En 6 día(s), 6 hora(s) y 10 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de escalas pronósticas en sepsis: valoración de SOFA, qSOFA, SIRS y APACHE IV como predictores de mortalidad en pacientes críticamente enfermos de un hospital general de Bogotá, año 2019

dc.contributor.advisorRuiz Rodriguez, José Guillermospa
dc.contributor.advisorEspinosa Almanza, Carmelo Joséspa
dc.contributor.authorHernández Almonacid, Pablo Guillermospa
dc.date.accessioned2021-01-29T13:00:48Zspa
dc.date.available2021-01-29T13:00:48Zspa
dc.date.issued2020spa
dc.description.abstractDesde la actualización de la definición de sepsis, diversos estudios han tratado de validar el rendimiento del SOFA y qSOFA para predecir mortalidad. Los resultados han sido variables en cada población. Es importante seleccionar un sistema de predicción que demuestre buena discriminación y calibración en la población de interés. El propósito del estudio es establecer el sistema pronóstico con mayor rendimiento en predicción de mortalidad entre pacientes que ingresan a UCI con sospecha de infección, comparando (SIRS, qSOFA, SOFA, APACHE II, APACHE IV). Métodos: estudio observacional, analítico, retrospectivo. Se realiza un análisis de subgrupo de pacientes con diagnóstico oncológico activo. Resultados: se seleccionaron 290 pacientes. Se registraron 80 decesos, para una mortalidad global del 27.5%. El AUROC para cada sistema fue SIRS 0.53 (IC 95% 0.4-0.6), qSOFA 0.68 (IC 95% 0.62-0.75), SOFA de 0.8 (IC 95% 0.75-0.86), APACHE II 0.81 (IC 95% 0.76-0.86) y APACHE IV de 0.85 (IC 95% 0.80-0.90). La REM para SOFA fue del 0.95, APACHE II de 1.2 y APCHE IV de 1.47. La CITL fue de -0.09 para el SOFA, 0.13 para APACHE II y 0.71 para APACHE IV. Las curvas de calibración mostraron una buena concordancia para el SOFA, las curvas de los sistemas APACHE muestran tendencia a subestimar eventos. En el grupo de pacientes oncológicos los AUROC fueron comparables y no hay una adecuada calibración. Conclusiones: el SOFA score muestra una buena discriminación y calibración para predicción de mortalidad. Los sistemas APACHE tienen buena discriminación, pero no están calibrados a la población. SIRS y qSOFA tienen una mala AUROC como predictores de mortalidad.spa
dc.description.abstractIntroduction: Since the last update on sepsis definition, various studies have aimed to validate the performance of SOFA and qSOFA to predict mortality, with variable results in each population. This higlights the importance of selecting a prediction system with efficient discrimination capacity and calibration that suits the target population. Objective: Evaluate and compare the ability of SIRS, qSOFA, SOFA, APACHE II and APACHE IV to predict mortality in patients with suspected infection admitted to ICU Methods: Retrospective observational analytic study. An additional analysis of oncological patients was also made. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). Results: Among 290 selected patients, 80 died (global mortality 27,5%). AUROC for each prognosis system was established as follows: SIRS 0.53 (IC 95% 0.4-0.6), qSOFA 0.68 (IC 95% 0.62-0.75), SOFA de 0.8 (IC 95% 0.75-0.86), APACHE II 0.81 (IC 95% 0.76-0.86), APACHE IV de 0.85 (IC 95% 0.80-0.90). Standardized mortality ratio (SMR) for SOFA was 0.95, APACHE II 1.2 and APACHE IV 1.47. Calibration in the large (CITL) was -0.09 for SOFA, 0.13 for APACHE II and 0.71 for APACHE IV. Calibration curves showed suitable concordance of predicted and real mortality for SOFA, while APACHE tended to underestimate events. In oncological patients each AUROC was comparable, without appropriate calibration. Conclusion: SOFA score disclosed adequate discrimination capacity and calibration to predict mortality. Although APACHE systems discriminate well enough, they lack calibration for our population. SIRS and qSOFA do not discriminate mortality.spa
dc.description.degreelevelEspecialidades Médicasspa
dc.format.extent61spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationHernández Almonacid, P. G. (2020). Evaluación de escalas pronósticas en sepsis: valoración de SOFA, qSOFA, SIRS y APACHE IV como predictores de mortalidad en pacientes críticamente enfermos de un hospital general de Bogotá, año 2019 [Tesis de especialidad, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78984
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Especialidad en Medicina Internaspa
dc.relation.referencesSinger M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA - J Am Med Assoc. 2016;315(8):801–10spa
dc.relation.referencesCecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet [Internet]. 2018;392(10141):75–87. Available from: http://dx.doi.org/10.1016/S0140-6736(18)30696-2spa
dc.relation.referencesEsposito S, De Simone G, Boccia G, De Caro F, Pagliano P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist [Internet]. 2017;10:204–12. Available from: http://dx.doi.org/10.1016/j.jgar.2017.06.013spa
dc.relation.referencesDriessen RGH, van de Poll MCG, Mol MF, van Mook WNKA, Schnabel RM. The influence of a change in septic shock definitions on intensive care epidemiology and outcome: comparison of sepsis-2 and sepsis-3 definitions. Infect Dis (Auckl) [Internet]. 2018;50(3):207–13. Available from: https://doi.org/10.1080/23744235.2017.1383630spa
dc.relation.referencesKauss I, Grion CM, Cardoso L, Anami E, Nunes L, Ferreira G, et al. The epidemiology of sepsis in a Brazilian teaching hospital. Brazilian J Infect Dis [Internet]. 2010;14(3):264–70. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702010000300011&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesOrtíz G, Dueñas C, Rodríguez F, Barrera L, de La Rosa G, Dennis R, et al. Epidemiology of sepsis in Colombian intensive care units. Biomedica [Internet]. 2014;34(1):40–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24967858spa
dc.relation.referencesGotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016 May;353:i1585spa
dc.relation.referencesMartin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006 Jan;34(1):15–21spa
dc.relation.referencesAngus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 Jul;29(7):1303–10.spa
dc.relation.referencesVincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009 Dec;302(21):2323–9spa
dc.relation.referencesBouch DC, Thompson JP. Severity scoring systems in the critically ill. Contin Educ Anaesth Crit Care Pain [Internet]. 2008 Oct 1;8(5):181–5. Available from: http://dx.doi.org/10.1093/bjaceaccp/mkn033spa
dc.relation.referencesKeegan MT, Gajic O, Afessa B. Severity of illness scoring systems in the intensive care unit. Crit Care Med. 2011 Jan;39(1):163–9spa
dc.relation.referencesBreslow MJ, Badawi O. Severity scoring in the critically ill: part 2: maximizing value from outcome prediction scoring systems. Chest. 2012 Feb;141(2):518–27spa
dc.relation.referencesBreslow MJ, Badawi O. Severity scoring in the critically ill: part 1--interpretation and accuracy of outcome prediction scoring systems. Chest. 2012 Jan;141(1):245–52spa
dc.relation.referencesVan Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019 Dec;17(1):230spa
dc.relation.referencesPace NL, Eberhart LHJ, Kranke PR. Quantifying prognosis with risk predictions. Eur J Anaesthesiol. 2012 Jan;29(1):7–16.spa
dc.relation.referencesAssel M, Sjoberg DD, Vickers AJ. The Brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagnostic Progn Res. 2017;1:19spa
dc.relation.referencesZimmerman JE, Kramer AA. Outcome prediction in critical care: the Acute Physiology and Chronic Health Evaluation models. Curr Opin Crit Care. 2008 Oct;14(5):491–7spa
dc.relation.referencesRapsang AG, Shyam DC. Scoring systems in the intensive care unit: A compendium. Indian J Crit Care Med. 2014 Apr;18(4):220–8spa
dc.relation.referencesZimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med. 2006 Oct;34(10):2517–29spa
dc.relation.referencesVincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Vol. 22, Intensive care medicine. United States; 1996. p. 707–10.spa
dc.relation.referencesFerreira FL, Bota DP, Bross A, Mélot C, Vincent J-L. Serial Evaluation of the SOFA Score to Predict Outcome in Critically Ill Patients. JAMA [Internet]. 2001 Oct 10;286(14):1754–8. Available from: https://doi.org/10.1001/jama.286.14.1754spa
dc.relation.referencesde Grooth H-J, Geenen IL, Girbes AR, Vincent J-L, Parienti J-J, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017 Feb;21(1):3spa
dc.relation.referencesSeymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA [Internet]. 2016 Feb 23;315(8):762–74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26903335spa
dc.relation.referencesMaitra S, Som A, Bhattacharjee S. Accuracy of quick Sequential Organ Failure Assessment (qSOFA) score and systemic inflammatory response syndrome (SIRS) criteria for predicting mortality in hospitalized patients with suspected infection: a meta-analysis of observational studies. Clin Microbiol Infect. 2018 Nov;24(11):1123–9spa
dc.relation.referencesBone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun;101(6):1644–55spa
dc.relation.referencesSimpson SQ. SIRS in the Time of Sepsis-3. Chest. 2018 Jan;153(1):34–8spa
dc.relation.referencesRaith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, et al. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit. JAMA. 2017 Jan;317(3):290–300spa
dc.relation.referencesSprung CL, Schein RMH, Balk RA. The new sepsis consensus definitions: the good, the bad and the ugly. Vol. 42, Intensive care medicine. United States; 2016. p. 2024–6spa
dc.relation.referencesRhee C, Klompas M. New Sepsis and Septic Shock Definitions: Clinical Implications and Controversies. Infect Dis Clin North Am. 2017 Sep;31(3):397–413spa
dc.relation.referencesRosa RG, Moraes RB, Lisboa TC, Schunemann DP, Teixeira C. Does SOFA predict outcomes better than SIRS in Brazilian ICU patients with suspected infection? A retrospective cohort study . Vol. 21, Brazilian Journal of Infectious Diseases . scielo ; 2017. p. 665–9spa
dc.relation.referencesEstenssoro E, Kanoore Edul VS, Loudet CI, Osatnik J, Rios FG, Vazquez DN, et al. Predictive Validity of Sepsis-3 Definitions and Sepsis Outcomes in Critically Ill Patients: A Cohort Study in 49 ICUs in Argentina. Crit Care Med. 2018 Aug;46(8):1276–83.spa
dc.relation.referencesOsborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, et al. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database*. Crit Care Med. 2014 Sep;42(9):1969–76spa
dc.relation.referencesGeorgescu A-M, Szederjesi J, Copotoiu S-M, Azamfirei L. Predicting scores correlations in patients with septic shock - a cohort study. Rom J Anaesth intensive care [Internet]. 2014 Oct;21(2):95–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28913439spa
dc.relation.referencesDabhi AS, Khedekar SS, Mehalingam V. A Prospective Study of Comparison of APACHE-IV & SAPS-II Scoring Systems and Calculation of Standardised Mortality Rate in Severe Sepsis and Septic Shock Patients. J Clin Diagn Res. 2014 Oct;8(10):MC09-13.spa
dc.relation.referencesApril MD, Aguirre J, Tannenbaum LI, Moore T, Pingree A, Thaxton RE, et al. Sepsis Clinical Criteria in Emergency Department Patients Admitted to an Intensive Care Unit: An External Validation Study of Quick Sequential Organ Failure Assessment. J Emerg Med. 2017 May;52(5):622–31.spa
dc.relation.referencesCheng B, Li Z, Wang J, Xie G, Liu X, Xu Z, et al. Comparison of the Performance Between Sepsis-1 and Sepsis-3 in ICUs in China: A Retrospective Multicenter Study. Shock. 2017 Sep;48(3):301–6.spa
dc.relation.referencesSadaka F, EthmaneAbouElMaali C, Cytron MA, Fowler K, Javaux VM, O’Brien J. Predicting Mortality of Patients With Sepsis: A Comparison of APACHE II and APACHE III Scoring Systems. J Clin Med Res. 2017 Nov;9(11):907–10spa
dc.relation.referencesSiddiqui S, Chua M, Kumaresh V, Choo R. A comparison of pre ICU admission SIRS, EWS and q SOFA scores for predicting mortality and length of stay in ICU. J Crit Care. 2017 Oct;41:191–3spa
dc.relation.referencesFang X, Wang Z, Yang J, Cai H, Yao Z, Li K, et al. Clinical Evaluation of Sepsis-1 and Sepsis-3 in the ICU. Chest. 2018 May;153(5):1169–76spa
dc.relation.referencesKhwannimit B, Bhurayanontachai R, Vattanavanit V. Validation of the Sepsis Severity Score Compared with Updated Severity Scores in Predicting Hospital Mortality in Sepsis Patients. Shock. 2017 Jun;47(6):720–5spa
dc.relation.referencesKhwannimit B, Bhurayanontachai R, Vattanavanit V. Comparison of the performance of SOFA, qSOFA and SIRS for predicting mortality and organ failure among sepsis patients admitted to the intensive care unit in a middle-income country. J Crit Care. 2018 Apr;44:156–60spa
dc.relation.referencesKelsey, Jennifer L; Whittemore, Alice S; Evans ASTW. No Title. 2 edition. Methods in Observational Epidemiology. New York: Oxford University Press; 1996spa
dc.relation.referencesRothman KJ GT. Modern Epidemiology. 3 edition. Williams LW E, editor. 2012spa
dc.relation.referencesWhitley E, Ball J. Statistics review 3: hypothesis testing and P values. Crit Care. 2002 Jun;6(3):222–5spa
dc.relation.referencesSerafim R, Gomes JA, Salluh J, Póvoa P. A Comparison of the Quick-SOFA and Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality: A Systematic Review and Meta-Analysis. Chest. 2018 Mar;153(3):646–55spa
dc.relation.referencesSterling SA, Puskarich MA, Glass AF, Guirgis F, Jones AE. The Impact of the Sepsis-3 Septic Shock Definition on Previously Defined Septic Shock Patients. Crit Care Med. 2017 Sep;45(9):1436–42spa
dc.relation.referencesMartos-Benítez FD, Soto-García A, Gutiérrez-Noyola A. Clinical characteristics and outcomes of cancer patients requiring intensive care unit admission: a prospective study. J Cancer Res Clin Oncol. 2018 Apr;144(4):717–23spa
dc.relation.referencesNathan N, Sculier J-P, Ameye L, Paesmans M, Bogdan-Dragos G, Meert A-P. Sepsis and Septic Shock Definitions in Patients With Cancer Admitted in ICU. J Intensive Care Med. 2019 Dec;885066619894933.spa
dc.relation.referencesChae B-R, Kim Y-J, Lee Y-S. Prognostic accuracy of the sequential organ failure assessment (SOFA) and quick SOFA for mortality in cancer patients with sepsis defined by systemic inflammatory response syndrome (SIRS). Support care cancer Off J Multinatl Assoc Support Care Cancer. 2020 Feb;28(2):653–9.spa
dc.relation.referencesKuo W-K, Hua C-C, Yu C-C, Liu Y-C, Huang C-Y. The cancer control status and APACHE II score are prognostic factors for critically ill patients with cancer and sepsis. J Formos Med Assoc. 2020 Jan;119(1 Pt 2):276–81spa
dc.relation.referencesRojas Ruiz IT, Méndez Toro A, Rincón FJ. Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos en una unidad de cuidados intensivos . Vol. 43, Acta Medica Colombiana . scieloco ; 2018. p. 81–9spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalSOFAspa
dc.subject.proposalSOFAeng
dc.subject.proposalAPACHEspa
dc.subject.proposalAPACHEeng
dc.subject.proposalSIRSspa
dc.subject.proposalSIRSeng
dc.subject.proposalAUROCeng
dc.subject.proposalAUROCspa
dc.subject.proposalSepsiseng
dc.subject.proposalSepsisspa
dc.subject.proposalMortalidadspa
dc.subject.proposalMortality rateeng
dc.subject.proposalCalibrationeng
dc.subject.proposalCalibraciónspa
dc.titleEvaluación de escalas pronósticas en sepsis: valoración de SOFA, qSOFA, SIRS y APACHE IV como predictores de mortalidad en pacientes críticamente enfermos de un hospital general de Bogotá, año 2019spa
dc.title.alternativeEvaluation of prognostic severity scores in sepsis: assessment of SOFA, qSOFA, SIRS and APACHE IV as predictors of mortality in critically ill patients of a general hospital in Bogotá,2019spa
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1007430317.2021.pdf
Tamaño:
612.11 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: