., H.R. Waltling, y W. Van Bronswijk. 2000. “Biooxidation as Pre-Treatment for a Telluride-Rich Refractory Gold Concentrate”. Minerals Engineering 13 (12): 1219–29.spa
dc.relation.referencesCook, Nigel J, Cristiana L Ciobanu, Paul G Spry, Panagiotis Voudouris, y Participants of IGCP-486. 2009. “Understanding Gold-(Silver)-Telluride-(Selenide) Mineral Deposits”. Episodes 32 (4): 249–63.spa
dc.relation.referencesCook, Nigel J., Cristina L. Giobanu, Nicu Capraru, Gheorghe Damian, y Petru Cristea. 2005. “Mineral Assemblages From the Vein Salband at Sacarimb, Golden Quadrilateral, Romania: II. Tellurides”. Geochemistry, Mineralogy and Petrology 43:56–63.spa
dc.relation.referencesCornwell, W. G., y R. J. Hisshion. 1976. “Leaching of Telluride Concentrates from Gold, Silver, and Tellurium - Emperor Process”. Society of Mining Engineers of AIME - Transactions 260:108–12.spa
dc.relation.referencesDeschenes, Guy, Allen Pratt, Mike Fulton, y Hai Guo. 2006. “Kinetics and Mechanism of Leaching Synthetic Calaverite in Cyanide Solutions”. Minerals & Metallurgical Processing 23 (3): 133–38.spa
dc.relation.referencesDorr, John V. N., y Francis L. Bosqui. 1950. Cyanidation and Concentration of Gold and Silver Ores. 2a ed. McGranw-Hill Book Company, Inc.spa
dc.relation.referencesDyer, Laurence G., Eghbalnia Maziar, David G. Dixon, John Rumball, y Edouard Asselin. 2012. “Electrochemical Evaluation of Petzite Leaching”. En Electrometallurgy 2012 - TMS, 227–35. https://doi.org/10.1002/9781118371350.spa
dc.relation.referencesDyer, Laurence G., Maziar Sauber, David G. Dixon, y Edouard Asselin. 2017. “On the Refractory Nature of Precious Metal Tellurides”. Hydrometallurgy 169 (169): 488–95. https://doi.org/10.1016/j.hydromet.2017.03.009.spa
dc.relation.referencesDziurdzak, Grazyna, James H. Kyle, y Robert C. Dunne. 1989. “The Pressure Aqueous Pre-Oxidation of a Refractory Gold Ore from the Golden Mile, Kalgoorlie, Western Australia”. En World Gold, 315–21.spa
dc.relation.referencesEllis, S., y G. Deschênes. 2016. “Treatment of Gold–Telluride Ores”. En Gold Ore Processing, 919–26. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63658-4.00051-7.spa
dc.relation.referencesFair, K.J., J.C. Schneider, y G. Van Weert. 1987. “Options in the nitrox process®”. En Proceedings of the International Symposium on Gold Metallurgy, 279–91. Elsevier. https://doi.org/10.1016/b978-0-08-035882-6.50035-2.spa
dc.relation.referencesGao, Guolong, Dengxin Li, Yong Zhou, Xianhao Sun, y Wen Sun. 2009. “Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions”. Minerals Engineering 22 (2): 111–15. https://doi.org/10.1016/j.mineng.2008.05.001.spa
dc.relation.referencesGonzález-Ibarra, A. A., F. Nava-Alonso, y A. Uribe-Salas. 2017. “Cyanidation Kinetics of Silver Telluride (Ag2Te)”. Canadian Metallurgical Quarterly 56 (3): 272–80. https://doi.org/10.1080/00084433.2017.1350391.spa
dc.relation.referencesGonzález-Ibarra, A., F. Nava-Alonso, y A. Uribe-Salas. 2019. “Electrochemical study of silver telluride (Ag2Te): anodic and cathodic potential dependent-reactions in alkaline cyanide solutions”. Hydrometallurgy 183 (enero):230–39. https://doi.org/10.1016/j.hydromet.2018.12.019.spa
dc.relation.referencesHabashi, Fathi. 1999. “Nitric acid in the hydrometallurgy of sulfides”. En EPD Congress, editado por B Mishra, 357–64. The Minerals, Metals & Materials Society. https://www.researchgate.net/publication/287661305.spa
dc.relation.referencesHedley, Norman, y Howard Tabachnick. 1968. Chemistry of Cyanidation. Mineral Dressing Notes. American Cyanamid Company.spa
dc.relation.referencesJayasekera, S. 1989. “Study of the Electrochemistry of Gold Telluride in Acid and Alkaline Solutions”. Murdoch University.spa
dc.relation.referencesJayasekera, S, I M Ritchie, y J Avraamides. 1991. “Prospects for the Direct Leaching of Gold Tellurides - Recent Developments”. World Gold 91. Cairns Australia, 181–83.spa
dc.relation.referencesJayasekera, S, I M Ritchie, y J Avraamides. 1991. “Prospects for the Direct Leaching of Gold Tellurides - Recent Developments”. World Gold 91. Cairns Australia, 181–83.spa
dc.relation.references———. 1933b. “Tellurides - Problem or Alibi?” Engineering and Mining Journal 134 (8): 333–34.spa
dc.relation.referencesKelley, Karen D, Samuel B Romberger, David W Beaty, Jeffrey A Pontius, Lawrence W Snee, Holly J Stein, y Tommy B Thompson. 1998. “Geochemical and Geochronological Constraints on the Genesis of Au-Te Deposits at Cripple Creek, Colorado”. Economic Geology 93:981–1012.spa
dc.relation.referencesKomnitsas, C, y F. D. Pooley. 1989. “Mineralogical characteristics and treatment of refractory gold ores”. Minerals Engineering 2 (4): 449–57.spa
dc.relation.referencesKorolev, Ivan, Pelin Altinkaya, Mika Haapalainen, Eero Kolehmainen, Kirsi Yliniemi, y Mari Lundström. 2022. “Electro-hydrometallurgical chloride process for selective gold recovery from refractory telluride gold ores: A mini-pilot study”. Chemical Engineering Journal 429 (febrero). https://doi.org/10.1016/j.cej.2021.132283.spa
dc.relation.referencesKuzas, Evgeniy, Denis Rogozhnikov, Oleg Dizer, Kirill Karimov, Andrei Shoppert, Alexey Suntsov, y Ivan Zhidkov. 2022. “Kinetic study on arsenopyrite dissolution in nitric acid media by the rotating disk method”. Minerals Engineering 187 (septiembre). https://doi.org/10.1016/j.mineng.2022.107770.spa
dc.relation.referencesLi, Dengxin. 2009. “Developments in the pretreatment of refractory gold minerals by nitric acid”. En World Gold Conference, 145–50. Johannesburg, South Africa.spa
dc.relation.referencesLi, D-X, Q-C Li, y G-L Gao. 2007. “Research on leaching gold from cyanided tailings by nitric acid recycling oxidation”. En World Gold Conference, 103–7. Cairns, Australia.spa
dc.relation.referencesLiu, Junlai, Shengjin Zhao, Nigel J. Cook, Xiangdong Bai, Zhaochong Zhang, Zhidan Zhao, Haibin Zhao, y Jun Lu. 2013. “Bonanza-Grade Accumulations of Gold Tellurides in the Early Cretaceous Sandaowanzi Deposit, Northeast China”. Ore Geology Reviews 54 (octubre):110–26. https://doi.org/10.1016/j.oregeorev.2013.03.003.spa
dc.relation.referencesLu, Zhengya, Frank Lawson, y Fellow. 1994. “Metallurgical Properties of Synthetic Sylvanite”. The AusIMM proceedings 296 (2): 89–93.spa
dc.relation.referencesMarsden, John, y Lain House. 2006. The Chemistry of Gold Extraction. Second.spa
dc.relation.referencesMontgomery, Douglas C. 2004. Diseño y análisis de experimentos. 2nd ed. Limusa Wiley.spa
dc.relation.referencesNathalie, Muñoz, Jaramillo Rosalia, Peña Elizabeth, y Jiménez-Oyola Samantha. 2021. “Procesamiento de menas refractarias aplicando el método Nitrox”. En 19 th LACCEI International Multi-Conference for Engineering, Education, and Technology, 21–23.spa
dc.relation.referencesNava-Alonso, F., A. A González-Ibarra, E. Pérez-García, E.N. Castillo-Ventureño, A. Uribe-Salas, y J.C. Fuentes-Aceituno. 2017. “Leaching Alternatives to Recover Gold and Silver from Tellurides”. En Conference of Metallurgists (COM2017) hosting World Gold and Nickel - Cobalt.spa
dc.relation.referencesNyavor, Kafui. 1991. “Extraction of gold from a double-refractory concentrate”. Edmonton: University of Alberta.spa
dc.relation.referencesPadmanaban, Venkatalakshmi, Frank Lawson, y Fellow. 1991. “Metallurgical Properties of Synthetic Calaverite”. The AusIMM proceedings 296 (1): 31–37.spa
dc.relation.referencesPashkov, Gennady L., Elena V. Mikhlina, Alexander G. Kholmogorov, y Yuri L. Mikhlin. 2002. “Effect of potential and ferric ions on lead sulfide dissolution in nitric acid”. Hydrometallurgy 63:171–79. www.elsevier.com/locate/hydromet.spa
dc.relation.referencesPeters, E. 1992. “Hydrometallurgical process innovation”. Hydrometallurgy 29:431–59.spa
dc.relation.referencesRaudsepp, Rein, Ernest Peters, y Morris Beattie. 1987. Process for recovering gold and silver from refractory ores. 4,647,307, issued el 3 de marzo de 1987.spa
dc.relation.referencesRogozhnikov, D. A., S. V. Mamyachenkov, y O. S. Anisimova. 2016. “Nitric acid leaching of copper-zinc sulfide middlings”. Metallurgist 60 (1–2): 229–33. https://doi.org/10.1007/s11015-016-0278-7.spa
dc.relation.referencesRogozhnikov, Denis A., Andrei A. Shoppert, Oleg A. Dizer, Kirill A. Karimov, y Rostislav E. Rusalev. 2019. “Leaching kinetics of sulfides from refractory gold concentrates by nitric acid”. Metals 9 (4). https://doi.org/10.3390/met9040465.spa
dc.relation.referencesSantos-Munguía, P. C., F. Nava-Alonso, V. M. Rodríguez-Chávez, y O. Alonso-González. 2019. “Hidden gold in fire assay of gold telluride ores”. Minerals Engineering 141 (septiembre). https://doi.org/10.1016/j.mineng.2019.105844.spa
dc.relation.referencesShackleton, Jill M, Paul G Spry, y Roger Bateman. 2003. “Telluride Mineralogy of the Golden Mile Deposit, Kalgoorlie, Western Australia”. The Canadian Mineralogist 41:1503–24.spa
dc.relation.referencesSierra, Edwin. 2016. “Tamaños y asociaciones de los telururos y partículas de oro en la mineralización de mina la ye y mina los mangos”.spa
dc.relation.referencesWang, Xianghuai, y Eric K. S. Forssberg. 1990. “The Chemistry of Cyanide-Metal Complexes in Relation to Hydrometallurgical Processes of Precious Metals”. Mineral Processing and Extractive Metallurgy Review 6 (1–4): 81–125. https://doi.org/10.1080/08827509008952658.spa
dc.relation.referencesWeert, G Van, K J Fair, y J E Schneider. 1986. “Prochem’s NITROX process”. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) 79 (895): 84–85.spa
dc.relation.referencesWeert, Gus Van, Ken J Fair, y Vicken H Aprahamian. 1988. “Design and operating results of the Nitrox process”. En 2nd International Gold Conference, 286–302. Vancouver, BC, Canada.spa
dc.relation.referencesYang, Wei, Gang Wang, Qian Wang, Ping Dong, Huan Cao, y Kai Zhang. 2019. “Comprehensive Recovery Technology for Te, Au, and Ag from a Telluride-Type Refractory Gold Mine”. Minerals 9 (10). https://doi.org/10.3390/min9100597.spa
dc.relation.referencesYannopoulos, John C. 1991. The Extractive Metallurgy of Gold. https://doi.org/10.1007/978-1-4684-8425-0.spa
dc.relation.referencesZárate-Gutiérrez, R., G. T. Lapidus, y R. D. Morales. 2012. “Aqueous oxidation of galena and pyrite with nitric acid at moderate temperatures”. Hydrometallurgy 115–116 (marzo):57–63. https://doi.org/10.1016/j.hydromet.2011.12.010.spa
dc.relation.referencesZhai, Degao, y Jiajun Liu. 2014. “Gold-Telluride-Sulfide Association in the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China: Implications for Phase Equilibrium and Physicochemical Conditions”. Mineralogy and Petrology 108 (6): 853–71. https://doi.org/10.1007/s00710-014-0334-6.spa
dc.relation.referencesZhao, Jing, y Allan Pring. 2019. “Mineral transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment”. Minerals 9 (3). https://doi.org/10.3390/min9030167.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::549 - Mineralogíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembMinerales de oro - Investigaciones
dc.subject.lembMetalurgia del oro - Investigaciones
dc.subject.lembCianuración
dc.subject.lembMinerales de plata - Investigaciones
dc.subject.lembMetalurgia de la plata - Investigaciones
dc.subject.lembMinerales - Lixiviación
dc.subject.proposalmineral de oro refractariospa
dc.subject.proposaltelururosspa
dc.subject.proposalácido nítricospa
dc.subject.proposallixiviación atmosféricaspa
dc.subject.proposalcianuraciónspa
dc.subject.proposalrefractory gold oreeng
dc.subject.proposaltellurideseng
dc.subject.proposalnitric acideng
dc.subject.proposalatmospheric leachingeng
dc.subject.proposalcyanidationeng
dc.titlePretratamiento de un mineral de oro refractario asociado con telururos de oro y plataspa
dc.title.translatedPretreatment of a Refractory Gold Ore Associated with Gold and Silver Tellurideseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037646292.2024.pdf
Tamaño:
1.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: