Identificación molecular por medio del Gen COI de escarabajos de importancia sanitaria en la región avícola de Fusagasugá, Cundinamarca

dc.contributor.advisorVargas Duarte, Jimmy Jolman
dc.contributor.advisorGómez Ramírez, Arlen Patricia
dc.contributor.authorGalindo Acosta, Camilo Andrés
dc.contributor.researchgroupControl Genetico en Salud Animalspa
dc.coverage.cityFusagasugá
dc.coverage.countryColombia
dc.date.accessioned2022-04-08T20:03:53Z
dc.date.available2022-04-08T20:03:53Z
dc.date.issued2021-04
dc.descriptionilustraciones, diagramas, fotografías, mapas, tablasspa
dc.description.abstractLas principales especies de escarabajos asociados a las instalaciones avícolas son Alphitobius diaperinus, Carcinops pumilio y Carcinops troglodytes y pueden actuar como reservorios y/o vectores de microorganismos. El objetivo de este trabajo fue identificar la población coleópteros presentes en granjas de pollo de engorde en una de las regiones avícolas más importantes del país como lo es Fusagasugá, Cundinamarca. Se tomaron muestras cada 7 días hasta el día 35, se realizó conteo de coleópteros y posteriormente se hizo una clasificación taxonómica y genómica con el uso del gen de ADN mitocondrial (mtDNA) citocromo oxidasa I (COI); también se realizó un estudio de poblaciones bacterianas presentes en A. diaperinus y en cama de los galpones con el uso del gen 16S rRNA. La clasificación taxonómica de los coleópteros dio como más frecuente a A. diaperinus con 95,1% y C. troglodytes con 4,9%. Del gen COI se obtuvo que A. diaperinus tiene una similitud del 98,68% con genes de referencia pertenecientes a la misma especie, C. troglodytes no posee un genoma de referencia con el cual hacer un comparativo, por lo tanto, el gen COI detectado en esta investigación se convierte en el primer reporte para la construcción del genoma de esta especie. El microbioma presente en A. diaperinus dio una alta presencia de bacterias de la familia Enterobacteriaceae, principalmente Salmonella enterica y Escherichia coli. En la cama de la unidad productiva muestreada, la familia con mayor presencia fue Staphylococcaceae. Los resultados de esta investigación corroboran la utilidad de las herramientas moleculares para la caracterización de insectos como complemento a las claves taxonómicas reportadas. Asimismo, los análisis del gen 16S rRNA demuestran la importancia que desempeñan estos coleópteros como reservorios de patógenos de interés en salud pública humana y veterinaria. Esta investigación también se destaca como el primer reporte de secuencias y microbiota de coleópteros asociados a granjas avícolas. (Texto tomado de la fuente)spa
dc.description.abstractThe main species of beetles associated with poultry facilities are Alphitobius diaperinus, Carcinops pumilio and Carcinops troglodytes and can act as reservoirs and / or vectors for microorganisms. The objective of this work was to identify the coleopteran population present in broiler chicken farms in one of the most important poultry regions of the country, such as Fusagasugá, Cundinamarca. Samples were taken every 7 days until day 35, a coleopteran content was made and later a taxonomic and genomic classification was made with the use of the mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene; A study of bacterial populations present in A. diaperinus and in the litter of the houses was also carried out with the use of the 16S rRNA gene. The taxonomic classification of coleopterans gave the most frequent A. diaperinus with 95.1% and C. troglodytes with 4.9%. From the COI gene it was obtained that A. diaperinus has a similarity of 98.68% with reference genes belonging to the same species, C. troglodytes does not have a reference genome with which to make a comparison, therefore, the COI gene detected in this research becomes the first report for the construction of the genome of this species. The microbiome present in A. diaperinus gave a high presence of bacteria of the Enterobacteriaceae family, mainly Salmonella enterica and Escherichia coli. In the litter of the sampled productive unit, the family with the highest presence was Staphylococcaceae. The results of this research corroborate the usefulness of molecular tools for the characterization of insects as a complement to the reported taxonomic keys. Likewise, the analysis of the 16S rRNA gene shows the importance that these coleopterans play as reservoirs of pathogens of interest in human and veterinary public health. This research also stands out as the first report of sequences and microbiota of coleopterans associated with poultry farms.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extentxx, 127 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81453
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colomboiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogota, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAballay, F. H., Arriagada, G., Flores, G. E., & Centeno, N. D. (2013). An illustrated key to and diagnoses of the species of histeridae (coleoptera) associated with decaying carcasses in Argentina. ZooKeys, 261, 61–84. https://doi.org/10.3897/zookeys.261.4226spa
dc.relation.referencesAbdisa, T., & Tagesu, T. (2017). Review on Newcastle Disease of Poultry and its Public Health Importance. Journal of Veterinary Science & Technology, 8(3). https://doi.org/10.4172/2157-7579.1000441spa
dc.relation.referencesAgabou, A., & Alloui, N. (2010). Importance of Alphitobius diaperinus (Panzer) as a Reservoir for Pathogenic Bacteria in Algerian Broiler Houses. Veterinary World, 3(2), 71–73.spa
dc.relation.referencesAlborzi, A., & Rahbar, A. (2012). Introducing Alphitobius diaperinus, (insecta: Tenebrionidae) as a New Intermediate Host of Hadjelia truncata (nematoda). Iranian Journal Parasitology, 7(2), 92–98.spa
dc.relation.referencesAnonymous. (2009). Darkling beetle found to carry Salmonella. Poultry World, 163(1), 13.spa
dc.relation.referencesAxtell, R., & Arends, J. (1990). Ecology and management of arthropod pests of poultry. Annual review of entomology. Vol. 35, 35, 101–126. https://doi.org/10.1146/annurev.ento.35.1.101spa
dc.relation.referencesAxtell, R. C. (1999). Poultry integrated pest management: Status and future. Integrated Pest Management Reviews, 4(1), 53–73. https://doi.org/10.1023/A:1009637116897spa
dc.relation.referencesBates, C., Hiett, K., & Stern, N. (2004). Relationship of Campylobacter Isolated from Poultry and from Darkling Beetles in New Zealand. Avian Diseases, 48(1), 138–147. https://doi.org/10.1637/7082spa
dc.relation.referencesBicho, C., Almeida, L., Ribeiro, P., & Júnior, P. (2005). Flutuação populacional circanual de coleópteros em granja avícola ,. Iheringia, Série Zoologia, 95(2), 205–212.spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesCamargo Neto, A., Tallarico, E., Capriogli, M., Soares, V., Meireles, M., & Silva, G. (2006). Seasonal variation of Alphitobius diaperinus population in broiler facilities in the center-north region of the state of São Paulo. Revista Brasileira de Ciência Avícola, 8(3), 183–185. https://doi.org/10.1590/S1516-635X2006000300008spa
dc.relation.referencesChernaki-Leffer, A., Biesdorf, S., Almeida, L. M., Leffer, E., & Vigne, F. (2002). Isolamento de Enterobactérias em Alphitobius Diaperinus e na Cama de Aviários no Oeste do Estado do Paraná , Brasil Isolation of Enteric and Litter Organisms from Alphitobius Diaperinus in Brooder Chickens Houses in West of Parana State , Brazil. Revista Brasileira de Ciencia Avicola, 4(3), 243–247.spa
dc.relation.referencesChernaki, A., & Almeida, L. (2001). Morfologia dos estágios imaturos e do adulto de Alphitobius diaperinus (Panzer) (Coleoptera, Tenebrionidae). Revista Brasileira de Zoologia, 18(2), 351–363. https://doi.org/10.1590/s0101-81752001000200004spa
dc.relation.referencesConway, J. (1973). The micro-fauna of Californian-system poultry houses in Britain. British Poultry Science, Vol. 14, pp. 213–216. https://doi.org/10.1080/00071667308416018spa
dc.relation.referencesCorpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res., 16(22), 10881–10890.spa
dc.relation.referencesCouteaudier, M., & Denesvre, C. (2014). Marek’s disease virus and skin interactions. Veterinary Research, 45(1), 1–12. https://doi.org/10.1186/1297-9716-45-36spa
dc.relation.referencesda Silva Soares, C. E., Weber, A., Scussel, V. M., Soares, C. E. da S., Weber, A., Scusse, V., & Scusse, lVildes M. (2018). Stereo and scanning electron microscopy characteristics of poultry breeding beetle (Alphitobius diaperinus) - a filamentous toxigenic fungi carrier. Emirates Journal of Food and Agriculture, 30(2), 150–156. https://doi.org/10.9755/ejfa.2018.v30.i2.1615spa
dc.relation.referencesDavies, R. H., & Breslin, M. (2003). Persistence of Salmonella Enteritidis Phage Type 4 in the environment and arthropod vectors on an empty free-range chicken farm. 5, 79–84.spa
dc.relation.referencesDe Las Casas, E., Harein, P., Deshmukh, D., & Pomeroy, B. (1976). Relationship between the lesser mealworm, fowl pox, and Newcastle disease virus in poultry. Journal of economic entomology, 69(6), 775–779. https://doi.org/10.1093/jee/69.6.775spa
dc.relation.referencesDe Las Casas, E., Harein, P., & Pomeroy, B. (1972). Bacteria and Fungi within the Lesser Mealworm Collected from Poultry Brooder Houses. Environmental Entomology, 1(1), 27–30. https://doi.org/10.1093/ee/1.1.27spa
dc.relation.referencesde Oliveira, D. G. P., Miguel, R. F., Bonini, A. K., & Angeli Alves, L. F. (2019). Sampling methodology of alphitobius diaperinus (Coleptera: Tenebrionidae) population in poultry houses. Brazilian Archives of Biology and Technology, 62, 2–5. https://doi.org/10.1590/1678-4324-2019180141spa
dc.relation.referencesDespins, J., & Axtell, R. (1995). Feeding Behavior and Growth of Broiler Chicks Fed Larvae of the Darkling Beetle, Alphitobius diaperinus. Poultry science, 74, 331–336.spa
dc.relation.referencesDinev, I. (2013). the Darkling Beetle (Alphitobius Diaperinus) – a Health Hazard for Broiler Chicken Production. Trakia Journal of Sciences, 11(1), 1–4.spa
dc.relation.referencesDunford, J. C., & Kaufman, P. E. (2015). Lesser Mealworm , Litter Beetle , Alphitobius diaperinus ( Panzer ) ( Insecta : Coleoptera : Tenebrionidae ) 1.spa
dc.relation.referencesEFSA/ECDC. (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. En Euro surveillance : bulletin européen sur les maladies transmissibles = European communicable disease bulletin (Vol. 15). https://doi.org/10.2903/j.efsa.2012.2597spa
dc.relation.referencesEidson, C., Schmittle, S., Lal, J., & Goode, R. (1971). THE ROLE OF THE DARKLING BEETLE, ALPHITOBIUS DIAPERINUS, IN THE TRANSMISSION OF ACUTE LEUKOSIS IN CHICKENS. Poultry Science, 50(5), 1366–1367. https://doi.org/10.3382/ps.0501542spa
dc.relation.referencesElowni, E., & Elbihari, S. (1979). Natural and experimental infection of the beetle, Alphitobius diaperinus (Coleoptera: Tenebrionidae) with Choanotaenia infundibulum and other chicken tapeworms. Veterinary Science Communications, 3(1), 171–173. https://doi.org/10.1007/BF02268965spa
dc.relation.referencesEmanowicz, M., Meade, J., Bolton, D., Golden, O., Gutierrez, M., Byrne, W., … Whyte, P. (2020). The impact of key processing stages and flock variables on the prevalence and levels of The impact of key processing stages and flock variables on the prevalence and levels of Campylobacter on broiler carcasses. Food Microbiology, 95(September). https://doi.org/10.1016/j.fm.2020.103688spa
dc.relation.referencesEsquivel, J. F., Crippen, T. L., & Ward, L. A. (2012). Improved visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)-Part I: Morphological features for sex determination of multiple stadia. Psyche, 2012. https://doi.org/10.1155/2012/328478spa
dc.relation.referencesEterradossi, N., & Saif, Y. M. (2013). Infectious Bursal Disease. En Diseases of Poultry: Thirteenth Edition (pp. 219–246). https://doi.org/10.1002/9781119421481.ch7spa
dc.relation.referencesFAO. (2007). Poultry in the 21st century avian influenza and beyond (O. Thieme and D. Pilling, Ed.). Bangkok.spa
dc.relation.referencesFENAVI-FONAV. (2019). Boletín FENAVIQUÍN. Programa de estudios Económicos. 1–15.spa
dc.relation.referencesFENAVI Programa de Estudios Económicos. (2020). Producción de pollo en canal por Departamentos y regiones.spa
dc.relation.referencesFoo, J. L., Ling, H., Lee, Y. S., & Chang, M. W. (2017). Microbiome engineering: Current applications and its future. Biotechnology Journal, 12(3), 1–9. https://doi.org/10.1002/biot.201600099spa
dc.relation.referencesGiangrande, A. (2003). Biodiversity, conservation, and the “Taxonomic impediment”. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(5), 451–459. https://doi.org/10.1002/aqc.584spa
dc.relation.referencesGoodwin, M. A., & Waltman, W. D. (1996). Transmission and Bacteria To Chicks : Darkling Beetles As Vectors of Pathogens. Journal of Applied Poultry Research, 5, 51–55.spa
dc.relation.referencesGopal, S., Manoharan, P., Kathaperumal, K., Chidambaram, B., & Divya, K. C. (2012). Differential detection of avian oncogenic viruses in poultry layer farms and Turkeys by use of multiplex PCR. Journal of Clinical Microbiology, 50(8), 2668–2673. https://doi.org/10.1128/JCM.00457-12spa
dc.relation.referencesGorrín, G., Colas, M., Meireles, T., & Pérez, E. (2018). Efecto de la situación sanitaria del galpón de gallinas sobre los estadios larvarios de endoparásitos en los hospederos intermediarios y en el comportamiento productivo. Revista de Investigaciones Veterinarias del Perú, 29(3), 908–915. https://doi.org/10.15381/rivep.v29i3.14828spa
dc.relation.referencesHalstead, D. (1969). A Key to the Species of Carcinops Marseul (Coleoptera, Histeridae) Associated with Stored Products, Including C. troglodytes (Paykull) New to this Habitat. Journal of Stored Products Research, 5(1945), 83–85.spa
dc.relation.referencesHazeleger, W. C., Bolder, N. M., Beumer, R. R., & Jacobs-Reitsma, W. F. (2008). Darkling beetles (Alphitobius diaperinus) and their larvae as potential vectors for the transfer of Campylobacter jejuni and Salmonella enterica serovar Paratyphi B Variant Java between successive broiler flocks. Applied and Environmental Microbiology, 74(22), 6887–6891. https://doi.org/10.1128/AEM.00451-08spa
dc.relation.referencesHowland, D., & Hewitt, G. (1995). Phylogeny of the Coleoptera based on mitochondrial cytochrome oxidase I sequence data. Insect Molecular Biology, 4(3), 203–215. https://doi.org/10.1111/j.1365-2583.1995.tb00026.xspa
dc.relation.referencesIchinosé, T., Shibazaki, S., & Ohta, M. (1980). Studies on the Biology and Mode of Infestation of the Tenebrionid Beetle, Alphitobius diaperinus PANZER, Harmful to Broiler-Chicken Houses. Journal of Japan Society of Applied Animal Entomology (Otokun) (1980), 24(3), 167–174.spa
dc.relation.referencesJaimes Olaya, J. A., Gómez Ramírez, A. P., Álvarez Espejo, D. C. M., Soler Tovar, D., Romero Prada, J. R., & Villamil Jiménez, L. C. (2010). Las enfermedades infecciosas y su importancia en el sector avícola. Revista de Medicina Veterinaria, (20), 49–61. https://doi.org/10.19052/mv.582spa
dc.relation.referencesJapp, A., Bicho, C., & Fischer, A. (2010). Importância e medidas de controle para Alphitobius diaperinus em aviarios. Ciencia Rural, 40(7), 1668–1673.spa
dc.relation.referencesJung, S. W., Min, H. K., Kim, Y.-H. H., Choi, H. A., Lee, S. Y., Bae, Y. J., & Paek, W. K. (2016). A DNA barcode library of the beetle reference collection (Insecta: Coleoptera) in the National Science Museum, Korea. Journal of Asia-Pacific Biodiversity, 9(2), 234–244. https://doi.org/10.1016/j.japb.2016.03.005spa
dc.relation.referencesKaufman, P. E., & Rutz, D. A. (2000). Pest Management Recommendations for Poultry.spa
dc.relation.referencesKlimaszewski, J., & Watt, J. (1997). Coleoptera: family-group review and keys to identification. En Fauna of New Zealand Number 37 (p. 199). Lincoln, Canterbury, New Zealand: Manaaki Whenua Press, Landcare Research, P.O. Box 40, LincoIn, Canterbury, N.Z.spa
dc.relation.referencesKress, W. J., & Erickson, D. L. (2008). DNA barcodes: Genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2761–2762. https://doi.org/10.1073/pnas.0800476105spa
dc.relation.referencesKrishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S16–S21. https://doi.org/10.12980/APJTB.4.2014C95spa
dc.relation.referencesKumar S., Stecher G., T. K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.spa
dc.relation.referencesLi, X. (2019). Metagenomic screening of microbiomes identifies pathogen-enriched environments. Environmental Sciences Europe, 31(1). https://doi.org/10.1186/s12302-019-0217-xspa
dc.relation.referencesLiu, R., Wang, Z., Liu, X., Chen, A., & Yang, S. (2020). Rapid on-site detection of Salmonella pullorum based on lateral flow nucleic acid assay combined with recombinase polymerase amplification reaction. Poultry Science, 99(12), 7225–7232. https://doi.org/10.1016/j.psj.2020.10.020spa
dc.relation.referencesLodish H, Berk A, Zipursky SL, et al. (2000). Integrating Cells into Tissues. En W. H. Freeman (Ed.), Moecular Cell Biology (4a ed.). New York.spa
dc.relation.referencesLunt, D., Zhang, D., Szymura, J., & Hewitt, G. (1996). The insects and COI gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5(November 1995), 153–165.spa
dc.relation.referencesMagliano, A., Hava, J., Di Giulio, A., Barone, A., & De Liberato, C. (2017). Mortalità in nidiacei di piccioni causata da larve di coleottero. Veterinaria Italiana, 53(2), 175–177. https://doi.org/10.12834/VetIt.721.3495.2spa
dc.relation.referencesMcAllister, J., Steelman, C., Newberry, L., & Skeeles, J. (1995). Isolation of infectious bursal disease virus from the lesser mealworm, Alphitobius diaperinus (Panzer). Poultry science, 74(1), 45–49. https://doi.org/10.3382/ps.0740045spa
dc.relation.referencesMcAllister, J., Steelman, C., & Skeeles, J. (1994). Reservoir competence of the lesser mealworm (Coleoptera: Tenebrionidae) for Salmonella typhimurium (Eubacteriales: Enterobacteriaceae). Journal of Medical Entomology, 31(3), 369–372. https://doi.org/10.1093/jmedent/31.3.369spa
dc.relation.referencesMcAllister, J., Steelman, C., Skeeles, J., Newberry, L., & Gbur, E. (1996). Reservoir Competence of Alphitobius diaperinus (Coleoptera: Tenebrionidae) for Escherichia coli (Eubacteriales: Enterobacteriaceae). Journal of Medical Entomology, 33(6), 983–987. https://doi.org/10.1093/jmedent/33.6.983spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2019). Sector Avícola. Dirección de cadenas Pecuarias, 38.spa
dc.relation.referencesMollenhorst, H., van Woudenbergh, C. J., Bokkers, E. G. M., & de Boer, I. J. M. (2005). Risk factors for Salmonella enteritidis infections in laying hens. Poultry Science, 84(8), 1308–1313. https://doi.org/10.1093/ps/84.8.1308spa
dc.relation.referencesMoore, M. R., & Kaufman, P. E. (2017). A Hister Beetle Carcinops pumilio (Erichson) (Insecta: Coleoptera: Histeridae: Dendrophilinae: Paromalini). Edis, 2017(1), 13. https://doi.org/10.32473/edis-in1163-2017spa
dc.relation.referencesMoraes, D. M. C., Andrade, M. A., Duarte, S. C., Bastos, T. S. A., Arnhold, E., Jayme, V. de S., & Nunes, I. A. (2016). Phenotypic and molecular detection of Salmonella sp. on growing, rearing and production phases in a commercial group of laying hens. Pesquisa Veterinaria Brasileira, 36(6), 503–508. https://doi.org/10.1590/S0100-736X2016000600007spa
dc.relation.referencesMottet, A., & Tempio, G. (2017). L1 Global poultry production: current state and future outlook and challenges.spa
dc.relation.referencesMustač, S., Merdic, E., Drvenkar, D., & Skvorc, V. (2016). Distribution of lesser mealworm, Alphitobius diaperinus (coleoptera:Tenebrionidae) in poultry house throughout three successive poultry breeding cycles. Moscenicka Draga.spa
dc.relation.referencesNei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. New York: Oxford University Press.spa
dc.relation.referencesNolan, L. K., Barnes, H. J., Vaillancourt, J., Abdul-aziz, T., & Logue, C. M. (2013). Colibacillosis. En Diseases of Poultry: Thirteenth Edition (pp. 751–805).spa
dc.relation.referencesOakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann, R. J., Tillman, G. E., … Seal, B. S. (2013). The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057190spa
dc.relation.referencesOlsen, R. H., Bisgaard, M., Christensen, J. P., Kabell, S., & Christensen, H. (2016). Pathology and Molecular Characterization of Escherichia Coli Associated With the Avian Salpingitis-Peritonitis Disease Syndrome . Avian Diseases, 60(1), 1–7. https://doi.org/10.1637/11237-071715-reg.1spa
dc.relation.referencesOsimani, A., Milanović, V., Garofalo, C., Cardinali, F., Roncolini, A., Sabbatini, R., … Aquilanti, L. (2018). Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. International Journal of Food Microbiology, 276(March), 54–62. https://doi.org/10.1016/j.ijfoodmicro.2018.04.013spa
dc.relation.referencesPayne, L. N., & Venugopal, K. (2000). Neoplastic diseases: Marek’s disease, avian leukosis and reticuloendotheliosis. OIE Revue Scientifique et Technique, 19(2), 544–564. https://doi.org/10.20506/rst.19.2.1226spa
dc.relation.referencesPentinsaari, M., Hebert, P. D. N., & Mutanen, M. (2014). Barcoding beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE, 9(9), e108651. https://doi.org/10.1371/journal.pone.0108651spa
dc.relation.referencesPereira, P. R. V. da S., & Almeida, L. M. de. (2001). Chaves para a identificação dos principais Coleoptera (Insecta) associados com produtos armazenados. Revista Brasileira de Zoologia, 18(1), 271–283. https://doi.org/10.1590/s0101-81752001000100031spa
dc.relation.referencesPetherbridge, L., Brown, A. C., Baigent, S. J., Howes, K., Sacco, M. A., Osterrieder, N., & Nair, V. K. (2004). Oncogenicity of Virulent Marek’s Disease Virus Cloned as Bacterial Artificial Chromosomes. Journal of Virology, 78(23), 13376–13380. https://doi.org/10.1128/jvi.78.23.13376-13380.2004spa
dc.relation.referencesPfeiffer, D., & Axtell, R. (1980). Coleoptera of Poultry Manure in Caged-layer Houses in North Carolina. Environmental Entomology, 9(1), 21–28. https://doi.org/10.1093/ee/9.1.21spa
dc.relation.referencesPinto, D. M., Duarte, J., Ribeiro, P., Silveira Júnior, P., & Silveira, P. (2009). Collection of Coleoptera from a poultry farm in Pelotas, Rio Grande do Sul, Brazil. Ciência Rural, 39(2), 319–324. https://doi.org/10.1590/s0103-84782008005000060spa
dc.relation.referencesPinto, D. M., Ribeiro, P. B., & Silveira Jr, P. (2010). Comparison of methods to monitor populations of Alphitobius diaperinus (PANZER, 1797) (Coleoptera: Tenebrionidae) in poultry farm, Pelotas, RS, Brazil. Semina: Ciencias Agrarias, 31(2), 295–300.spa
dc.relation.referencesPinto, D., Ribeiro, P., & Bernardi, E. (2007). Avaliação De Métodos Para Monitorar Populações De Artrópodes Em Granja Avícola , Em Pelotas , Rio Grande Do Sul, Brasil. Arq. Inst. Biol, 74(2), 95–99.spa
dc.relation.referencesQuince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Corrigendum: Shotgun metagenomics, from sampling to analysis. Nature biotechnology, 35(12), 1211. https://doi.org/10.1038/nbt1217-1211bspa
dc.relation.referencesR. C. Axtell. (1994). BIOLOY AND ECONOMIC IMPORTANCE OF THE DARKLING BEETLE IN POULTRY HOUSES. 8–17.spa
dc.relation.referencesRamírez, A., Varón, A., & Sánchez, M. (2017). Microbiological Profile of Three Commercial Poultry Processing Plants in Colombia. Journal of Food Protection, 80(12), 1980–1986. https://doi.org/10.4315/0362-028X.JFP-17-028spa
dc.relation.referencesRetamales, J., Vivallo, F., & Robeson, J. (2011). Insects associated with chicken manure in a breeder poultry farm of Central Chile. Arch Med Vet, 43, 79–83.spa
dc.relation.referencesRevolledo, L., & Ferreira, A. J. P. (2012). Current perspectives in avian salmonellosis : Vaccines and immune mechanisms of protection. Journal of Applied Poultry Research, 21(2), 418–431. https://doi.org/10.3382/japr.2011-00409spa
dc.relation.referencesRiesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: Genomic Analysis of Microbial Communities. Annual Review of Genetics, 38(1), 525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216spa
dc.relation.referencesRobert C., E. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.spa
dc.relation.referencesRueda, L., & Axtel, R. (1997). Arthropods in Litter of Poultry (Broiler Chicken and Turkey) Houses. Journal of Agricultural Entomology, 14(1), 81–91.spa
dc.relation.referencesSafrit, R.D. and Axtell, R. C. (1984). Evaluation of sampling methods for Darking beetlles in the litter of turkey and broiler houses.pdf. Poultry science, 63, 2368–2375.spa
dc.relation.referencesSaitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.spa
dc.relation.referencesSalin, C., Delettre, Y. R., Cannavacciuolo, M., & Vernon, P. (2000). Spatial distribution of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) in the soil of a poultry house along a breeding cycle. European Journal of Soil Biology, 36(2), 107–115. https://doi.org/10.1016/S1164-5563(00)01054-2spa
dc.relation.referencesSantoro, P. H., Neves, P. M. O. J., Alexandre, T. M., Gavaguchi, S. A., & Alves, L. F. A. (2010). Carcinops troglodytes (Erichson) (Coleoptera: Histeridae) predando larvas de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) em aviários. Neotropical Entomology, 39(5), 831–832. https://doi.org/10.1590/S1519-566X2010000500026spa
dc.relation.referencesSingh, S., Mishra, V., & Bhoi, T. (2017). Insect Molecular Markers and its Utility-A Review. International Journal of Agriculture, Environment and Biotechnology, 10(4), 469. https://doi.org/10.5958/2230-732x.2017.00058.4spa
dc.relation.referencesSkov, M., Spencer, A., Hald, B., Petersen, L., Nauerby, B., Carstensen, B., & Madsen, M. (2004). The Role of Litter Beetles as Potential Reservoir for Salmonella enterica and Thermophilic Campylobacter spp. Between Broiler Flocks. Avian Diseases, 48(1), 9–18. https://doi.org/10.1637/5698spa
dc.relation.referencesStafford III, K., Collison, C., Burg, J., & Cloud, J. (1988). Distribution and monitoring lesser mealworms, hide beetles, and other fauna in high-rise, caged-layer poultry houses’. J. Agrie. Entornol., 5(2), 89–102.spa
dc.relation.referencesTempleton, J., De Jong, A., Blackall, P., & Miflin, J. (2006). Survival of Campylobacter spp. in darkling beetles (Alphitobius diaperinus) and their larvae in Australia. Applied and Environmental Microbiology, 72(12), 7909–7911. https://doi.org/10.1128/AEM.01471-06spa
dc.relation.referencesTeshome, M., Fentahunand, T., & Admassu, B. (2015). Infectious bursal disease (Gumboro disease) in chickens. British Journal of Poultry Sciences, 4(1), 22–28. https://doi.org/10.5829/idosi.bjps.2015.4.1.95172spa
dc.relation.referencesTobin, P. C., & Pitts, C. W. (1999). Flotation method for extracting insects from poultry manure samples. Journal of Medical Entomology, 36(1), 121–123. https://doi.org/10.1093/jmedent/36.1.121spa
dc.relation.referencesTownsend, L. (1988). LESSER MEALWORMS OR LITTER BEETLES (Núm. ENTFACT-507).spa
dc.relation.referencesTuntufye, H. N., Lebeer, S., Gwakisa, P. S., & Goddeeris, B. M. (2012). Identification of avian pathogenic Escherichia coli genes that are induced In vivo during infection in chickens. Applied and Environmental Microbiology, 78(9), 3343–3351. https://doi.org/10.1128/AEM.07677-11spa
dc.relation.referencesVaughan, J., Turner, E., & Ruszler, P. (1984). Infestation and Damage of Poultry House Insulation by the Lesser Mealworm, Alphitobius diaperinus (Panzer),. Poultry Science, 63(6), 1094–1100. https://doi.org/10.3382/ps.0631094spa
dc.relation.referencesVittori, J., Shocken-Iturrino, R., Prochnon, K., Martins, C., Barbosa, G., de Souza, L., & Pigatto, C. (2007). Alphitobius diaperinus como veiculador de Clostridium perfringens em granjas avícolas do interior paulista – Brasil Alphitobius. Ciência Rural, 37(3), 894–896.spa
dc.relation.referencesWales, A., Carrique-Mas, J., Rankin, M., Bell, B., Thind, B., & Davies, R. (2010). Review of the Carriage of Zoonotic Bacteria by Arthropods, with Special Reference to Salmonella in Mites, Flies and Litter Beetles. Zoonoses and Public Health, 57(5), 299–314. https://doi.org/10.1111/j.1863-2378.2008.01222.xspa
dc.relation.referencesWatson, D., Guy, J., & Stringham, S. (2000). Limited Transmission of Turkey Coronavirus in Young Turkeys by Adult Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of Medical Entomology, 37(3), 480–483. https://doi.org/10.1603/0022-2585(2000)037[0480:ltotci]2.0.co;2spa
dc.relation.referencesWatson, D. W., Kaufman, P. E., Rutz, D. A., & Glenister, C. S. (2001). Impact of the darkling beetle Alphitobius diaperinus (Panzer) on establishment of the predaceous beetle Carcinops pumilio (Erichson) for Musca domestica control in caged-layer poultry houses. Biological Control, 20(1), 8–15. https://doi.org/10.1006/bcon.2000.0874spa
dc.relation.referencesWatt, J. C. (1974). A revised subfamily classification of tenebrionidae (Coleoptera). New Zealand Journal of Zoology, 1(4), 381–452. https://doi.org/10.1080/03014223.1974.9517846spa
dc.relation.referencesWenzel, R. L. (2011). The Histerid beetles of New Caledonia (Coleoptera: Histeridae). En The Histerid beetles of New Caledonia (Coleoptera: Histeridae). https://doi.org/10.5962/bhl.title.2791spa
dc.relation.referencesWilson, J. J., Brandon-Mong, G. J., Gan, H. M., & Sing, K. W. (2019). High-throughput terrestrial biodiversity assessments: mitochondrial metabarcoding, metagenomics or metatranscriptomics? Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 30(1), 60–67. https://doi.org/10.1080/24701394.2018.1455189spa
dc.relation.referencesZhang, D., & Hewitt, G. (1997). Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology, 6(1996), 143–150.spa
dc.relation.referencesZhang, Q., & Sahin, O. (2013). Campylobacteriosis Pathobiology and. En Diseases of Poultry: Thirteenth Edition (pp. 737–750).spa
dc.relation.referencesZheng, L., Crippen, T. L., Sheffield, C. L., Poole, T. L., Yu, Z., & Tomberlin, J. K. (2012). Evaluation of Salmonella movement through the gut of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Vector-Borne and Zoonotic Diseases, 12(4), 287–292. https://doi.org/10.1089/vbz.2011.0613spa
dc.relation.referencesZhou, Y. ying, Kang, X. long, Meng, C., Xiong, D., Xu, Y., Geng, S. zhong, … Jiao, X. an. (2020). Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella Pullorum/Gallinarum identification. Poultry Science, 99(11), 5991–5998. https://doi.org/10.1016/j.psj.2020.07.026spa
dc.relation.referencesZurek, L., & Ghosh, A. (2014). Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Applied and Environmental Microbiology, 80(12), 3562–3567. https://doi.org/10.1128/AEM.00600-14spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalAvícolaspa
dc.subject.proposalAlphitobius diaperinus
dc.subject.proposalCarcinops troglodytes
dc.subject.proposalCitocromo Oxidasa I
dc.subject.proposal16sRNA
dc.subject.proposalEnterobacteriaceae
dc.subject.proposalSalmonella enterica
dc.subject.proposalEscherichia coli
dc.subject.proposalStaphylococcaceae
dc.subject.proposalPoultryeng
dc.subject.proposalAlphitobius diaperinuseng
dc.subject.proposalCarcinops troglodyteseng
dc.subject.proposalCytochrome Oxidase Ieng
dc.subject.proposal16sRNAeng
dc.subject.proposalEnterobacteriaceaeeng
dc.subject.proposalSalmonella entericaeng
dc.subject.proposalEscherichia colieng
dc.subject.proposalStaphylococcaceaeeng
dc.subject.unescoBiología molecularspa
dc.subject.unescoMolecular biologyeng
dc.subject.unescoVeterinariaspa
dc.subject.unescoAve de corralspa
dc.subject.unescoBiología celularspa
dc.titleIdentificación molecular por medio del Gen COI de escarabajos de importancia sanitaria en la región avícola de Fusagasugá, Cundinamarcaspa
dc.title.translatedMolecular identification through the COI gene of beetles of sanitary importance in the poultry region of Fusagasugá, Cundinamarcaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80738034.2021.pdf
Tamaño:
5.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: