Microencapsulación de microorganismos probióticos con un polisacárido no digerible para uso en matrices alimentarias : propuesta metodológica para la encapsulación y determinación de la viabilidad gastrointestinal in vitro

dc.contributor.advisorFlórez Guzmán, Glaehter Yhonspa
dc.contributor.authorGaray Moreno, Jenifer Mabelspa
dc.date.accessioned2025-07-16T17:46:46Z
dc.date.available2025-07-16T17:46:46Z
dc.date.issued2025
dc.descriptionilustraciones, tablasspa
dc.description.abstractLos probióticos son microorganismos vivos que, administrados en cantidades adecuadas, aportan beneficios a la salud modulando positivamente la microbiota del huésped. Debido a su potencial, se consideran compuestos bioactivos de interés en aplicaciones alimentarias; sin embargo, su uso se ve dificultado por la sensibilidad a los procesos tecnológicos y la necesidad de mantener la viabilidad durante el tránsito gastrointestinal, donde factores como el pH y la motilidad intestinal pueden comprometer su eficacia. El objetivo de este trabajo fue efectuar una revisión sobre la microencapsulación de microorganismos probióticos con un polisacárido no digerible para uso en matrices alimentarias que permita el planteamiento de una propuesta metodológica para la encapsulación y determinación de la viabilidad gastrointestinal in vitro. Para ello, se realizó una búsqueda en bases de datos científicas, se extrajeron y organizaron los datos relevantes y se propuso una estrategia metodológica. Se analizaron cien artículos publicados en los últimos cinco años. La gelificación iónica externa resultó ser la técnica de encapsulación más utilizada (48%), siendo el alginato el biopolímero predominante (41%). Lactiplantibacillus plantarum fue la cepa más encapsulada (28%), seguida de otras bacterias ácido-lácticas (78%). Solo el 29% de los estudios reportaron la incorporación de probióticos encapsulados en matrices alimentarias, principalmente bebidas no lácteas, productos lácteos y postres. Con base en la revisión, se sugiere la encapsulación de cepas probióticas como L. plantarum o L. rhamnosus utilizando dextrano al 5% como material de pared, combinado con alginato de sodio y cloruro de calcio, mediante gelificación iónica externa con extrusión por goteo y seguida de liofilización, para mejorar la estabilidad. La evaluación propuesta incluye viabilidad, eficiencia de encapsulación, caracterización fisicoquímica y simulación in vitro del tránsito gastrointestinal para evaluar el rendimiento protector y de liberación del sistema de encapsulación. En conclusión, la microencapsulación de probióticos utilizando polisacáridos no digestibles es muy prometedora para aplicaciones en alimentos funcionales, y su optimización puede mejorar la eficacia y favorecer la salud gastrointestinal (Texto tomado de la fuente).spa
dc.description.abstractProbiotics are live microorganisms that, when administered in adequate amounts, confer health benefits by positively modulating the host microbiota. Due to their potential, they are regarded as bioactive compounds of interest in food applications. However, their use is challenged by sensitivity to technological processes and the need to maintain viability throughout gastrointestinal transit, where factors such as pH and intestinal motility may compromise their efficacy. This study aimed to review the microencapsulation of probiotic microorganisms using non-digestible polysaccharide for incorporation into food matrices, and to develop a methodological proposal for encapsulation and in vitro assessment of gastrointestinal viability. A search for scientific databases was conducted, relevant data were extracted and organized, and a methodological strategy was proposed. One hundred articles published over the past five years were analyzed. External ionic gelation emerged as the most frequently used encapsulation technique (48%), with alginate being the predominant biopolymer (41%). Lactiplantibacillus plantarum was the most encapsulated strain (28%), followed by other lactic acid bacteria (78%). Only 29% of the studies reported incorporation of encapsulated probiotics into food products, primarily non-dairy beverages, dairy products, and desserts. Based on the review, encapsulation of probiotic strains such as L. plantarum or L. rhamnosus using 5% dextran as the wall material, combined with sodium alginate and calcium chloride, via external ionic gelation with drip extrusion and followed by lyophilization, is suggested to enhance stability. The proposed evaluation includes viability, encapsulation efficiency, physicochemical characterization, and in vitro simulation of gastrointestinal transit to assess the protective and release performance of the encapsulation system. In conclusion, the microencapsulation of probiotics using non-digestible polysaccharides holds significant promise for functional food applications, and its optimization may enhance efficacy and support gastrointestinal health.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentx, 164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88348
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAkanny, E., Bourgeois, S., Bonhommé, A., Commun, C., Doleans-Jordheim, A., Bessueille, F., & Bordes, C. (2020). Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. International Journal of Pharmaceutics, 584, 119414.spa
dc.relation.referencesAlbadran, H. A., Monteagudo-Mera, A., Khutoryanskiy, V. V., & Charalampopoulos, D. (2020). Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Applied microbiology and biotechnology, 104, 5749-5757.spa
dc.relation.referencesAllahverdi, M., Dadmehr, M., Sharifmoghadam, M. R., & Bahreini, M. (2024). Encapsulation of Lactiplantibacillus plantarum probiotics through cross-linked chitosan and casein for improving their viability, antioxidant and detoxification. International Journal of Biological Macromolecules, 280, 135820.spa
dc.relation.referencesAndrade Lopes, A., de Siqueira Ferraz Carvalho, R., Stela Santos Magalhães, N., Suely Madruga, M., Julia Alves Aguiar Athayde, A., Araújo Portela, I., Christina Montenegro Stamford, T. (2020). Microencapsulation of Lactobacillus acidophilus La-05 and incorporation in vegan milks: Physicochemical characteristics and survival during storage, exposure to stress conditions, and simulated gastrointestinal digestion. Food Research International, 135, 109295.spa
dc.relation.referencesApiwattanasiri, P., Charoen, R., Rittisak, S., Phattayakorn, K., Jantrasee, S., & Savedboworn, W. (2022). Co-encapsulation efficiency of silk sericin-alginate-prebiotics and the effectiveness of silk sericin coating layer on the survival of probiotic Lactobacillus casei. Food Bioscience, 46, 101576.spa
dc.relation.referencesAprilia, V., Murdiati, A., Hastuti, P., & Harmayani, E. (2022). Hydrogel Derived from Glucomannan-Chitosan to Improve the Survival of Lactobacillus acidophilus FNCC 0051 in Simulated Gastrointestinal Fluid. TheScientificWorldJournal, 2022, 7362077.spa
dc.relation.referencesAraújo, A. S., de Paula, N. Z., de Lima, M. A. B., Farias Filho, L. E. G. F., dos Santos Silva, R. C., de Britto Lira Nogueira, M. C., Stamford, T. C. M. (2025). Influence of the addition of gum arabic and xanthan gum in the preparation of sodium alginate microcapsules coated with chitosan hydrochloride on the survival of Lacticaseibacillus rhamnosus GG. International Journal of Biological Macromolecules, 294, 139388.spa
dc.relation.referencesAtraki, R., & Azizkhani, M. (2021). Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. Innovative Food Science & Emerging Technologies, 72, 102750.spa
dc.relation.referencesAzam, M., Saeed, M., Ahmad, T., Yamin, I., Khan, W. A., Iqbal, M. W., Riaz, T. (2022). Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis. Journal of Food Measurement and Characterization, 16(3), 2292-2299.spa
dc.relation.referencesAzam, M., Saeed, M., Yasmin, I., Afzaal, M., Ahmed, S., Khan, W. A., Asif, M. (2021). Microencapsulation and invitro characterization of Bifidobacterium animalis for improved survival. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 15(3), 2591-2600.spa
dc.relation.referencesBarajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2022). Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT, 153, 112485.spa
dc.relation.referencesBarajas-Álvarez, P., Haro-González, J. N., González-Ávila, M., & Espinosa-Andrews, H. (2024). Gum Arabic/Chitosan Coacervates for Encapsulation and Protection of Lacticaseibacillus rhamnosus in Storage and Gastrointestinal Environments. Probiotics and antimicrobial proteins, 16, 2073-2084.spa
dc.relation.referencesBarik, A., Pallavi, P., Sen, S. K., Rajhans, G., Bose, A., & Raut, S. (2023). Fortification of orange juice with microencapsulated Kocuria flava Y4 towards a novel functional beverage: Biological and quality aspects. Heliyon, 9(7), e17509.spa
dc.relation.referencesBora, A. F. M., Kouame, K. J. E.-P., Li, X., Liu, L., Sun, Y., Ma, Q., & Liu, Y. (2023). Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels. International Journal of Biological Macromolecules, 225, 454-466.spa
dc.relation.referencesBordini, F. W., Rosolen, M. D., da Luz, G. d. Q., Pohndorf, R. S., de Oliveira, P. D., Conceição, F. R., Pieniz, S. (2023). Development of a microencapsulated probiotic delivery system with whey, xanthan, and pectin. Brazilian Journal of Microbiology, 54(3), 2183-2195.spa
dc.relation.referencesBorges Filho, C., de Deus, C., Sonza Pinto, V., Pinto Rangel, C., da Silva Riste, U., Moraes de Almeida, T., Ragagnin de Menezes, C. (2024). Co-encapsulation of two antidepressant agents, Lactiplantibacillus plantarum and chrysin flavonoid, by external ionic gelation: Feasibility, properties and stability. Journal of Drug Delivery Science and Technology, 101, 106168.spa
dc.relation.referencesCancino-Castillo, L. A., Beristain, C. I., Pascual-Pineda, L. A., Ortiz-Basurto, R. I., Juárez-Trujillo, N., & Jiménez-Fernández, M. (2020). Effective microencapsulation of Enterococcus faecium in biopolymeric matrices using spray drying. Appl. Microbiol. Biotechnol., 104, 9595-9605.spa
dc.relation.referencesÇanga, E. M., & Dudak, F. C. (2021). Improved digestive stability of probiotics encapsulated within poly(vinyl alcohol)/cellulose acetate hybrid fibers. Carbohydrate polymers, 264, 117990.spa
dc.relation.referencesChehreara, A., Tabandeh, F., Otadi, M., Alihosseini, A., & Partovinia, A. (2022). Enhanced survival of Lacticaseibacillus rhamnosus in simulated gastrointestinal conditions using layer-by-layer encapsulation. Biotechnology letters, 44, 1277-1286.spa
dc.relation.referencesCosta, N. d. A., Silveira, L. R., Amaral, E. d. P., Pereira, G. C., Paula, D. d. A., Vieira, É. N. R., Ramos, A. M. (2023). Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food research international (Ottawa, Ont.), 164, 112367.spa
dc.relation.referencesD'Amico, V., Lopalco, A., Iacobazzi, R. M., Vacca, M., Siragusa, S., De Angelis, M., Denora, N. (2024). Multistimuli responsive microcapsules produced by the prilling/vibration technique for targeted colonic delivery of probiotics. International Journal of Pharmaceutics, 658, 124223.spa
dc.relation.referencesDe Araújo Etchepare, M., Nunes, G. L., Nicoloso, B. R., Barin, J. S., Moraes Flores, E. M., de Oliveira Mello, R., & Ragagnin de Menezes, C. (2020). Improvement of the viability of encapsulated probiotics using whey proteins. LWT, 117, 108601.spa
dc.relation.referencesDemirci, A., Ocak, E., & Ceylan, Z. (2024). A new nanobiotechnology material for yogurt samples: Characterized nanotubes-Streptococcus thermophilus and Lactobacillus delbrueckii bulgaricus. Food Bioscience, 59, 104178.spa
dc.relation.referencesDiệp Huy Vũ, P., Rodklongtan, A., & Chitprasert, P. (2021). Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. LWT, 148, 111725.spa
dc.relation.referencesEzekiel, O. O., Okehie, I. D., & Adedeji, O. E. (2020). Viability of Lactobacillus rhamnosus GG in Simulated Gastrointestinal Conditions and After Baking White Pan Bread at Different Temperature and Time Regimes. Current Microbiology, 77(12), 3869-3877.spa
dc.relation.referencesFigueroa, L. E., Brugnoni, L. I., Dello Staffolo, M., & Genovese, D. B. (2024). Development of a functional dulce de leche (milk jam) with prebiotic carbohydrates and Lacticaseibacillus rhamnosus GG. International Dairy Journal, 156, 105975.spa
dc.relation.referencesGe, Y., Wu, J., Pang, M., Hu, D., Li, Z., Wang, X., Yao, J. (2022). Novel carboxymethyl chitosan/N-acetylneuraminic acid hydrogel for the protection of Pediococcus pentosaceus. Food research international (Ottawa, Ont.), 156, 111355.spa
dc.relation.referencesGiordano, I., Abuqwider, J., Altamimi, M., Di Monaco, R., Puleo, S., & Mauriello, G. (2022). Application of ultrasound and microencapsulation on Limosilactobacillus reuteri DSM 17938 as a metabolic attenuation strategy for tomato juice probiotication. Heliyon, 8(10), e10969.spa
dc.relation.referencesGolnari, M., Behbahani, M., & Mohabatkar, H. (2024). Comparative survival study of Bacillus coagulans and Enterococcus faecium microencapsulated in chitosan-alginate nanoparticles in simulated gastrointestinal condition. LWT, 197, 115930.spa
dc.relation.referencesGuo, H.-R., Dong, C.-D., Patel, A. K., Sharma, V., Singhania, R. R., & Tsai, M.-L. (2025). Beer wheat residue as a probiotic carrier: physicochemical properties via fluid bed granulation (Beer wheat residue for lactic acid bacteria encapsulation). J Sci Food Agric, 105(8), 4121-4129spa
dc.relation.referencesGuo, Q., Tang, J., Li, S., Qiang, L., Chang, S., Du, G., Yuan, Y. (2022). Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability. International Journal of Biological Macromolecules, 216, 124-131.spa
dc.relation.referencesHaro-González, J. N., de Alba, B. N. S., Morales-Hernández, N., & Espinosa-Andrews, H. (2024). Type A gelatin-amidated low methoxyl pectin complex coacervates for probiotics protection: Formation, characterization, and viability. Food Chemistry, 453, 139644.spa
dc.relation.referencesHe, C., Sampers, I., Van de Walle, D., Dewettinck, K., & Raes, K. (2021). Encapsulation of Lactobacillus in Low-Methoxyl Pectin-Based Microcapsules Stimulates Biofilm Formation: Enhanced Resistances to Heat Shock and Simulated Gastrointestinal Digestion. Journal of agricultural and food chemistry, 69, 6281-6290.spa
dc.relation.referencesHu, X., Liu, C., Zhang, H., Hossen, M. A., Sameen, D. E., Dai, J., Li, S. (2021). In vitro digestion of sodium alginate/pectin co-encapsulated Lactobacillus bulgaricus and its application in yogurt bilayer beads. International Journal of Biological Macromolecules, 193, 1050-1058.spa
dc.relation.referencesHuang, K.-T., Lin, J.-H., Chang, T.-X., Lin, Y.-L., Lee, S.-J., Zheng, Y.-Y., & Hsueh, Y.-H. (2023a). Incorporation of high molecular weight gamma-polyglutamic acid in maltodextrin-microencapsulated Bifidobacterium bifidum enhances resistance to simulated gastrointestinal fluids. Process Biochemistry, 133, 285-291.spa
dc.relation.referencesHuang, X., Wang, J., Liu, R., Yang, C., Shao, Y., Wang, X., Lu, Y. (2024). An effective potential Bifidobacterium animalis F1-7 delivery strategy: Supramolecular hydrogel - sodium alginate/tryptophan-Sulfobutylether-β-cyclodextrin (Alg/Trp-SBE-β-CD). Food Hydrocolloids, 155, 110217.spa
dc.relation.referencesHuang, Y.-Y., Yao, Q.-B., Jia, X.-Z., Chen, B.-R., Abdul, R., Wang, L.-H., Liu, D.-M. (2023b). Characterization and application in yogurt of genipin-crosslinked chitosan microcapsules encapsulating with Lactiplantibacillus plantarum DMDL 9010. International journal of biological macromolecules, 248, 125871.spa
dc.relation.referencesHughes, M. H., Brugnoni, L. I., & Genovese, D. B. (2024). Mixed κ/ι-carrageenan - LM pectin gels: Relating the rheological and mechanical properties with the capacity for probiotic encapsulation. International Journal of Biological Macromolecules, 273, 133009.spa
dc.relation.referencesJike, X., Wu, C., Yang, N., Rong, W., Zhang, M., Zhang, T., & Lei, H. (2024). Lactiplantibacillus plantarum encapsulated by chitosan-alginate and soy protein isolate-reducing sugars conjugate for enhanced viability. International Journal of Biological Macromolecules, 281, 136162.spa
dc.relation.referencesKalpa, R. E., Sreejit, V., Preetha, R., & Nagamaniammai, G. (2023). Synbiotic microencapsulation of Lactobacillus brevis and Lactobacillus delbrueckii subsp. lactis using oats/oats brans as prebiotic for enhanced storage stability. Journal of Food Science and Technology, 60(3), 896-905.spa
dc.relation.referencesKamble, M., Singh, A., Singh, S. V., Upadhyay, A., Kondepudi, K. K., & Chinchkar, A. V. (2024). Effect of gastrointestinal resistant encapsulate matrix on spray dried microencapsulated Lacticaseibacillus rhamnosus GG powder and its characterization. Food Research International, 192, 114804.spa
dc.relation.referencesKarimi, M., Sekhavatizadeh, S. S., & Hosseinzadeh, S. (2021). Milk dessert containing Lactobacillus reuteri (ATCC 23272) encapsulated with sodium alginate, Ferula assa-foetida and Zedo (Amygdalus scoparia) gum as three layers of wall materials. Food and Bioproducts Processing, 127, 244-254.spa
dc.relation.referencesKim, H. B., Go, E. J., & Baek, J.-S. (2024). Effect of hot-melt extruded Morus alba leaves on intestinal microflora and epithelial cells. Heliyon, 10(1), e23954.spa
dc.relation.referencesKumar, V., Ahire, J. J., R, A., Nain, S., & Taneja, N. K. (2024). Microencapsulation of riboflavin-producing Lactiplantibacillus Plantarum MTCC 25,432 and Evaluation of its Survival in Simulated Gastric and Intestinal Fluid. Probiotics and antimicrobial proteins, 16, 1365-1375.spa
dc.relation.referencesLasta, E. L., da Silva Pereira Ronning, E., Dekker, R. F. H., & da Cunha, M. A. A. (2021). Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Scientific Reports, 11(1), 20550.spa
dc.relation.referencesLee, Y.-e., Kang, Y.-R., & Chang, Y. H. (2023). Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. Food Bioscience, 51, 102260.spa
dc.relation.referencesLeylak, C., Özdemir, K. S., Gurakan, G. C., & Ogel, Z. B. (2021). Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: Its application in yoghurt. International Dairy Journal, 112, 104865.spa
dc.relation.referencesLi, M.-F., Cui, H.-L., & Lou, W.-Y. (2023a). Millettia speciosa Champ cellulose-based hydrogel as a novel delivery system for Lactobacillus paracasei: Its relationship to structure, encapsulation and controlled release. Carbohydrate polymers, 316, 121034.spa
dc.relation.referencesLi, W., Zhao, Y., Zhao, Y., Li, S., Yun, L., Zhi, Z., Liu, R., Wu, T., Sui, W., & Zhang, M. (2023b). Improving the viability of Lactobacillus plantarum LP90 by carboxymethylated dextran–whey protein conjugates: The relationship with glass transition temperature. Food Hydrocolloids, 134, 108102.spa
dc.relation.referencesLieu, M. D., Le, T. K. N., Nguyen, T. L., Dang, T. K. T., & Do, D. G. (2020). Effect of calcium-alginate bead and Anoectochilus formosanus hayata extract fluid on the viability of lactobacillus plantarum ATCC 8014 and bioactive compounds in fermented apple juice. Food Research, 4(3), 652 – 658.spa
dc.relation.referencesLiu, A., Wu, H., Dong, Z., Fan, Q., Huang, J., Jin, Z., Ming, L. (2024). Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydrate polymers, 343, 122442.spa
dc.relation.referencesLuo, X., Fan, S., He, Z., Ni, F., Liu, C., Huang, M., Xie, H. (2022). Preparation of alginate-whey protein isolate and alginate-pectin-whey protein isolate composites for protection and delivery of Lactobacillus plantarum. Food Research International, 161, 111794.spa
dc.relation.referencesMa, J., Li, T., Wang, Q., Xu, C., Yu, W., Yu, H., Jiang, Z. (2023). Enhanced viability of probiotics encapsulated within synthetic/natural biopolymers by the addition of gum arabic via electrohydrodynamic processing. Food Chemistry, 413, 135680.spa
dc.relation.referencesMa, J., Tan, Z., Wei, X., Tian, Z., Wang, V. Y., Wang, E., & Xu, D. (2025). Electrospray whey protein-polysaccharide microcapsules co-encapsulating Lactiplantibacillus plantarum and EGCG: Enhanced probiotic viability and antioxidant activity. International Journal of Biological Macromolecules, 290, 138734.spa
dc.relation.referencesMaleki, O., Khosrowshahi Asl, A., Alizadeh Khaledabad, M., & Amiri, S. (2023). Production and characterization of synbiotic ice cream using microencapsulation and cryopreservation of Lactobacillus rhamnosus in whey protein/bio-cellulose/inulin composite microcapsules. Journal of Food Measurement and Characterization, 17(4), 3909-3917.spa
dc.relation.referencesMarques da Silva, T., Sonza Pinto, V., Ramires Fonseca Soares, V., Marotz, D., Cichoski, A. J., Queiroz Zepka, L., Jacob Lopes, E., de Bona da Silva, C., & de Menezes, C. R. (2021). Viability of microencapsulated Lactobacillus acidophilus by complex coacervation associated with enzymatic crosslinking under application in different fruit juices. Food Research International, 141, 110190.spa
dc.relation.referencesMartins, M., Silva, K. C. G., Ávila, P. F., Sato, A. C. K., & Goldbeck, R. (2021). Xylo-oligosaccharide microparticles with synbiotic potential obtained from enzymatic hydrolysis of sugarcane straw. Food Research International, 140, 109827.spa
dc.relation.referencesMeral, H. D., Özcan, F. e., Özcan, N., Bozkurt, F., & Sağdiç, O. (2024). Determination of prebiotic activity and probiotic encapsulation ability of inulin type fructans obtained from Inula helenium roots. Journal of food science, 89, 5335-5349.spa
dc.relation.referencesMohamadzadeh, M., Fazeli, A., Vasheghani-Farahani, E., & Shojaosadati, S. A. (2025). Viability and stability evaluation of microencapsulated Lactobacillus reuteri in polysaccharide-based bionanocomposite. Carbohydrate polymers, 347, 122693.spa
dc.relation.referencesMojaveri, S. J., Hosseini, S. F., & Gharsallaoui, A. (2020). Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydrate Polymers, 241, 116278.spa
dc.relation.referencesNami, Y., Lornezhad, G., Kiani, A., Abdullah, N., & Haghshenas, B. (2020). Alginate-Persian Gum-Prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT, 124, 109190.spa
dc.relation.referencesNi, F., Luo, X., Zhao, Z., Yuan, J., Song, Y., Liu, C., Gu, Q. (2023). Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems. International Journal of Biological Macromolecules, 224, 94-104.spa
dc.relation.referencesObradović, N. a., Volić, M., Nedović, V., Rakin, M., & Bugarski, B. (2022). Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering, 321, 110948.spa
dc.relation.referencesOhja, A., B G, S., Pushpadass, H. A., Franklin, M. E. E., Grover, C. R., Kumar, S., & Dhali, A. (2024). Encapsulation of Lactiplantibacillus plantarum CRD7 in sub-micron pullulan fibres by spray drying: Maximizing viability with prebiotic and thermal protectants. International journal of biological macromolecules, 269, 132068.spa
dc.relation.referencesPhùng, T.-T.-T., Đinh, H. i.-N., Ureña, M., Oliete, B., Denimal, E., Dupont, S., Karbowiak, T. (2025). Sodium Alginate as a promising encapsulating material for extremely-oxygen sensitive probiotics. Food Hydrocolloids, 160, 110857.spa
dc.relation.referencesPremjit, Y., Pandey, S., & Mitra, J. (2024). Encapsulation of probiotics in freeze-dried calcium alginate and κ-carrageenan beads using definitive screening design: A comprehensive characterisation and in vitro digestion study. International Journal of Biological Macromolecules, 258, 129279.spa
dc.relation.referencesQi, X., Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2021). The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods. Food & function, 12, 8907-8919.spa
dc.relation.referencesQi, X., Simsek, S., Chen, B., & Rao, J. (2020a). Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, 1675-1685.spa
dc.relation.referencesQi, X., Simsek, S., Ohm, J.-B., Chen, B., & Rao, J. (2020b). Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: role of chitosan molecular weight. Soft matter, 16, 1877-1887.spa
dc.relation.referencesRibeiro, L. L. S. M., Araújo, G. P., de Oliveira Ribeiro, K., Torres, I. M. S., De Martinis, E. C. P., Marreto, R. N., & Alves, V. F. (2021). Use of encapsulated lactic acid bacteria as bioprotective cultures in fresh Brazilian cheese. Brazilian Journal of Microbiology, 52(4), 2247-2256.spa
dc.relation.referencesRicha, & Roy Choudhury, A. (2022). Encapsulated probiotic spores as a fortification strategy for development of novel functional beverages. Innovative Food Science & Emerging Technologies, 80, 103104.spa
dc.relation.referencesRifa'i, M., Atho'illah, M. F., Arifah, S. N., Suharto, A. R., Fadhilla, A. N., Sa'adah, N. A. M., Jatmiko, Y. D. (2025). Physicochemical and functional optimization of probiotic yogurt with encapsulated Lacticaseibacillus paracasei E1 enriched with green tea using Box–Behnken design. Applied Food Research, 5(1), 100690.spa
dc.relation.referencesRittisak, S., Charoen, R., Seamsin, S., Buppha, J., Ruangthong, T., Muenkhling, S., Savedboworn, W. (2024). Effects of incorporated collagen/prebiotics and different coating substances on the survival rate of encapsulated probiotics. Food Science and Biotechnology.spa
dc.relation.referencesRodrigues, F. J., Cedran, M. F., Pereira, G. A., Bicas, J. L., & Sato, H. H. (2022). Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. Biotechnology Reports, 34, e00737.spa
dc.relation.referencesRomano, N., Tavares, G., Passot, S., Sanchez, M. G., Golowczyc, M., Campoy, S., Gomez-Zavaglia, A. (2025). Bench scale Layer-by-Layer microencapasulation of Lactiplantibacillus plantarum WCFS1. Food research international (Ottawa, Ont.), 200, 115431.spa
dc.relation.referencesSaniani, M., Nateghi, L., & Hshemiravan, M. (2023). Investigation of microencapsulated lactobacillus plantarum survival in alginate microsphere incorporated with inulin and dextran in order to produce a novel probiotic whey beverage. Journal of Food Measurement and Characterization, 17(4), 3683-3694.spa
dc.relation.referencesSharifi, Z., Jebelli Javan, A., Hesarinejad, M. A., & Parsaeimehr, M. (2023). Application of carrot waste extract and Lactobacillus plantarum in Alyssum homalocarpum seed gum-alginate beads to create a functional synbiotic yogurt. Chemical and Biological Technologies in Agriculture, 10(1), 3.spa
dc.relation.referencesShoukat, L., Javed, S., Afzaal, M., Akhter, N., & Shah, Y. A. (2024). Starch-based encapsulation to enhance probiotic viability in simulated digestion conditions. International Journal of Biological Macromolecules, 283, 137606.spa
dc.relation.referencesSrisuk, N., Nopharatana, M., & Jirasatid, S. (2021). Co-encapsulation of Dictyophora indusiata to improve Lactobacillus acidophilus survival and its effect on quality of sweet fermented rice (Khoa-Mak) sap beverage. Journal of Food Science and Technology, 58(9), 3598-3610.spa
dc.relation.referencesSu, J., Cai, Y., Zhi, Z., Guo, Q., Mao, L., Gao, Y., Van der Meeren, P. (2021). Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohydrate Polymers, 254, 117446.spa
dc.relation.referencesSun, C.-C., Yi, M., Miao, Y., Song, Y., Zhang, G.-F., Du, P., Li, C. (2024a). Physicochemical properties and cell viability comparison of two Lactiplantibacillus plantarum DNZ-4 microcapsules and its application in beverages. Food Hydrocolloids, 152, 109910.spa
dc.relation.referencesSun, R., Lv, Z., Wang, Y., Gu, Y., Sun, Y., Zeng, X., Yue, T. (2024b). Preparation and characterization of pectin-alginate-based microbeads reinforced by nano montmorillonite filler for probiotics encapsulation: Improving viability and colonic colonization. International Journal of Biological Macromolecules, 264, 130543.spa
dc.relation.referencesSun, R., Wang, Y., Lv, Z., Li, H., Zhang, S., Dang, Q., Yuan, Y. (2024c). Construction of Fu brick tea polysaccharide-cold plasma modified alginate microgels for probiotic delivery: Enhancing viability and colonization. International Journal of Biological Macromolecules, 268, 131899.spa
dc.relation.referencesSurolia, R., Prakash, A., & Singh, A. (2024). Impact of microencapsulated bael pulp waste pectin as potential prebiotic on the viability of Bacillus clausii and Saccharomyces boulardii under simulated intestinal conditions. Journal of Food Measurement and Characterization, 18(2), 904-915.spa
dc.relation.referencesTa, L. P., Bujna, E., Antal, O., Ladányi, M., Juhász, R., Szécsi, A., Nguyen, Q. D. (2021). Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. International Journal of Biological Macromolecules, 183, 1136-1144.spa
dc.relation.referencesTa, L. P., Corrigan, S., & Horniblow, R. D. (2024). Novel pectin-carboxymethylcellulose-based double-layered mucin/chitosan microcomposites successfully protect the next-generation probiotic Akkermansia muciniphila through simulated gastrointestinal transit and alter microbial communities within colonic ex vivo bioreactors. International Journal of Pharmaceutics, 665, 124670.spa
dc.relation.referencesVirk, M. S., Virk, M. A., Awais, M., Liang, Q., Wang, J., Tufail, T., Ren, X. (2025). Enhancing storage, thermal, and gastroprotective viability of Lactiplantibacillus plantarum bilayer encapsulated in ultrasonically prepared gum and protein-based composites. Food Bioscience, 63, 105803.spa
dc.relation.referencesWang, Y., Lv, H., Wang, C., He, D., Zhao, H., Xu, E., Cui, B. (2024). Preparation of starch-based green nanofiber mats for probiotic encapsulation by electrospinning. Journal of food science, 89, 5659-5673.spa
dc.relation.referencesXu, C., Ma, J., Liu, Z., Wang, W., Liu, X., Qian, S., Jiang, Z. (2023a). Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning. Food chemistry, 402, 134253.spa
dc.relation.referencesXu, D., Zhao, X., Mahsa, G. C., Ma, K., Zhang, C., Rui, X., Li, W. (2023b). Controlled release of Lactiplantibacillus plantarum by colon-targeted adhesive pectin microspheres: Effects of pectin methyl esterification degrees. Carbohydrate polymers, 313, 120874.spa
dc.relation.referencesYan, W., Jia, X., Zhang, Q., Chen, H., Zhu, Q., & Yin, L. (2021). Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocolloids, 113, 106453.spa
dc.relation.referencesYi, H. J., Kang, Y.-R., & Chang, Y. H. (2025). Structural, physicochemical, and in vitro digestion properties of microgel-reinforced synbiotic hydrogel beads filled with pectic oligosaccharides as a delivery system for Limosilactobacillus reuteri. Food chemistry, 464, 141764.spa
dc.relation.referencesYilmaz, M. T., Taylan, O., Karakas, C. Y., & Dertli, E. (2020). An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers, 244, 116447.spa
dc.relation.referencesYoussef, M., Korin, A., Zhan, F., Hady, E., Ahmed, H. Y., Geng, F., Li, B. (2021). Encapsulation of Lactobacillus Salivarius in Single and Dual biopolymer. Journal of Food Engineering, 294, 110398.spa
dc.relation.referencesZaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., Liu, W., & Tromp, R. H. (2020). Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Structure, 25, 100147.spa
dc.relation.referencesZhang, C., Wang, C., Zhao, S., & Xiu, Z. (2021). Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnology letters, 43, 677-690.spa
dc.relation.referencesZhang, Z., Huang, Y., Wang, R., Dong, R., Li, T., Gu, Q., & Li, P. (2024). Utilizing chitosan and pullulan for the encapsulation of Lactiplantibacillus plantarum ZJ316 to enhance its vitality in the gastrointestinal tract. International Journal of Biological Macromolecules, 260, 129624.spa
dc.relation.referencesZhong, Y., Huang, W., Zheng, Y., Chen, T., & Liu, C. (2024). Alginate-coated pomelo pith cellulose matrix for probiotic encapsulation and controlled release. International journal of biological macromolecules, 262, 130143.spa
dc.relation.referencesZhong, Y., Wang, Y., Wu, J., McClements, D. J., Huang, W., Zou, L., & Gong, E. S. (2025). Lactobacillus plantarum-loaded pomelo pith matrix gel beads: Fabrication, characterization, and regulatory effects on human gut microbiota. Food Hydrocolloids, 111094.spa
dc.relation.referencesZhu, Z., Wu, Y., Zhong, Y., Zhang, H., & Zhong, J. (2024). Development, characterization and Lactobacillus plantarum encapsulating ability of novel C-phycocyanin-pectin-polyphenol based hydrogels. Food Chemistry, 447, 138918.spa
dc.relation.referencesAlarcón, T., D’Auria, G., Delgado, S., Del Campo, R., & Ferrer, M. (2016). Microbiota (p. 59). En R. Del Campo Moreno (Coord.), E. Cercenado Mansilla & R. Cantón Moreno (Eds.), Procedimientos en Microbiología Clínica. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC).spa
dc.relation.referencesAlcocer, J. C., Paz, N. F., Cruz, V. E., Garay, P. A., Goncalvez De Oliveira, E., Villalva, F. J., Curti, C. A., Rivas, M. A., & Ramón, A. N. (2018). Goma arábiga, un ingrediente funcional para la formulación de productos saludables. Revista de la Facultad de Ciencias Agrarias UNCuyo, 50(1), 205–216.spa
dc.relation.referencesÁlvarez-Calatayud, G., Pérez-Moreno, J., Tolín, M., & Sánchez, C. (2013). Aplicaciones clínicas del empleo de probióticos en pediatría. Nutrición Hospitalaria, 28(3), 564–574.spa
dc.relation.referencesArslan-Tontul, E. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, 81, 160-169.spa
dc.relation.referencesBao, Y., Zhang, Y., Liu, Y., Wang, S; Dong, X., Wang, Y., & Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21, 695-701.spa
dc.relation.referencesBeltrán, M., & Marcilla, A. (2012). Tecnología de polímeros: Procesado y propiedades. Publicaciones de la Universidad de Alicante.spa
dc.relation.referencesCalbe, C. (2013). Estudio de la obtención de oligoquitosano y su aplicación en películas de quitosano/oligoquitosano para la preservación de alimentos [Tesis de maestría]. Universidad Nacional del Sur.spa
dc.relation.referencesCardona, D. P., Patiño Arias, L. P., & Ormaza-Zapata, A. M. (2021). Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión. Ciencia y Tecnología Agropecuaria, 22(1), e1899.spa
dc.relation.referencesCassani, L., Gomez-Zavaglia, A., & Simal-Gandara, J. (2020). Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Research International, 129, 108852.spa
dc.relation.referencesDamian, P. (2016). Preparación por electrohilado/electroaspersión y caracterización de membranas poliméricas liberadoras de fármacos [Tesis de maestría]. Universidad de Sonora.spa
dc.relation.referencesDelgado, S. (2025). Microbiota y microbioma. Modulación con el empleo de probióticos y prebióticos. Anales de Microbiota, Probióticos & Prebióticos, 6(1), 16-17.spa
dc.relation.referencesEscobar, N. (2010). Desarrollo de la formulación base para productos horneados con adición de un biopolímero (Tesis de especialización). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesFerreira, S. (2007). Pectinas: Aislamiento, caracterización y producción a partir de frutas tropicales y de los residuos de su procesamiento industrial. Universidad Nacional de Colombia.spa
dc.relation.referencesGañán, P., Zuluaga, R., Castro, C., Restrepo-Osorio, A., Velásquez-Cock, J., Osorio, M., Montoya, Ú., Vélez, L., Álvarez, C., Correa, C., & Molina, C. (2017). Celulosa: un polímero de siempre con mucho futuro. Revista Colombiana de Materiales, (Edición Especial, Simposio Nacional de Biopolímeros), 1–4.spa
dc.relation.referencesGarcía, O. (2019). Estudio de la influencia de los diferentes parámetros involucrados en la microencapsulación mediante coacervación compleja [Tesis doctoral]. Universitat Politècnica de Catalunya.spa
dc.relation.referencesGarcía-Mazcorro, J. F., Marroquín-Cardona, A. G., Garza-González, E., & Tamayo, J. L. (2015). Caracterización, influencia y manipulación de la microbiota gastrointestinal en salud y enfermedad. Gastroenterología y Hepatología (Edición Impresa), 38(7), 445–466.spa
dc.relation.referencesGirala, M., Rosario, L., Martínez, M., Escalonilla, J., González, R., & Martín, D. (2025). Eje microbiota-intestino-cerebro: un sistema de comunicación bidireccional. Anales de Microbiota, Probióticos & Prebióticos, 6(1), 98-101.spa
dc.relation.referencesInstituto Nacional de Salud. (s. f.). Enfermedades crónicas no transmisibles. https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/No-Transmisibles.aspx.spa
dc.relation.referencesLogares, R., Sunagawa, S., Salazar, G., Cornejo-Castillo, F. M., Ferrera, I., Sarmento, H., Hingamp, P., Ogata, H., de Vargas, C., Lima-Mendez, G., Raes, J., Poulain, J., Jaillon, O., Wincker, P., Kandels-Lewis, S., Karsenti, E., Bork, P., & Acinas, S. G. (2014). Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 16(9), 2659–2671.spa
dc.relation.referencesLombó, F. (s.f.a). Composición de la microbiota. En: Microbiota intestinal I. Homeostasis intestinal. TECH Global University.spa
dc.relation.referencesLombó, F. (s.f.b). Estudios actuales de la microbiota intestinal. En: Microbiota intestinal I. Homeostasis intestinal. TECH Global University.spa
dc.relation.referencesLombó, F. (s.f.c). Fisiología intestinal. Composición de la microbiota en las diferentes partes del tubo digestivo. En: Microbiota intestinal I. Homeostasis intestinal. TECH Global University.spa
dc.relation.referencesMadrigal, L., & Sangronis, E. (2007). La inulina y derivados como ingredientes claves en alimentos funcionales. Archivos Latinoamericanos de Nutrición, 57(4), 387-396.spa
dc.relation.referencesMariño, A., Núñez, M., & Barreto, J. (2016). Microbiota, probióticos, prebióticos y simbióticos. Rev Acta Médica,17(1).spa
dc.relation.referencesMartín, J. (2025). Microbiota e inmunidad. Anales de Microbiota, Probióticos & Prebióticos, 6(1), 64-67.spa
dc.relation.referencesMetzler, B.U., & Mosenthin, R. (2008). A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. Asian-Australasian J. Anim. Sci, 21, 603–615.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2021). Resolución 810 de 2021, Por la cual se establece el reglamento técnico sobre los requisitos de etiquetado nutricional y frontal que deben cumplir los alimentos envasados o empacados para consumo humano. Bogotá.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2024). Indicadores básicos de salud 2024. Bogotá D.C., Colombia.spa
dc.relation.referencesMosquera-Vivas, E., Ayala-Aponte, A., & Serna-Cock, L. (2024). Importancia de la encapsulación de probióticos: gelificación iónica y coacervación compleja como técnicas prometedoras para uso alimentario. Biotecnología en el Sector Agropecuario y Agroindustrial, 22(1), 105–123.spa
dc.relation.referencesMuñoz, J. (2015). Electrohilado de nanofibras fotosensibles a partir de biopolímeros tipo elastina [Tesis de grado en Ingeniería Química]. Universidad de Valladolid.spa
dc.relation.referencesOlveira Fuster, G., & González-Molero, I. (2007). Probióticos y prebióticos en la práctica clínica. Nutr. Hosp, 22, 26–34.spa
dc.relation.referencesOrtiz-Romero, N., Ochoa-Martínez, L. A., González-Herrera, S. M., Rutiaga-Quiñones, O. M., & Gallegos-Infante, J. A. (2021). Avances en las investigaciones sobre la encapsulación mediante gelación iónica: una revisión sistemática. TecnoLógicas, 24(52), e1962.spa
dc.relation.referencesParra, R. (2011). Revisión: Microencapsulación de Alimentos. Rev.Fac.Nal.Agr.Medellín, 63(2), 5669-5684.spa
dc.relation.referencesRacaniello, G. F., Silvestri, T., Pistone, M., D'Amico, V., Arduino, I., Denora, N., & Lopedota, A. A. (2024). Innovative pharmaceutical techniques for paediatric dosage forms: A systematic review on 3D printing, prilling/vibration and microfluidic platform. Journal of Pharmaceutical Sciences, 113(7), 1726–1748.spa
dc.relation.referencesRawtani, D., & Agrawal, Y. K. (2014). Emerging strategies and applications of layer-by-layer self-assembly. Nanobiomedicine, 1, 8.spa
dc.relation.referencesReque, P.M., & Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science & Technology, 114, 1–10.spa
dc.relation.referencesRios-Aguirre, S., & Gil-Garzón, M. A. (2021). Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. TecnoLógicas, 24(51), e1836.spa
dc.relation.referencesRivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol, 7.spa
dc.relation.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137, 109682.spa
dc.relation.referencesRodríguez, O. V., & Hanssen, H. (2007). Obtención de dextrano y fructosa utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F. Revista EIA Escuela de Ingeniería de Antioquia, (7), 159–172.spa
dc.relation.referencesRodríguez, Y., Rojas, A., & Rodríguez, S. (2016). Encapsulación de probióticos para aplicaciones alimenticias. Biosalud, 15(2), 106-115.spa
dc.relation.referencesRuiz, K. (2018). Optimización del proceso etanosolv para la obtención de celulosa biomásica y valoración de diferentes rutas de acetilación del material [Tesis doctoral]. Centro de Investigación en Materiales Avanzados.spa
dc.relation.referencesSánchez, M. (2020). Microencapsulación de biocontroladores: Revisión del estado del arte [Trabajo de grado de pregrado]. Universidad de Cartagena.spa
dc.relation.referencesSandoval, L. (2014). Preparación y caracterización de quitosano funcionalizado con ácido láctico [Tesis de licenciatura]. Universidad Nacional Autónoma de México Universidad Nacional Autónoma de México.spa
dc.relation.referencesSociedad Española de Probióticos y Prebióticos (SEPyP) y Sociedad Española de Farmacia Familiar y Comunitaria (SEFAC). (2018). Guía de actuación y documento de consenso sobre el manejo de preparados con probióticos y/o prebióticos en la farmacia comunitaria SEFAC-SEPyP, 20.spa
dc.relation.referencesTimilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286.spa
dc.relation.referencesTrujano, F. A., & Lozano, J. M. (2020). Efecto de la gelificación iónica de alginato de sodio y gelana de alto acilo en microcápsulas adicionadas de iones calcio [Tesis de licenciatura]. Universidad Nacional Autónoma de México.spa
dc.relation.referencesVirgen-Carrillo, C. A., & Mojica, L. (2024). Revisión histórica y conceptual de los alimentos funcionales: antecedentes, perspectivas y desafíos. Journal of Behavior and Feeding, 4(7), 11–20.spa
dc.relation.referencesWang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. En A. M. Grumezescu & A. M. Holban (Eds.), Role of materials science in food bioengineering (Vol. 19, pp. 167-189). Academic Press.spa
dc.relation.referencesWorld Gastroenterology Organization (WGO). (2017). Guías Mundiales de la Organización Mundial de Gastroenterología: Probióticos y prebióticos.spa
dc.relation.referencesWorld Gastroenterology Organization (WGO). (2023). Directrices mundiales de la Organización Mundial de Gastroenterología: Probióticos y prebióticos.spa
dc.relation.referencesYao, M., Xie, J., Du, H., McClements, D.J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Compr Rev Food Sci Food Saf, 19, 857–874.spa
dc.relation.referencesZambrano, L. (2020). Evaluación de la capacidad prebiótica del Biopolímero Bilac® (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.lembLEVADURASspa
dc.subject.lembYeasteng
dc.subject.lembFERMENTACIONspa
dc.subject.lembFermentationeng
dc.subject.lembFLORA MICROBIANAspa
dc.subject.lembMicrobial floraeng
dc.subject.lembSISTEMA GASTROINTESTINALspa
dc.subject.lembGastrointestinal systemeng
dc.subject.lembCONCENTRACION DE HIDROGENIONESspa
dc.subject.lembHydrogen-ion concentrationeng
dc.subject.lembMOTILIDAD GASTROINTESTINALspa
dc.subject.lembGastrointestinal motilityeng
dc.subject.proposalMicroencapsulaciónspa
dc.subject.proposalProbióticosspa
dc.subject.proposalMaterial de paredspa
dc.subject.proposalDextranospa
dc.subject.proposalViabilidad gastrointestinalspa
dc.subject.proposalMicroencapsulationeng
dc.subject.proposalProbioticseng
dc.subject.proposalWall materialeng
dc.subject.proposalDextraneng
dc.subject.proposalGastrointestinal viabilityeng
dc.titleMicroencapsulación de microorganismos probióticos con un polisacárido no digerible para uso en matrices alimentarias : propuesta metodológica para la encapsulación y determinación de la viabilidad gastrointestinal in vitrospa
dc.title.translatedMicroencapsulation of probiotic microorganisms with a non-digestible polysaccharide for use in food matrices: Methodological proposal for encapsulation and determination of in vitro gastrointestinal viabilityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032442734.2025.pdf
Tamaño:
1.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: