Study of the lipase-catalyzed hydrolysis of waste oleochemical streams

dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.authorBaena Novoa, Helbert Alexander
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2023-01-16T21:04:37Z
dc.date.available2023-01-16T21:04:37Z
dc.date.issued2022-08-19
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractResidual vegetable oils and fats have attracted attention around the world because their common mismanagement generates a complex cascade of environmental and health problems. Nonetheless, since they are mostly comprised of triglycerides, they can be used as second generation raw materials in the oleochemical industry. In particular, fatty acids that are intermediates for the manufacture of surfactants, plasticizers, biofuels, among others, can be obtained through the hydrolysis of such waste triglycerides. However, the current industrial process (i.e. Emery-Colgate) for fatty acids production has important disadvantages mainly the energy intensity and waste generation. For this reason, enzymatic processes have been explored as viable alternatives to conventional ones, since they operate under milder temperature and pressure conditions. In the same way, the interest in developing effective enzymes at the industrial level has driven new advances such as immobilization in suitable and tunable solid supports that increase their stability and facilitate their reusability. Likewise, process intensification has also been employed to improve reaction yields and to reduce waste generation. In the present study, the enzymatic hydrolysis of used cooking oils was explored, using Candida Antarctica lipase B immobilized on activated carbons. It was verified a greater enzymatic activity and immobilization efficiency was obtained by amino-functionalization with subsequent cross-linking using glutaraldehyde. Once immobilized, reaction conditions were explored by changing pH, temperature, substrate ratio and immobilized enzyme loading. Finally, a comparison with currently used commercial enzymes and reusability tests were also performed to assess the feasibility of the process.eng
dc.description.abstractLos aceites vegetales y grasas residuales han captado mundial ya que típicamente se disponen de forma incorrecta generando una compleja cascada de problemas ambientales y de salud. Sin embargo, debido a que estos residuos están compuestos principalmente de triglicéridos, estos se pueden usar como materia prima de segunda generación para la industria oleoquímica. En particular, los ácidos grasos que son un intermediario para la manufactura de surfactantes, plastificantes, biocombustibles entre otros, pueden ser obtenidos mediante la hidrólisis de triglicéridos residuales. No obstante, el proceso industrial actual (i.e. Emery-Colgate) para la producción de ácidos grasos presenta importantes desventajas como su intensidad energética y la generación de residuos. Por esta razón se han explorado procesos enzimáticos como una alternativa viable a los convencionales, ya que estos operan en condiciones de temperatura y presión más benévolas. De la misma forma, el interés por desarrollar enzimas efectivas a nivel industrial ha impulsado nuevos avances tal como la inmovilización de enzimas en soportes sólidos adecuados y modificables para aumentar su estabilidad y facilitar su reusabilidad. Igualmente, se ha empleado la intensificación de procesos para mejorar el rendimiento de la reacción y reducir la generación de residuos. En este estudio se exploró la hidrolisis enzimática de aceites usados de cocina, usando la Cándida antártica lipasa B inmovilizada en carbones activados. Se verificó que la mayor actividad y eficiencia de inmovilización se logró por medio de amino-funcionalización seguida de entrecruzamiento usando glutaraldehído. Una vez inmovilizado, se evaluaron diferentes condiciones de reacción enzimática, variando pH, temperatura, relación de sustratos y carga de enzima inmovilizada. Finalmente, se realizó una comparación de la eficiencia del proceso usando enzimas comerciales y una evaluación de factibilidad a través de ensayos de reusabilidad. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaDiseño de bioprocesos y biotecnologíaspa
dc.format.extentxvi, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82957
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesU. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.spa
dc.relation.referencesF. Shahidi, Bailey’s Industrial Oil and Fat Products, 7th ed., Wiley, New York, 2020.spa
dc.relation.referencesJ.K. Satyarthi, D. Srinivas, P. Ratnasamy, Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts, Appl. Catal. A Gen. 391 (2011) 427–435. https://doi.org/10.1016/j.apcata.2010.03.047.spa
dc.relation.referencesF.D. Gunstone, R.J. Hamilton, Oleochemical Manufacture and Applications, 1st ed., Sheffield Academic Press, Liverpool, 2001.spa
dc.relation.referencesN.B. Hasan, W.Y. Tan, N.A. Mohd Zain, S. Mohd Suardi, Immobilization of Candida Rugosa Lipase in PVA-Alginate-Sulfate Beads for Waste Cooking Oil Treatment, J. Teknol. 74 (2015) 215–222.spa
dc.relation.referencesG. Sharmila, C. Muthukumaran, N.M. Kumar, V.M. Sivakumar, M. Thirumarimurugan, Food waste valorization for biopolymer production, Elsevier, 2020. https://doi.org/10.1016/B978-0-444-64321-6.00012-4.spa
dc.relation.referencesP. Skoczinski, M.C. Carus, D. De Guzman, K. Harald, R. Chinthapalli, J. Ravenstijn, W. Baltus, R. Achim, Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. [Online], (2021). http://bio-based.eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025/ (accessed July 19, 2021).spa
dc.relation.referencesA. Jering, J. Günter, Use of renewable raw materials with special emphasis on chemical industry, Eur. Top. Cent. Sustain. Consum. Prod. 2 (2010) 1–58.spa
dc.relation.referencesT. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management – A review, J. Environ. Manage. 187 (2017) 424–435. https://doi.org/10.1016/j.jenvman.2016.11.003.spa
dc.relation.referencesM.-J. Dumont, S.S. Narine, Soapstock and deodorizer distillates from North American vegetable oils : Review on their characterization , extraction and utilization, Food Res. Int. 40 (2007) 957–974. https://doi.org/10.1016/j.foodres.2007.06.006.spa
dc.relation.referencesA. Orjuela, Industrial Oleochemicals from Used Cooking Oils (UCOs) – Sustainability Benefits and Challenges., in: S. Sikdar, F. Princiotta (Eds.), Adv. Carbon Manag. Technol., 1st ed., CRC Press, 2021: pp. 74–96.spa
dc.relation.referencesGreenea, 2016c. Analysis of the current development of household UCO collection systems in the EU., (n.d.). https://theicct.org/sites/default/files/publications/Greenea Report Household UCO Collection in the EU_ICCT_20160629.pdf (accessed July 21, 2021).spa
dc.relation.referencesL.A. Rincón, J.G. Cadavid, A. Orjuela, Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia, Waste Manag. 88 (2019) 200–210. https://doi.org/10.1016/j.wasman.2019.03.042.spa
dc.relation.referencesI.A.F. Husain, M.F. Alkhatib, M.S. Jami, M.E.S. Mirghani, Z. Bin Zainudin, A. Hoda, Problems, control, and treatment of fat, oil, and grease (FOG): A review, J. Oleospa
dc.relation.referencesA. Orjuela, J. Clark, Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities, Curr. Opin. Green Sustain. Chem. (2020) 100369. https://doi.org/10.1016/j.cogsc.2020.100369.spa
dc.relation.referencesJ. Cardenas, L.A. Rincón, A. Orjuela, Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks, Environ. Chem. Eng. 9 (2021) 21–23. https://doi.org/10.1016/j.jece.2020.104610.spa
dc.relation.referencesA. Orjuela, L.S. David, P.C. Narvaez, B. Katryniok, J. Clark, Pre-treatment of used cooking oils for the production of green chemicals : A review, Clean. Prod. J. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125129.spa
dc.relation.references] B. Casali, E. Brenna, F. Parmeggiani, D. Tessaro, F. Tentori, Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes, Sustain. Chem. 2 (2021) 74–91. https://doi.org/10.3390/suschem2010006.spa
dc.relation.referencesM. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem. 39 (2004) 1347–1361. https://doi.org/10.1016/S0032-9592(03)00266-8.spa
dc.relation.referencesM.C.P. Zenevicz, A. Jacques, A.F. Furigo, J.V. Oliveira, D. de Oliveira, Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system, Ind. Crops Prod. 80 (2016) 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031.spa
dc.relation.referencesV. Skliar, G. Krusir, V. Zakharchuk, I. Kovalenko, T. Shpyrko, Investigation of the Fat Fraction Enzymatic Hydrolysis of the Waste From Production of Hydrogenated Fat By the Lipase Rhizopus Japonicus, Food Sci. Technol. 13 (2019) 27–34. https://doi.org/10.15673/fst.v13i1.1332.spa
dc.relation.referencesV.R. Murty, J. Bhat, P.K.A. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: A review, Biotechnol. Bioprocess Eng. 7 (2002) 57–66. https://doi.org/10.1007/BF02935881.spa
dc.relation.referencesL. Cao, H. Screening, Industrial Biotransformations Enzymes in Industry Biocatalysis, 2005.spa
dc.relation.referencesK.P. Preczeski, A.B. Kamanski, T. Scapini, A.F. Camargo, T.A. Modkoski, V. Rossetto, B. Venturin, J. Mulinari, S.M. Golunski, A.J. Mossi, H. Treichel, Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils, Bioprocess Biosyst. Eng. 41 (2018) 851–857. https://doi.org/10.1007/s00449-018-1919-y.spa
dc.relation.referencesB.R. Facin, M.S. Melchiors, A. Valério, J.V. Oliveira, D. De Oliveira, Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects, Ind. Eng. Chem. Res. 58 (2019) 5358–5378. https://doi.org/10.1021/acs.iecr.9b00448.spa
dc.relation.referencesE.T. Phuah, T.K. Tang, Y.Y. Lee, T.S.Y. Choong, C.P. Tan, O.M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol. 8 (2015) 1169–1186. https://doi.org/10.1007/s11947-015-1505-0.spa
dc.relation.referencesG. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32 (2016) 60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033.spa
dc.relation.referencesA. Mazubert, M. Poux, J. Aubin, Intensified processes for FAME production from waste cooking oil: A technological review, Chem. Eng. J. 233 (2013) 201–223. https://doi.org/10.1016/j.cej.2013.07.063.spa
dc.relation.referencesN.F. Mokhtar, R.N. Raja Noor Zaliha, The immobilization of lipases on porous support by adsorption and hydrophobic interaction method, Catalysts. 10 (2020) 1– J. Ren, B. Fan, Huhetaoli, D. Niu, Y. Gu, C. Li, Biodegradation of Waste Cooking Oils by Klebsiella quasivariicola IUMR-B53 and Characteristics of Its Oil-Degrading Enzyme, Waste and Biomass Valorization. 12 (2021) 1243–1252. https://doi.org/10.1007/s12649-020-01097-z.spa
dc.relation.referencesX. Ming-Hong, K. I-Ching, Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process, Asia-Pacific J. Chem. Eng. 11 (2016) 910–917. https://doi.org/10.1002/apj.2025.spa
dc.relation.referencesN. Saifuddin, A.Z. Raziah, H.N. Farah, Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process, E-Journal Chem. 6 (2009). https://doi.org/10.1155/2009/801756.spa
dc.relation.referencesR. Prakash, S.S. Aulakh, R. Kalra, Effect of frying time on free fatty acid generation and esterification rate in Aspergillus sp.-catalyzed transesterification of cottonseed oil, Biocatal. Biotransformation. 28 (2010) 403–407. https://doi.org/10.3109/10242422.2010.524698.spa
dc.relation.referencesS. Cesarini, P. Diaz, P.M. Nielsen, Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock, Process Biochem. 48 (2013) 484–487. https://doi.org/10.1016/j.procbio.2013.02.001.spa
dc.relation.referencesV.G. Tacias-Pascacio, J.J. Virgen-Ortíz, M. Jiménez-Pérez, M. Yates, B. Torrestiana-Sanchez, A. Rosales-Quintero, R. Fernandez-Lafuente, Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support, Fuel. 200 (2017) 1–10. https://doi.org/10.1016/j.fuel.2017.03.054.spa
dc.relation.referencesL. Cao, Immobilised enzymes: Science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226. https://doi.org/10.1016/j.cbpa.2005.02.014.spa
dc.relation.referencesT. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y.spa
dc.relation.referencesH.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology, Catal. Sci. Technol. 11 (2021) 1994–2020. https://doi.org/10.1039/D1CY00020A.spa
dc.relation.referencesC. Ortiz, M.L. Ferreira, O. Barbosa, J.C.S. Dos Santos, R.C. Rodrigues, Á. Berenguer-Murcia, L.E. Briand, R. Fernandez-Lafuente, Novozym 435: The “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol. 9 (2019) 2380–2420. https://doi.org/10.1039/c9cy00415g.spa
dc.relation.referencesK. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies, Process Biochem. 47 (2012) 435–445. https://doi.org/10.1016/j.procbio.2011.11.025.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.otherResiduos industrialesspa
dc.subject.otherFactory and trade wasteeng
dc.subject.otherCatalizadoresspa
dc.subject.otherCatalystseng
dc.subject.proposalEnzymatic immobilizationeng
dc.subject.proposalEnzymatic hydrolysiseng
dc.subject.proposalUsed cooking oileng
dc.subject.proposalCandida antartica lipase B.eng
dc.subject.proposalActivated carbonseng
dc.subject.proposalInmovilización enzimáticaspa
dc.subject.proposalHidrólisis enzimáticaspa
dc.subject.proposalAceite usado de cocinaspa
dc.subject.proposalCándida antártica lipasa B.spa
dc.subject.proposalCarbonos activadosspa
dc.subject.spinesTratamiento de residuosspa
dc.titleStudy of the lipase-catalyzed hydrolysis of waste oleochemical streamseng
dc.title.translatedEstudio de la hidrólisis catalizada por lipasas de corrientes oleoquímicas residualesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DocumentoFinal1010223522.pdf
Tamaño:
1.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: